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AbsTrACT
Power analysis is a key component of planning prospective 
studies such as clinical trials. However, some journals 
in biomedical and psychosocial sciences request power 
analysis for data already collected and analysed before 
accepting manuscripts for publication. Many have raised 
concerns about the conceptual basis for such post- hoc 
power analyses. More recently, Zhang et al showed by 
using simulation studies that such power analyses do not 
indicate true power for detecting statistical significance 
since post- hoc power estimates vary in the range of 
practical interests and can be very different from the true 
power. On the other hand, journals’ request for information 
about the reliability of statistical findings in a manuscript 
due to small sample sizes is justified since the sample size 
plays an important role in the reproducibility of statistical 
findings. The problem is the wording of the journals' 
request, as the current power analysis paradigm is not 
designed to address journals’ concerns about the reliability 
of the statistical findings. In this paper, we propose an 
alternate formulation of power analysis to provide a 
conceptually valid approach to the journals’ wrongly 
worded but practically significant concern.

InTroduCTIon
Power analysis is critical to designing and 
planning prospective studies in biomed-
ical and psychosocial research. It provides 
critically important sample sizes needed to 
detect statistically significant and clinically 
meaningful treatment differences and eval-
uate cost–benefit ratios so that studies can be 
conducted with minimal resources without 
compromising scientific integrity and rigour. 
Thus, power analysis is informative for 
prospective studies, that is, studies that are 
yet to be conducted. However, the last author 
of this paper has been receiving numerous 
requests from domain experts to perform 
power analysis for data already analysed and 
reported in submitted manuscripts. Although 
the reasons for such ‘post- hoc’ power analysis 
are never provided by the journals consid-
ering publications of the manuscripts, our 
understanding is that they are likely due to 
the sample sizes of the data analysed, that is, 

whether the limited sample sizes are suffi-
cient to reliably detect significant treatment 
differences reported in the manuscripts.

As statistical power describes the proba-
bility, or likelihood, of an event to occur in the 
future, such as a statistically significant treat-
ment or exposure effect in a study, post- hoc 
power analysis is clearly flawed since power 
analysis is being performed for an event that 
has already occurred (ie, the treatment or 
exposure difference already exists in the study 
data) regardless of whether the difference 
is statistically significant. Many have raised 
concerns on such conceptual grounds.1–5 
Despite these efforts, some journals continue 
to request post- hoc power analysis as part of 
their decision- making process in publishing 
manuscripts. On the other hand, even if an 
approach or method is conceptually flawed, it 
may still provide useful information.

For example, for addressing missing 
follow- up data in longitudinal data, the 
last observation carried forward (LOCF) is 
conceptually flawed when used as a general 
statistical strategy to deal with missing data 
during follow- up assessments. However, in 
some cases, LOCF is still used to provide 
information about treatment differences. 
Consider a longitudinal study on a disease of 
interest in which the subjects’ health condi-
tions will deteriorate over time. Estimates 
of changes over time under LOCF provide 
information for the mean change of health 
conditions in the best scenario since follow- up 
missing data are likely due to deteriorated 
health conditions.

Unfortunately, this is not the case with 
post- hoc power analysis. Zhang et al1 exam-
ined the utility of post- hoc power analysis 
in comparing two groups using simulation 
and found that post- hoc power estimates are 
generally not informative about the true treat-
ment difference unless used for large effect 
size and/or large sample size. For medium 
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Figure 1 Histogram of power from existing post- hoc power function, along with power from the prospective power function 
for sample size n=50, based on 1000 Monte Carlo runs for effect size (A) Δ=0.2, (B) Δ=0.5 and (C) Δ=0.8.

effect size, Cohen’s d=0.5, post- hoc power estimates will 
vary uniformly between 0 and 1 even for a sample size of 
n=100 per group.

Although requests for post- hoc power analysis present 
a conceptual conflict with the power analysis paradigm, 
the rationale for wanting to know if the sample size is 
sufficient or insufficient to detect statistically significant 
treatment difference is a meaningful one, especially when 
the sample size is relatively small. In this paper, we discuss 
conceptually valid approaches to help capture journals’ 
concerns about the reliability of statistical findings.

PosT-hoC Power AnAlysIs for ComPArIng Two 
PoPulATIon meAns
Within the power analysis paradigm, the reason why 
post- hoc power analysis is conceptually flawed is the 
misinterpretation of parameters for power analysis in 
prospective studies. In fact, standard power analysis is ill- 
posed for assessing the reliability of significant statistical 
findings from data of a completed study. We discuss one 
more appropriate formulation that extends the current 
power analysis paradigm to address the fundamental flaw 
in the existing approach.

