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ABSTRACT: The lipidome is currently understudied but
fundamental to life. Within the brain, little is known about cell-
type lipid heterogeneity, and even less is known about cell-to-cell
lipid diversity because it is difficult to study the lipids within
individual cells. Here, we used single-cell mass spectrometry-based
protocols to profile the lipidomes of 154 910 single cells across ten
individuals consisting of five developmental ages and five brain
regions, resulting in a unique lipid atlas available via a web browser
of the developing human brain. From these data, we identify
differentially expressed lipids across brain structures, cortical areas,
and developmental ages. We inferred lipid profiles of several major
cell types from this data set and additionally detected putative cell-
type specific lipids. This data set will enable further interrogation
of the developing human brain lipidome.
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The lipidome is a vast and understudied aspect of life.
While lipids are essential to many organs, they are

particularly important for brain function because they are
involved in cell shape and membrane formation,1−3 anchoring
of membrane proteins,4 and neuropeptide signaling.5 While the
lipidome is less characterized compared to other molecular
classes such as proteins and genes, several efforts have served
to provide key information that demonstrates the importance
of lipids within neuroscience.6−18 These studies demonstrate
the importance of studying the lipidome on the single cell level
within human embryonic development. Tu et al.,18 for
instance, demonstrated that glycerophospholipids decreased
with age, while sphingolipids increased with age. Moreover, the
human cortex is uniquely expanded compared to chimpanzees,
with many of these region- and size-specific differences
emerging during developmental stages.19 This expansion also
applies to the human cortical lipidome but not to other brain
structures and organs.20,21 Interestingly, the lipidome is
dysregulated in the prefrontal cortex in autism,22 suggesting
a neurodevelopmental role for cortical lipid functions.
However, the identification of lipid molecules in the human
brain is challenging. Individual lipids are difficult to label or
visualize using traditional antibody- or microscopy-based
approaches, contributing to the need for alternative methods
to access and survey their content.

■ RESULTS

To study the lipidome of the developing human brain, we
created an experimental and analytical approach that enables
large-scale single-cell lipidomic data set generation. While this
study focuses upon the developing human cortex, the methods
employed here address the data scale and analysis time
required for atlas- or repository-type studies, which are of
current interest to the NIH and other funding agencies
(HuBMAP,23 HCA,24 HTAN,25 and the BRAIN Initiative26),
though optimization in an individual system is advisible,
especially if working with a hard to dissociate tissue. We began
by dissecting primary post-mortem early and midgestation
tissue samples into known anatomical brain regions. Cell
dissociates were collected from ten individuals across five brain
regions at early developmental stages, and across cortical
regions for later time points (Figure S1A; Table S1). Samples
were dissociated and plated with glycerol onto indium tin-
oxide coated slides. Single-cell matrix-assisted laser desorption/
ionization (MALDI) mass spectrometry (MS) analysis was
performed as previously described.27,28 Data were normalized
to the total ion current and aligned with in-house scripts (see
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Figure 1. Single-cell mass spectrometry identifies lipid diversity in the developing human brain. (A) Single-cell lipidomics was performed on the
cortex, ganglionic eminences (GE), hypothalamus, midbrain, and thalamus of the developing human brain between gestational weeks (GW) 10−
23. In brief, brain regions were dissected and dissociated into single cells. These slides were then processed using MALDI-TOF to identify lipid
spectra for 154 910 cells. (B) Fifty-three unique lipidomic clusters (left) visualized by uniform manifold approximation and projection (UMAP)
were identified via Louvain clustering. Some of these clusters were enriched by specific ages in gestational weeks that were sampled (middle) or
brain structures (right), while other clusters were intermixed across stages or regions. (C) Hierarchical clustering shows the average abundance of
each detected lipid within a cluster. On average, there were 2923 cells per cluster ranging from 184 to 9153. (D) Summed mass spectra from all
cells, demonstrating how bulk analysis is insufficient for assaying lipid diversity. (E) The UMAP recolored by number of cells. (F) The distribution
of lipids per cell for each sampled brain structure.
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Figure 2. Lipid heterogeneity in the developing human brain. (A) Averaged lipid spectra from 3 clusters, where clusters 6, 8, and 26, are GE, cortex,
and thalamus enriched, respectively, highlight that there many different lipids detected in the brain and there are unique lipid combinations across
brain structures. (B) Three commonly detected lipids with cluster level enrichments as feature plots in the UMAP space, with more purple signal
indicating greater detection of that lipid in a cell. (C) The hierarchically clustered (using rows) heat map shows each cell in the data set in the
columns with summed signal across each lipid class, with a high abundance of PC and PE coverage, as expected. (PI-Cer: phosphoinositol
ceramide; PI: phosphoinositol; PE-Cer: phosphoethanolamine ceramide; GlcCer: glucosylceramide; TG: triglyceride; PG: phosphoglyceride; PE:
phosphoethanolamine; PS: phosphotidylserine; PC: phosphatidylcholine; SM: sphingomyelin; PA: phosphatidic acid; HexCer: hexosylceramide;
Cer: ceramide; GalCer: galactosylceramide; CerP: ceramide phosphate; DG: diglyceride) (D) Differential expression analysis was performed across
all cells based upon their brain structure. The number of lipid markers per structure is depicted here. Full list of differential lipids is presented in
Table S6. (E) For the cortex and GE lipid markers, they are plotted based upon their average fold change and specificity (calculated as percent of
cells in the structures in which the lipid was detected divided by percent of cells in all other structures in which the lipid was detected). Points are
colored by lipid class, if the lipid was identified, otherwise the point is black. Cortex lipids are indicated by a circular point, GE by a diamond point.
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Methods). We obtained a total of 154 910 single-cell lipidomic
profiles. Lipid identities were assigned based on a combination
of mass accuracy, orthogonal Fourier transform ion cyclotron
resonance (FT-ICR) MS measurements, and LIPIDMAPS
database search.29,30 The listed lipids included common salt
adducts which are present in the sample, such as sodium, or
added as a during sample preparation, such as formate.
Additionally, the extent of lipid saturation was also not
considered, except when assessing which lipid identity was
more likely. While there is significant functional relevance
within neuronal axons, the lipids measured here within the
soma represent biological relevance associated with cell shape,
protein anchoring, and developmental processes prior to
extensive morphological maturation.31,32

