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Approximately 15% of newly-diagnosed patients present with T-lineage acute lymphoblastic 

leukemia (T-ALL).1 When matched for National Cancer Institute (NCI) risk criteria, patients 

with T-ALL are at greater risk of relapse than those with B-cell precursor ALL (BCP-ALL), 

warranting specialized therapies. Unlike BCP-ALL, where molecular abnormalities are 

commonly utilized for risk-adapted treatment,2 the recurring molecular lesions found in T-

ALL are not. While most patients with T-ALL can be cured, survival is poor for those with 

refractory disease or relapse.3,4 With the advent of targeted therapies, efforts are underway 

to identify lesion-specific treatments for high-risk T-ALL.

In contrast to BCP-ALL, the molecular lesions that deregulate Homeobox A (HOXA) genes 

appear to be widely prevalent in T-ALL and acute myeloid leukemia (AML).5,6 Deregulated 

HOXA expression commonly occurs in immature, T-cell precursors (ETPs), or can be 

acquired by leukemic cells harboring lesions involving mixed lineage leukemia gene 

rearrangements (MLL-R) at 11q23, PICALM-AF10 at t(10;11)(p13;q14), SET-NUP214 and 

inv(7)(p15q34).5 Because there is a paucity of experience regarding the prognostic impact of 

HOXA-deregulating lesions in T-ALL, we utilized a retrospective cohort of 100 T-ALL 

patients enrolled on COG AALL0434 (NCT00408005) to analyze the cytogenetic and 

genomic features associated with treatment-related clinical outcomes. We enriched our 

cohort with 17 cases (17%) for whom induction failed (IF; M3 marrow at Day 29), allowing 

us to better evaluate the molecular lesions within this subset. The remaining cases were from 

patients who relapsed (REL; n = 8), or remained in complete continued remission (CCR; n = 
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75) ≥4 years. Detailed information regarding our approach is included in the Supplemental 

Methods, and in Tables S1 and S2.

Deregulated HOXA expression is a hallmark of MLL-R and AF10-R leukemias.6,7 To 

identify the prevalence of these and other rearrangements in our 100-member cohort, we 

performed an iterative evaluation of cytogenetics, FISH, and RNA sequence analyses 

(Supplemental Methods). In 12 cases, we found MLL-R, including MLL-AF6 (KMT2A-
MLLT4; n = 4), del3’MLL (n = 3), MLL-ENL (KMT2A-MLLT1; n = 3), MLL-PICALM 
(KMT2A-PICALM; n = 1) and MLL-AF17 (KMT2A-MLLT6; n = 1). Eight cases harbored 

re-arrangements of AF10, including PICALM-AF10 (n = 6), and two with DDX3X-AF10 
lesions8, one with a novel CASK gene fragment in a complex CASK-DDX3X-AF10 
translocation (Table 1, Figure S1). Five cases harbored other previously described lesions, 

two with inv(7)(p15q34) (#18, #91), two with NUP98-R fusions, and one with HOXA10-
TRBC.6,9 We identified four novel lesions: the first involving LINC01250-CCDC91, where 

a trans-Golgi transport regulator was fused to an intergenic region located 0.1 Mb upstream 

of ETV6 (#27); a second involving a fusion between RPP30-TLX1NB (#28), which also had 

a TRCB-MYB5 rearrangement; a third involving NUP98 rearranged to an intergenic region 

at 2q32 (#52); and the fourth involved a STAG2-LMO2 fusion (#96) (Table 1, S3 and S4). 

Although these newly-identified lesions showed HOXA deregulation, they represent distinct 

genetic subtypes of T-ALL where HOXA overexpression reflects stage of maturation arrest 

(data not shown).