For convenience, consider two independent samples 
and let Yik denote a continuous outcome of interest from 
subject i and group  k (1 ≤ i ≤ nk, k = 1, 2) . For simplicity 
and without loss of generality, we assume that for both 
groups Yik follows a normal distribution population 
mean  µk  and common population variance σ2 , denoted 
 N(µk,σ2) (1 ≤ i ≤ nk, k = 1, 2) . The most popular hypoth-
esis for comparing two groups is whether the population 
means are the same between the two groups, that is:

 H0 : µ1 − µ2 = 0 vs Ha : µ1 − µ2 = δ ̸= 0,  (1)

where δ  is a known constant and H0 (Ha) is known as 
the null (alternative) hypothesis. The hypothesis in Equa-
tion 1 is known as a two- sided hypothesis as no direction 
of effect is specified in the alternative hypothesis Ha. If a 
directional effect is also indicated, such as in Equation 2, 
the hypothesis is called a one- sided hypothesis.

 

H0 : µ1 − µ2 ≤ 0 vs Ha : µ1 − µ2 = δ > 0

or H0 : µ1 − µ2 ≥ 0 vs Ha : µ1 − µ2 = δ < 0   
(2)

In addition to stating that the two population means 
are different, it also indicates that the population mean 
for group 1 is larger (or smaller) than that for group 2 
under the alternative. Since two- sided hypotheses are 
much more popular in practice, we focus on the two- 
sided hypothesis throughout the rest of the discussion 
unless stated otherwise. However, all results and conclu-
sions derived apply to the one- sided hypothesis.

Note that when testing the hypothesis in Equation 1 as 
in data analysis, δ  is an unknown constant and p values are 
calculated based on the null H0 without any knowledge 
about δ  in the alternative Ha. For power analysis, however, 
this mean difference must be specified, which actually is 
the most important parameter for power analysis.

In practice, the normalised difference, or Cohen’s 

 d =
∣∣µ1−µ2

∣∣
σ  , is often used since it is invariant under linear 

transformation.6 This invariance property plays a signif-
icant role in statistical analysis. For example, consider 
comparing gas mileage between two types of vehicles, 
such as sport utility vehicles (SUVs) and sedans. If this 
study is conducted in the USA, miles per gallon of gas will 
be used to assess gas mileage for each vehicle. If the study 
is conducted in Canada, kilometres per gallon of gas will 
be used to record gas mileage for each car. Although the 
means  µk  for the two classes of vehicles are different, the 
effect size is the same regardless of whether kilometres or 
miles are used to measure distance travelled per gallon of 
gas. With the unitless effect size, the hypothesis in Equa-
tion 1 can be expressed as:

 H0 : d = 0 vs Ha : d = ∆.  (3)

We will use effect size d and the hypothesis in Equation 
3 in what follows unless stated otherwise.

Note that all popular statistical models such as t- tests 
and linear regression have the invariance property under 
linear transformation so that the same level of statistical 
significance is reached regardless of measurement units 
used. For example, in the above gas mileage example, if 
we model the outcome of miles travelled per gallon of gas 
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Figure 2 Histogram of power from a proposed post- hoc power function, along with power from the prospective power 
function for sample size n=50, based on 1000 Monte Carlo runs for effect size (A) Δ=0.2, (B) Δ=0.5 and (C) Δ=0.8.

as a function of manufacturers in addition to differences 
between SUVs and sedans using linear regression, we will 
get different estimates of regression parameters (coeffi-
cients) and standard errors, but same test statistics (F and 
t statistics) and p values.

In clinical research, the magnitude of d is used to 
indicate meaningful treatment difference or exposure 
effects. This is because statistical significance is a function 
of sample size and any small treatment difference can 
become statistically significant with a sufficiently large 
sample size. Thus, statistical significance cannot be used 
to define the magnitude of treatment or exposure effects. 
Defined only by the population parameters, effect size 
is a meaningful measure of the magnitude of treatment 
or exposure effects. Equation 3 indicates that both the 
null and alternative hypotheses only involve population 
parameters. This characterisation of the statistical hypoth-
esis is critically important since this fundamental assump-
tion is violated when performing post- hoc power analysis.