One challenge of MS analysis across primary tissue samples,
time points, and time scales is the increased potential for
nonbiological (e.g., instrumental and sampling) variance. We
examined the replicability in our data and observed an average
Pearson’s correlation between individuals and brain structures
of 0.41 and 0.48, respectively, with samples from the same
brain region and age corresponding with a correlation of
greater than 0.6 (Figure S1B; Table S2), which is similar to
parallel, early single-cell transcriptomic studies.33 These
analyses highlight that although there is some variability across
lipidomic profiles which is to be expected given that lipidomes
are unlikely to remain stable through various physiological
inputs, there are enough similarities observed with this method
to characterize the scope of single-cell lipid diversity and
heterogeneity. While the measurements acquired here took
place over the course of a year because of sample acquisition
and instrument time, we have previously demonstrated
reproducibility34 and here demonstrate the variance is not a
result of analysis date or time (Figure S1). Moreover, the
replicability suggests that aspects of the lipidome are widely
expressed and reproducibly generated during development.
We performed clustering analysis to group the cells based on

similar lipid content. Overall, the data was best described by 53
clusters, some of which were enriched for specific brain
structures or developmental stages (Figure 1B; Figure S1C, D).
We observed that the lipid content across clusters was diverse,
with 600 lipids being represented in unique combinations and
abundances when averaged across individual cluster groups
(Figure 1C; Tables S3 and S4). On average, we detected 35
different lipids within a cell, with a range of 2−213 lipids per
cell, though the distribution was similar across developmental
ages (Figure 1D, E; Figure S1E). Of note, the number of
detected lipids per cell varied with brain structures such that
the cortex and ganglionic eminences (GE) had the highest
number of distinct lipids detected per cell (Figure 1F).
Previous work noted highlighted higher concentrations of
lipids in adult gray matter and other brain structures, such as
the medulla, but these concentration measurements are
agnostic to lipid diversity.35,36

It is important to highlight that there are potential
confounding variables such as age and anatomical area,
which may explain our observations. For example, it may be
that some brain structures have complex distributed lipid
content where most individual lipids are below our
instrumental detection limit so that those cells appear less
diverse. Interestingly, low lipid numbers per cell (<10)
corresponded to cells sampled from younger, noncortical
regions while cells with high lipid numbers (>150) were more
correlated with cells samples from older, cortical regions.