To investigate upregulation of HOXA genes in T-ALL cases regardless genetic subtype of T-

ALL we performed unsupervised hierarchical clustering using 25 probe sets for genes within 

the HOXA gene family. We identified a cluster of 20 cases that were characterized by 

increased expression of HOXA genes (FDR ≤ 0.05) (Figure S2, Table S5). Within this 

cluster, HOXA9/10 had > 60-fold increased expression over baseline (HOXA5 > 28 fold; 

HOXA3, HOXA7 and HOXA10 > 3 fold) (Table S5). We validated our profiling approach in 

independent 90-member patient series, reported by Soulier et al.,6 confirming that HOXA-

deregulated T-ALL is enriched for MLL-R and AF10-R (Figure S2, Table S6 and S7).

We hypothesized that subset analyses might identify lesions that were associated with 

refractory or relapsed disease. We found that MLL-R, but not AF10-R correlated with IF in 

T-ALL (P = 0.005) (Table S8). We found that cases with MLL-R had an inferior EFS 

compared to those that did not (P = 0.0035) (Figure 1A). Univariate and multivariate 

regression analyses indicated that MLL-R were significantly associated with IF (P = 0.003, 

0.003) and EFS (P = 0.009, 0.008) after adjusting for the effects of age and WBC (Table S9 

and S10). Patients bearing the ETP-ALL phenotype have been characterized as having 

poorly differentiated, stem-cell like immunophenotype. Because MLL- and AF10-R 

leukemias also demonstrate features of undifferentiated leukemias, and the COG 

immunophenotypic flow analyses for ETP-ALL status were not completely assessed for all 

patients, we utilized expression profiling to distinguish cases represented by immature, early 

T-cell precursors (ETPs) using the gene signature developed by Coustan-Smith et al. (Table 

1, Figure S3). We found an association between ETPs and early treatment response (P = 

0.01) (Table S8) and an inferior EFS (P = 0.029) (Figure S4), thus we assessed whether 

ETPs cases are enriched with translocations harboring MLL or AF10 genes. We found a 
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marginally significant association between the presence of MLL-R and the ETPs status in 

our cohort (P = 0.07, Table S11). To investigate the effects of ETPs/MLL-R on T-ALL 

patient outcome, we next tested the relationship of MLL-R with IF, adjusting for ETPs 

phenotype, and found that the signature of ETPs/MLL-R was associated with IF in T-ALL 

(P = 0.01) (Table S12 and S13). We extended these observations to assess the impact of 

ETPs/MLL-R on EFS, and found a significant association with refractory disease and 

relapse (P = 0.005) (Figure 1B). Because MRD has emerged as a prognostic indicator of 

high-risk disease in T-ALL, we investigated the MRD status in MLL-R cases depending on 

the fusion partner or 3’-deletion. Disease progression was significantly associated with 

MLL-AF6, FISH-identified del3’MLL; exceptions occurring only if Day 29 MRD was < 0.1 

(Table 1, Figure 1C). Interestingly, no patient with MLL-ENL failed therapy, despite Day 29 

MRD levels ranging from < 0.01 to 2.8%, supporting reports that they do well with modern 

therapies. While AF10-R have been reported to confer an adverse risk in adult T-ALL10 in 

association with ETP features, we observed that only those with Day 29 Induction ≥10% 

failed treatment, in contrast to patients with MRD < 10%, who maintained a durable first 

remission when treated on AALL0434 and its single delayed intensification phase.

Because the recurring cytogenetic abnormalities that deregulate HOXA in T-ALL have not 

been systematically evaluated, the potential impact of such lesions on outcome has been 

unclear. Here, we profiled 100 patients for HOXA-deregulated T-ALL to determine whether 

the related molecular lesions might correspond with treatment outcome. The prognostic 

impact of MLL-R and AF10-R in T-ALL has been less clear, in part due to their rarity and 

difficulties in detection, and because of their variable T-cell stage of arrest. In our 100-case 

series, the molecular repertoire of T-ALL fusions, deletions and inversions was highly 

heterogeneous, with many lesions occurring with a frequency of 5% or less, and, in ~30% 

cases cytogenetic analyses were never performed (data not shown). It is therefore not 

surprising that the prognostic impact of molecular lesions remains an unanswered question 

in T-ALL.