For power analysis, we want to determine the proba-
bility to reject the null H0 in favour of the alternative Ha 
under Ha for the hypothesis in Equation 3. To compute 
power, we need to specify the H0, Ha, type I error α, and 
sample size n1 and n2, with nk denoting the sample size 
for group k (k=1,2). Given these parameters, power is the 
probability of rejecting the null H0 when the alternative 
Ha is true:

 

ψ(n1, n2, α, Ha(d = ∆)) = Pr(Reject H0 | Ha)

= Pr



∣∣∣∣∣∣∣
Z + ∆√

1
n1

+ 1
n2

∣∣∣∣∣∣∣
≥ Zα/2



=




1 − ϕ

Z1−α
2
− ∆√

1
n1

+ 1
n2

 if∆ > 0

ϕ

−Z1−α
2
− ∆√

1
n1

+ 1
n2

 if∆ < 0

  

(4)

where Pr(A|B) denotes the conditional probability of 
the occurrence of event A given event B, Z denotes a 
random variable following the standard normal distri-
bution N(0,1), Zα/2 denotes the upper α/2 quantile of 
N(0,1), and  ϕ(z)  denotes the cumulative distribution 

function of the standard normal distribution N(0,1). If 
we condition on the null H0 instead of Ha in Equation 4, 
we obtain a type I error, as in Equation 5:

 

type I error(n1, n2,α, H0) = Pr (Reject H0 | H0)

= Pr (
∣∣Z∣∣ ≥ Zα/2)

= 2[1 − ϕ(Zα/2)]

= α   

(5)

which is the probability of rejecting the null H0 when 
the null is true. For power analysis, we generally set type I 
errors at α=0.05, so that Zα/2=Z0.025=1.96.

In practice, we often set power at some prespecified 
levels and then perform power analysis to determine the 
minimum sample size to detect a prespecified effect size 
Δ with the desired level of power. For example, if we want 
to determine sample size n per group to achieve, say, 0.8 
power with equal sample between two groups, we can 
obtain such minimum n by solving for n in the following 
equation7:

 ψ(n, n,α, Ha(d = ∆)) ≥ 0.8  (6)

When applying Equation 3 for a post- hoc power anal-

ysis in a study, we substitute the observed effect size  
∧
∆n  in 

place of the true effect size Δ. This observed  
∧
∆n  is calcu-

lated based on the observed study data with sample size 
n1 and n2:

 
∧
∆n =

∣∣∣∣
−
Y1•−

−
Y2•

∣∣∣∣
sn

,  

where  
−
Yk•  is the sample mean of group k and sn is the 

pooled sample standard deviation (SD):

 

−
Yk• = 1

nk

nk∑
i=1

Yki, sn =

���� 1
n−1

[
n1∑
i=1

(Y1i −
−
Y1•)2 +

n2∑
j=1

(Y2j −
−
Y2•)2

]

  

Unlike Δ, the observed effect size  
∧
∆n  is computed based 

on a particular sample in the study and thus subject to 
sampling variability. Unless for an extremely large sample 

size,  
∧
∆n  may deviate substantially from Δ. Thus, power is 

calculated based on  
∧
∆n :
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Figure 3 Histogram of power from existing post- hoc power function, along with power from the prospective power function 
for sample size n=100, based on 1000 Monte Carlo runs for effect size (A) Δ=0.2, (B) Δ=0.5 and (C) Δ=0.8.

 

ψ(n1, n2, α, Ha(d =
∧
∆n)) =





1 − ϕ


Z1−α

2
−

∧
∆n√
1

n1
+ 1

n2


 if

∧
∆n > 0

ϕ


−Z1−α

2
−

∧
∆n√
1

n1
+ 1

n2


 if

∧
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 (7)

Equation 7 only indicates the probability to detect the 

sample effect size  
∧
∆n , which can be quite different from 

power estimates computed based on the true popula-
tion effect size Δ. Except for large sample sizes n, power 

estimates based on  
∧
∆n  can be highly variable, rendering 

them uninformative about the true effect size Δ.
On the other hand, post- hoc power analysis based on 

Equation 7 also presents a conceptual challenge. Under 
the current power analysis paradigm, power is the proba-
bility to detect a population- level effect size Δ. This effect 
size is specified with complete certainty. For example, if 
we set Δ=0.5, it means that we know that the difference 
between two population means of interest is 0.5. For 

post- hoc power analysis, we compute power using  
∧
∆n  as 

if this was the difference between the two population 

means. Due to sampling variability,  
∧
∆n  varies around Δ 

and the two can be substantially different. Indeed, as illus-
trated in Zhang et al,1 post- hoc power based on Equation 
7 can be misleading when used to indicate power for Δ 
based on Equation 4.