To investigate the biological underpinnings of our data and
how specific lipids may correspond to cell type or biological
function, we putatively identified 287 of the 600 lipids in our
data set (Table S5) using a combination of LIPIDMAPS, and
orthogonal FT-ICR MS measurements.37−39 While the assign-
ments here were made with high mass accuracy measurements,
there are isomeric lipid species that we cannot differentiate
with this method. It is difficult to perform tandem MS on even
the highest abundance species at cellular resolution and cannot
fragment species that are only present in a few cells. We used
the assignment we believe to be the most likely; we
acknowledge these are not confirmed, nor are we considering
isomers which will be a future endeavor of the field, such as
through the inclusion of ion mobility spectrometry. We
extracted lipid profiles from clusters enriched for different
brain structures. We observed that [phosphatidylcholine (PC)
(32:0)+H]+ is most often the base peak of each spectrum
(Figure 2A, Figures S2 and S3). We highlighted common brain
lipids that had specific cluster expression (Figure 2B) and
determined age-, region-, and cluster-specific lipid class
expression patterns (Figure 2C). Across all cells, we found
some lipids that were detected within most clusters (PC(32,0)
in all 53 clusters) but many lipids were only localized in a
handful of clusters (e.g., HexCer(d42:0) + H − H2O, PC(O-
30:0), and PS(O-20:0)) (Figure S4). This highlights that
although the time points explored in this study precede
myelination and other large-scale lipid production events,
lipids may play key functional roles in regulating cell type-
specific functions at specific developmental time points. For
instance, clusters 4, 11, and 24 are partially defined by the
presence of plasmalogens (Table S4), known to be
accumulated during development,40−42 and their dysregulation
leads to neurological diseases,42,43 implicating their impor-
tance. Despite these findings, the role of specific plasmalogens
is not known. Here, we have determined the abundance of
specific lipids within these clusters, such as PA(O-36:2),
PA(O-34:0), and PC(O-28:0) defining cluster 4 (Table S4).
Through these types of analyses and future experiments, we
can potentially begin to parse out which specific lipids may be
responsible for essential developmental functions.
We sought to utilize the analysis of different brain structures

as a way to identify classes of lipids with regional specificity. In
a heat map of all lipid classes hierarchically clustered across all
cells, we noted that triglycerides (TG) were enriched in the
ganglionic eminences (GE) (Figure 2C), which give rise to the
vast majority of inhibitory interneurons during human cortical
development,44 suggesting triglycerides may in promote the
generation and/or migration of these cell populations. To
further explore structural enrichments, we used differential
expression analysis across all cells based upon their dissected
brain structure. Concordant with the lower detected lipid
content per cell in the hypothalamus, midbrain, and thalamus,
we observed few lipids enriched as markers in these structures
(Figure 2D, Table S6). Thus, we focused more deeply on the
cortex and GE, two telencephalic structures that are
developmentally related but diverge at later time points; the
cortex expands during development and gives rise to the six
neuronal layers and many glial populations,45 while the GE is a
transitional structure that disappears before birth.46 The lipid
classes were approximately equally represented within the
cortex and GE (Table S6), but discrete lipid profiles were
different. For example, individual phosphatidic acid (PA) and
ceramides (Cer) were both more specific and abundant in the
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GE, whereas lipids specific to the cortex had lower levels of
enrichment (Figure 2E). Here, we defined specificity as the
relative enrichment of a lipid in a cluster compared to the rest
of the clusters, and we do observe some examples of large fold
changes with lower specificity in cases of highly variable lipid
representation across cells.
We also performed the same clustering analysis on the

cortical cells alone (Figure 3A, Tables S7 and S8). Recent work
has shown that across cortical regions, excitatory neurons are
transcriptionally distinct and these differences emerge during
developmental time points.47 Interestingly, because many
genes that distinguishing these cortical regions revolve around
lipid metabolism, we sought to explore how these regions are
distinct in terms of their lipid composition. We again
performed differential expression analysis, but this time across
cortical regions (Table S8). Using these markers, we
investigated what proportion of lipid area markers were from
each of the identified lipid classes (Figure 3B). Strikingly, we
see a strong distinction between frontal areas (PFC, motor,
somatosensory) and occipital areas, mirroring known gradients
and transcriptional programs.48 For example, ceramides (Cer,
HexCer, PE-Cer, PI-Cer) are enriched in frontal cortical
regions and help regulate signaling cascades.47 By contrast,