Since first described by Coustan-Smith et al., patients with the ETP-ALL phenotype have 

received much attention for their unique biological profile and increased risk for relapse.11 

Recently, ETP-ALL patients have been reported to have similar outcomes as non-ETP 

patients on the UKALL 2003 and COG AALL0434 studies.12 When analyzed as a 

continuous variable on the AALL0434 study, Induction Day 29 MRD ≥ 10% was highly 

predictive of relapse, if not outright induction failure, but not ETP-ALL.13 Moreover, HOXA 
deregulation does not confer a worse prognosis in T-ALL,5 but we identified a subset of 

HOXA-deregulated cases having high end-induction MRD with MLL-R and AF10-R that 

failed therapy, suggesting that such patients might benefit from early identification, follow-

up MRD monitoring, and/or alternate approaches to therapy. We have also shown that 

patients with MLL-driven immature cells, having ETPs features, were likely to fail therapy, 

especially when involving MLL-AF6 or del3’MLL rearrangements. While MLL-AF6 
lesions have been reported to confer a worse prognosis in AML,14 we are the first to show 

their impact on outcome in T-ALL. In contrast, our results support the findings by Nigro et 
al.15 showing that in pediatric T-ALL, AF10-R tend to be more commonly arrested in more 

differentiated state, and without an adverse effect on outcome (Figure 1).
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There is pressing need to re-evaluate the role of routine cytogenetics/FISH testing in T-ALL. 

Because IF is a relatively rare event in the current era of modern therapies, the identification 

of molecular biomarkers relevant to disease resistance and treatment failure has been 

challenging. Enrichment of the tested cohort in IF cases allowed us to show that MLL 
rearrangements are determinants of high-risk disease in T-ALL. In addition to testing all 

samples for MRD at the end-Induction and end-Consolidation, we propose that cytogenetic 

tests be performed on all T-ALL patients at diagnosis specifically including testing for MLL-

R and AF10-R. In cases where Day 29 MRD is ≥ 0.1%, follow-up MRD testing might be 

used to intensify conventional therapy, pursue targeted therapies, or consider transplant in 

first remission. Further studies are warranted to validate our findings in larger retrospective 

cohorts or early clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Event free survival in molecular interrogation cohort of 100 T-ALL (COG AALL0434). (A) 
EFS for MLL-R (n = 12; black line) vs those with MLL germline (MLL-WT, n = 88; blue 

dash line) (log rank Mantell-Cox, P = 0.0035). (B) EFS for MLL-R having the ETPs 

phenotype by GEP (MLL-R/ETPs, n = 6; black solid line) vs. MLL-R cases without the 

ETPs signature (MLL-R/non-ETPs, n = 6; blue dash line) vs. non-rearranged MLL with 

ETPs phenotype by GEP (MLL-WT/ETPs, n = 20; purple, dot line) vs non-rearranged MLL 
without the genomic ETPs signature (MLL-WT/non-ETPs, n = 68; yellow dash-dot line) 
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(log rank Mantell-Cox, P = 0.0057). MLL-R/ETPs vs. MLL-WT/non-ETPs, P = 0.0004; 

MLL-R/non-ETPs vs. MLL-WT/non-ETPs, P = 0.0752; MLL-R/ETPs vs. MLL-WT/ETPs, 

P = 0.1364; MLL-WT/ETPs vs. MLL-WT/non-ETPs, P = 0.1399. (C) Post-Induction Day 

29 MRD levels in T-ALL patients (COG AALL0434) with specific MLL-R (n = 10) and 

AF10-R (n = 8) (Table 1) measured by flow cytometry (circles – MLL-AF6, squares – 

FISH-identified del3’MLL, diamond - MLL-ENL, triangle - AF10-R; red - IF; green - REL; 

black - CCR).
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