Thus, for post- hoc power analysis to be conceptually 
consistent with power analysis for prospective studies and 
informative about the population effect size Δ, we must 

account for the sampling variability in  
∧
∆n . Although 

 
∧
∆n ̸= ∆ ,  

∧
∆n  is generally informative about Δ, with dimin-

ishing uncertainty as sample size increases, a phenom-
enon known as the central limit theorem (CLT) in the 

theory of statistics.8 By quantifying the variability in  
∧
∆n  

and incorporating such variability in specifying the alter-
native hypothesis, we can develop new post- hoc power 
analysis to inform our ability to detect Δ.

By the CLT, the variability of  
∧
∆n  is described by a normal 

distribution  N
(
∆, 1

n1
+ 1

n2

)
 . Thus, in the absence of knowl-

edge about Δ, values closer to  
∧
∆n  are better candidates for 

Δ, while values more distant from  
∧
∆n  are less likely to be 

good candidates for Δ. By giving more weights to values 

closer to  
∧
∆n  and less weights to values more distant from 

 
∧
∆n , the normal distribution centred at  

∧
∆n , 

 
N
(

∧
∆n, 1

n1
+ 1

n2

)

 
, quantifies our uncertainty about Δ. Thus, for post- hoc 
power analysis, we replace the alternative hypothesis in 
Equation 3 involving a known population effect size Δ 
with a set of candidate values for Δ with their candidacy 

described by the distribution 
 
N
(∧
∆n, 1

n1
+ 1

n2

)

 
:

 
H0 : d = 0 vs Ha : d ∼ N

(∧
∆n, 1

n1
+ 1

n2

)

  
(8)

The hypothesis in Equation 8 is fundamentally 
different from the hypothesis in Equation 3 for regular 
power analysis for prospective studies. Unlike Equa-
tion 3, there are more than one candidate value for 
Δ and post- hoc power analysis must consider all such 
candidate ds with their relative informativeness for Δ 
described by the distribution 

 
N
(∧
∆n, 1

n1
+ 1

n2

)

 
. Thus, 

a sensible way to achieve this is to average power esti-

mates over all such candidates according to their rela-
tive informativeness for Δ described by the distribution 

 
N
(∧
∆n, 1

n1
+ 1

n2

)

 
. However, since there are infinitely many 

such Δs, we need to use integrals in calculus to perform 
this averaging.

Let 
 
f∧
∆n

(∆)
 
 denote the density function of the normal 

distribution 
 
N
(∧
∆n, 1

n1
+ 1

n2

)

 
. Then by averaging the 

power function  ψ(n1, n2,α, Ha(d = ∆))  in Equation 7 over 
all plausible values of Δ weighted by the distribution 

 
N
(∧
∆n, 1

n1
+ 1

n2

)

 
, we obtain power for the hypothesis in 

Equation 8:
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Figure 4 Histogram of power from proposed post- hoc power function, along with power from the prospective power function 
for sample size n=100, based on 1000 Monte Carlo runs for effect size (A) Δ=0.2, (B) Δ=0.5 and (C) Δ=0.8.

 
τ

(
n1, n2, α, Ha(d : N(

∧
∆n,

1

n1
+

1

n2
))

)
=
ˆ ∞

−∞
ψ(n1, n2, α, Ha(d = x))f∧

∆n

(x) dx
 

 (9)

where  
´∞
−∞ h(x)dx   denotes the value of the integral of 

the function  h(x)  over the interval  (−∞,∞) .
In the new formulation of hypothesis in Equation 

8, we essentially treat true effect size d as a random 
variable, rather than a (known) constant as under the 
current power analysis paradigm. This perspective by 
viewing unknown population parameters as random 
variables is not new and in fact a well- established statis-
tical paradigm known as Bayesian inference. Under this 
alternative paradigm, the choice about an unknown 
population parameter such as d within the current 
context does not have to be an unknown constant, 
but can vary over a range of possibilities following a 
distribution that reflects our knowledge about the true 
d. For example, in the hypothesis in Equation 8, our 

knowledge about d is informed by an observed  
∧
∆n  , 

with its variability described by the normal distribution 

 
N
(∧
∆n, 1

n1
+ 1

n2

)

 
. In contrast, the traditional hypothesis 

for post- hoc power analysis in Equation 7 treats  
∧
∆n   as 

the absolute truth, which completely violates the funda-
mental assumption of the power analysis paradigm.