phosphatidylcholines (PC) are comparatively enriched in V1
dissected regions, suggesting that membrane composition is
not constant across cortical regions, and may play a role in
cortical arealization.
We further explored the cortex across developmental time

points, binning the ages sampled into early (before GW17,
before peak-neurogenesis), middle (GW18−21, during peak
neurogenesis), and late (GW22 − GW24, after peak
neurogenesis and at the beginning of gliogenesis)49 (Figure
3C). In the cortex alone, we observed a significant increase in
the number of identifiable lipids that during stages of peak
neurogenesis (Figure 3D). Differential lipid analysis was
performed across these age ranges (Table S9), and we noted
an enrichment of PC during the middle developmental stages,
with late stages only having lipid enrichments of phosphati-
dylserine (PS), and other ceramide classes including HexCer,
CerP, and GlcCer (Figure 3E). Notably, PS double in content
and are involved in metabolism of acetylcholine and other
transmitters.50 Enrichment of PC lipids in the middle ages is
reminiscent of the V1 PC enrichment across areas and may be
indicative of a maturation difference, as V1 neuronal
differentiation lags behind frontal areas.

Figure 3. Cortex lipidome analysis. (A) Single-cell lipidomics was used as the input for cell clustering of the cells derived from the cortex alone,
resulting in 55 clusters (left) and included some cortical area-specific clusters (middle). (B) Lipid markers were calculated across cortical regions.
The number of identified lipids in each class were counted, and normalized by dividing by the total number of marker lipids for that area, creating
the plotted normalized fraction of marker genes. Each represented lipid class is shown in groups on the x-axis, with bars colored by the cortical area
being represented. (C) The UMAP plot of the cortex analysis is colored by the age of the samples, shown in the legend by GW. (D) Box and
whisker plots show the number of lipids per cell for each age range in the cortex data. (E) Lipid markers were calculated across cortical stages of
development. The number of identified lipids in each class were counted, and normalized by dividing by the total number of marker lipids for that
area, creating the plotted normalized fraction of marker genes. Each represented lipid class is shown in groups on the x-axis, with bars colored by
the cortical age range being represented.
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To explore potential cell type-specific lipid composition, we
used 16 lipids that are known to differentiate enriched neurons
and astrocytes.28,51−54 This annotation enabled putative
assignments neurons, astrocytes (which may include radial
glia progenitors), and other cell types (likely including
vasculature and microglia) (Figure 4A, B). We established
that 25 clusters consist of mostly neurons, 20 clusters are
associated with glia, and 8 clusters are comprised of other cell
types. Cells with small numbers of detected lipids (<10) were
more likely to be categorized as from neuronal or glial
populations, whereas cells with large numbers of detected
lipids were enriched for “other” cell types. We then used
differential expression across these putative groups and
expanded the lipids associated with these classes to include
SM(d-30:0), SM(d42:1), and Cer(d44:1) for neurons, and
PA(O-34:0), PG(O-34:0), and PC(O-28:0) for astrocytes
(Table S10), among others. In total, we correlated an
additional 149 lipids to neurons and 14 to astrocytes across
all brain structures. The diversity observed in neurons is not
surprising, because of the drastic changes that neurons undergo
during development.55

This analysis enabled us to identify an additional 200 lipids
that differentiate glial populations and neurons within the
cortex (Figure 4C, Table S10). In particular, we found 10

lipids that defined astrocytes within the cortical regions and
104 lipids that defined neurons (Figure 4D, E). We identified
numerous area-specific and cell-type enriched lipids, including
groups of ceramides and phosphatidylcholines that show
unique expression in one cortical area (Figure S5A), consistent
with the areal analysis presented earlier. Similar unique classes
are identifiable in the cortex, GE, and hypothalamus at early
stages of brain development (Figure S5B). These data suggest
that the transcriptomic differences across brain and cortical
regions (Table S11) manifest lipid composition differences as
well. Across cell types, there were many more lipid markers of
neuronal and other cell populations than for astrocytes,
possibly because astrocytes emerge at later time points and
have less complex lipid composition. Overall, astrocytes had
stronger relative representation of HexCer, PC, and PA lipid
markers, cellular populations excluding neurons and glia were
defined by TG, CerP, and PI lipid classes. This observation is
consistent with a recent analysis of mouse astrocyte lipids.56

More work is required to characterize what, if any, functional
roles are played by these specific lipids or lipid classes across
brain regions or cortical structures, or if these unique profiles
can be directly linked to area-specific transcriptional profiles
that have been previously identified.47

Figure 4. Lipid-based classification of cell class. (A) Using known cell-type specific lipids, we classified each cell in our data as either neuron,
astrocyte, or other, as shown in the recolored UMAP diagram. (B) Feature plots of two lipids that are strongly cluster and cell type enriched suggest
that lipids may have strong cell type correspondence. (C) Cortical cells could also be presumptively assigned a cell class, and we observe some cell
class and cortical area specific cluster assignments (right). (E) Lipid markers were calculated across inferred cell types. The number of identified
lipids in each class were counted, and normalized by dividing by the total number of marker lipids for that area, creating the plotted normalized
fraction of marker genes. Each represented lipid class is shown in groups on the x-axis, with bars colored by the cell type being represented.
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■ DISCUSSION

Here, we provide previously unreported detail of the lipid
diversity and heterogeneity that exists during human brain
development. Because of the inherent limitations surrounding
many approaches used to assess lipid content at the single-cell
level, this analytical process enables the exploration of these
lipids.
While the work here represents over a hundred thousand

cells, we recognize that we are profiling the highest abundance
molecular species within the individual cells, and it is likely that
each individual cell contains more than 213 lipids (the
maximum number we identified in a single cell); we cannot
characterize lipids present in amounts below the detection
limit of our instrumentation. Additionally, there were many
ions that could not be assigned and this could be a result of
being associated with lipid classes not comprehensively
included in LIPIDMAPS, nonlipid molecular features, or
uncharacterized species. From this data set, we identify lipid
composition patterns that describe brain regionalization,
cortical arealization, changes across developmental stages in
the cortex, and characterize broad cell type identities. Future
work will be required to build upon this descriptive data set to
explore the functional role of various lipid classes and their
impact upon cell-fate specification and other core biological
processes in human brain development. Current open
questions that exist based upon this data resource include
whether or not lipids are “passive” readouts of other cellular
processes, or act as regulators of cell fate specification. This is
especially pertinent within radial glia and neural progenitor
populations. These single-cell lipidome characterizations across
developmental time points of the human cortex and other
brain regions are the first step toward understanding how lipid
composition changes as a function of development. One of the
most challenging aspects of analyzing biological samples is that
they exist within the tissue matrix in a wide range of
concentrations that surpasses the dynamic range of a mass
spectrometer (and most other instrumental approaches).
While methods exist for reducing this complexity, such as
integrating a separation prior to the measurement, they reduce
the total number of cells that can be analyzed, particularly at
true cellular resolution. As such, many of the lipids detected
are at higher concentrations within the analyzed cell. In some
cases, using single cell methods, we can detect less common
lipids that are at locally higher concentrations in specific cells
but present at lower overall concentrations within the whole
tissue. Finally, we also acknowledge that the dissociation
procedure may both affect the proportion of cell types that
remain viable as well as affect highly reactive lipid species.
These effects will be the focus of future experiments, but do
not diminish the utility of the hypothesis generating data set
depicted here
Intriguingly, in the data we present here, we observe a

diversity and heterogeneity of lipids prior to the onset of
synaptogenesis56 and most cell−cell communication that
comprise many of the known functional role of lipids in
brain biology. For example, we see an increase in the number
of lipids per cell during peak neurogenesis, with many unique
clusters and lipid profiles spanning cortical regions. Is this
volume and diversity of lipid content a function of rapid
division and migration, or do lipids offer relevant cues during
this dynamic period of development? We also observe
enrichment of ceramides in various regions and time points.

As these are precursors to sphingolipids, they may be
indicators of increasing cell type and functional complexity
within the developing human brain, and have also been
described as regulators of differentiation and stem cell
proliferation.57,58 One limitation to further understanding
these relationships is the incomplete mapping of lipids to
transcriptomic and proteomic readouts of cell identity.
Improved understanding of which enzymes, transporters, and
interaction partners impact lipid composition in a cell may help
us more easily interpret the observations from this lipid atlas,
including through direct connections between transcriptomic
cell types and lipid clusters as it is currently unclear if they
correlate with transcriptomic definitions or offer orthogonal
markers of identity. The cell types presented in this manuscript
are an approximation based upon enriched neuronal and glial
populations. More specific subtyping of cell types/states would
improve the relevance of these data sets, especially given the
degree to which transcriptomic diversity of cell types in the
developing human brain have been described in other studies.
Currently the technology to perform the joint profiling
required to make these correspondences is not yet available,
but our findings of distinct lipidomic profiles in progenitor and
neuronal populations should further motivate the development
of these types of multiomic approaches. Moreover, as
technological advances improve sensitivity, more lipids may
be detectable in individual cells, allowing us an even fuller
picture of the lipid profiles during human brain development.
To make this data useful to the broader community, we

developed a lipid browser to explore these data. From this
browser (https://cells.ucsc.edu/?ds=brain-lipids) (Figure S6),
individuals can observe the UMAPs we present in this study
and color them by metadata properties, download the entire
data set, explore lipid cluster markers, and browse m/z spectra.
In making this data accessible, we hope that the community
will continue to dissect and build upon a new frontier of single-
cell biology to better contextualize the role that lipids play in
developmental processes.

■ METHODS

Chemicals

2,5-Dihydroxybenzoic acid (DHB) and ethanol were purchased from
MilliporeSigma (St. Louis, MO). Hoechst 33342 was purchased from
Life Technologies (Gaithersburg, MD). Peptide Calibration Standard
Kit II (angiotensin II, angiotensin I, substance P, bombesin, ACTH
clip 1−17, ACTH clip 18−39, somatostatin 28, bradykinin fragment
1−7) was purchased from Bruker Corp. (Billerica, MA). All reagents
were used as received (>98% purity) without further purification.

Sample Collection

Samples were obtained from developing human brain tissue donated
through the San Francisco General Hospital. All samples used in this
study were collected with informed consent and collection was
approved by the UCSF Human Gamete, Embryo and Stem Cell
Research Committee (GESCR) protocol 10−03379. To our knowl-
edge, all samples were developmentally and chromosomally normal.
After sample collection, samples were processed within 2 h; during
the intervening transportation and transfer time, samples were kept on
ice and in artificial cerebral spinal fluid (ACSF: 125 mM NaCl, 2.5
mM KCl, 1 mM MgCl2, 1 mM CaCl2, 1.25 mM NaH2PO4, 25 mm
NaHCO3, 25 mm D-glucose, bubbled with 95% O2 and 5% CO2) to
maintain the health of the cells. Brain regions were dissected and
samples dissociated into single-cell mixtures using papain (Worthing-
ton, NJ). Previous work with a live/dead stain showed us that papain
results in high levels of viability after creating a single-cell
suspension.47 All samples were processed in the same way, and
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dissociated cells were viable, as verified by a trypan blue live/dead cell
count. These cells were resuspended in equal volumes of PBS with
0.04% PFA and 80% glycerol in PBS and dropped onto the slide.
Single-cell mixtures were counted, and 400 000 cells were mounted
onto each indium−tin oxide coated glass slide (Delta Technologies,
Loveland, CO), marked by hand-etched fiduciary marks in the shape
of crosses. The slides were left at room temperature overnight and
excess glycerol was gently tipped off.

Optical Imaging

Brightfield and fluorescence images were acquired on a Zeiss Axio M2
microscope (Carl Zeiss Microscopy GmbH, Oberkochen, Germany)
equipped with an Ab cam Icc5 camera, X-cite Series 120 Q mercury
lamp (Lumen Dynamics, Mississauga, Canada), and a HAL 100
halogen illuminator (Carl Zeiss Microscopy GmbH). The DAPI (ex.
335−383 nm; em. 420−470 nm) dichroic filter was used for
fluorescence excitation. The images were acquired with a 10×
objective (1 pixel-width is 0.55 μm) with a 13% overlap produced
during image tiling. Images were processed and exported as big tiff
files using ZEN software, version 2, blue edition (Carl Zeiss
Microscopy GmbH).

MS Analysis
microMS was used as previously described to obtain coordinates of
individual cells.59 Briefly, cells were filtered by size (>8 μm in
diameter), shape and distance (the cells must be located at least 100
μm distance from each other). These criteria reduce the time spent
analyzing debris and artifacts from cell sampling; this approach was
used to register microscopy images with the MALDI MS stage by
locating stage coordinates for at least 15 fiduciary points present on
the slide. After full-slide imaging was performed, slides were coated
with a 50 mg/mL DHB solution dissolved in 1:1 ethanol:water with
0.1% trifluoroacetic acid as described previously using a custom
automated sprayer.28 The matrix solution was nebulized at 10 mL/h
using nitrogen gas at 50 psi with 100 passes. Samples were taped to a
rotating plate and the spray was placed 3 cm above the samples. The
total amount of matrix applied was between 0.1 and 0.2 mg/cm2.
Single-cell analysis was performed on an ultrafleXtreme TOF/TOF
mass spectrometer (Bruker Corp.) with the reflectron activated and a
mass window of 500−3000. The “Ultra” (∼100 μm footprint) laser
setting was used and 300 laser shots were accumulated at 1000 Hz
and 60% laser energy for each cell. The instrument was calibrated with
a quadratic fit using the standard Bruker peptide mix. Lipid extracts of
select samples were prepared using the Bligh−Dyer method59. Direct
infusion electrospray ionization of lipid extract (∼1 mg of dried
extract was resuspended in 1 mL of 50:50 methanol and water) was
performed for high mass accuracy of selected lipids using a solariX XR
7T Fourier-transform ion cyclotron resonance (FTICR) mass
spectrometer (Bruker Corp.) with a mass window of m/z 100−
3000 yielding a transient length of 1.96 s in positive ion mode. Sample
was delivered at 120 μL/h with a capillary voltage of 3900 V.
Additional instrumental parameters include: broadband detection,
0.100 s ion accumulation, 0.001 s time-of-flight, 4.0 L/min dry gas
flow, capillary exit of 220 V, deflector plate at 200 V, skimmer 1 at 15
V, octopole RF amplitude of 350 Vpp, a quadrupole mass cut off of
150 m/z, collision cell entrance voltage of −1.5 V, 1 ICR fill, a front
and back trap plate of 1.5 V, and an excitation power of 7.1 dB.
Extract spectra were recalibrated using [PC(32:0)+H]+,
[PC(32:0)+Na]+, [PC(38,4)+H]+.

Data Normalization and Lipid Identification

Spectra were normalized to the total ion current and aligned using
[PC(32:0)+H]+, which was present in most of the single cells. Lipids
were putatively identified using a combination of high mass accuracy
FT-ICR MS and LIPIDMAPS database searching [10.1021/
ed200088u, 10.1093/nar/gkm324] using >3 ppm errors as a cut off.
The m/z values obtained from the ultrafleXtreme were mass matched
to the closest identity obtained using the FT-ICR spectra. Upon
analysis in Seurat, we also regressed out batch in the space of
normalized values in order to ensure comparison across samples with
potential batch effects.

Clustering

Clustering was performed using Louvain−Jaccard graph-based
clustering. Normalized matrices were used for downstream analysis
without additional transformation. Variable genes were identified
based upon default parameters in Seurat version 2. In the space of
these variable genes, principal component analysis was performed, and
significant principal components were identified based upon
previously described methods60. The 10 nearest neighbors of each
individual cell were identified based upon the projection of these
principal components with the RANN R package (CRAN), and the
Jaccard distance was calculated between all nearest neighbors,
expanding distance between only slightly similar cells and decreasing
the distances between similar cells. Clusters were determined with the
igraph R package (https://igraph.org/) using Louvain clustering, and
differential spectra were identified using the Wilcoxon rank sum test.

Cell Type Annotation

Cell type annotations were used by comparing identifiable lipids
between each individual cell in our data set and previously
published28 cell-type-specific lipid profiles [PE(O-34:2)/PE(P-34:1),
PE(38:2), PE(O-36:2)/PE(P-36:1), PC(O-34:1)/PC(P-34:0), SM-
(d36:1), PC(32:1), PC(40:6), PC(34:0), PC(38:6), PC(32:0)/
PE(35:0), PC(36:2), PC(34,1), PE(36,4), PC(34,0), PC(O-36:2)/
PC(P-36:1)]. If more than 70% of the annotated lipids matched, it
was assigned as either astrocyte or neuron, but if the match for either
cell type was less than this, it was labeled as other.
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