The new formulation also allows one to build up 
knowledge about d. For example, if we use a distri-
bution to describe our knowledge about d prior to 

an observed  
∧
∆n   based on the study data, we can then 

integrate our a priori knowledge with  
∧
∆n   to obtain 

a distribution to describe our improved knowledge 
about d and use it in Equation 8. This improved knowl-
edge about d obtained by combining our initial knowl-

edge with observed  
∧
∆n   from a real study is known as a 

posterior distribution. The distribution that describes 
our initial knowledge is called a prior distribution. By 
using a posterior distribution as a new prior with data 
from an additional study, we can derive a new posterior 
distribution. We can keep updating our knowledge by 
repeating this process.

For example, within the current study context, we may 
start without any knowledge about d, in which case we can 
use a non- informative prior distribution, or a constant. 

After obtaining  
∧
∆n  from a real study with sample size 

n=n1+n2, our posterior is 
 
N
(

∧
∆n, 1

n1
+ 1

n2

)

 
. If there is a new 

 
∧
∆m  from an additional study about d with sample size 

m=m1+m2, we then obtain a new posterior distribution that 

integrates information from both observed  
∧
∆n  and  

∧
∆m , 

which is still a normal but with a different mean and vari-

ance  N(
∧
∆nm,σ2

nm) , where  
∧
∆nm  and  σ2

nm  are given by:

 

∧
∆nm =

m1m2
∧
∆m

m1+m2
+

n1n2
∧
∆n

n1+n2
m1m2

m1+m2
+

n1n2
n1+n2

, σ2
nm = 1

m1m2
m1+m2

n1n2
n1+n2   

(10)

By setting m1=m2=0, the above normal reduces to 

 
N
(∧
∆n, 1

n1
+ 1

n2

)

 
. To see this, first set m1=m2=m, then simplify 

 
∧
∆nm  and  σ2

nm  in Equation 10 to:

 

∧
∆nm =

m2∧
∆m

2m +
n1n2

∧
∆n

n1+n2
m2
2m +

n1n2
n1+n2

, σ2
nm = 1

m2
2m +

n1n2
n1+n2   

(11)

Setting m=0, the  
∧
∆nm  and  σ2

nm  in Equation 11 reduce 

to  
∧
∆nm =

∧
∆n  and  σ

2
nm = 1

n1
+ 1

n2  . Thus, we may view a non- 

informative prior as an observed  
∧
∆m  from a study with 

zero sample size.

IllusTrATIons
In this section, we use Monte Carlo simulation to compare 
the three types of power analysis, that is, the regular power 
analysis for a prospective study in Equation 4 and the 
two post- hoc power analyses with one based on observed 
effect size in Equation 7 and the other on the new para-
digm in Equation 8. In all cases, we set a two- sided alpha 
at α=0.05 and Monte Carlo sample size at 1000.

We again assume a normal distribution  N(µk,σ2) , with 
 µk  denoting the (population) mean of group k and σ2 the 
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common (population) variance. We set the population 
parameters as follows:

 µ1 = 0, µ2 = µ1 + ∆, σ2 = 1.  (12)

Since σ2=1, the difference between the means, Δ, is 
Cohen’s d, which is interpreted as Δ=0.2, Δ=0.5 and Δ=0.8 
for small, medium and large effect size, respectively.6 
For convenience, we assume a common sample size for 
both groups, that is, n1=n2=n. We set Δ and n to different 
values so we can see how power estimates from the three 
different approaches change as a function of the two 
parameters.

Given all these parameters, we can readily evaluate 
the prospective power function in Equation 6. For 
post- hoc power analysis, power is not a constant and 

varies according to observed effect size  
∧
∆n . We use Monte 

Carlo simulation to capture such variability. Given the 
parameters in Equation 12 and sample size n, we simulate 
sample,  Yik , from  N(µ,σ2) , compute the sample effect size 

 
∧
∆n  and evaluate the post- hoc power functions in Equa-
tion 7 and Equation 9. Thus, unlike prospective power, 
both post- hoc power functions depend on the observed 

effect size  
∧
∆n . The difference is that Equation 7 treats 

 
∧
∆n  as the true effect size, while Equation 9 acknowledges 

sampling variability in  
∧
∆n  and uses its sampling distribu-

tion to inform the underlying effect size Δ.

The variance of  
∧
∆n  is  Var(

∧
∆n) = 2

n , which will be close 

to 0 and  
∧
∆n  will be close to Δ for a very large sample size 

n. In this case, both post- hoc power will be close to the 
prospective power. For small and moderate sample sizes, 
all three power values will differ from each other. Given Δ, 
the prospective power only has one value for each sample 
size, while the two post- hoc power approaches will have 

different values for different observed  
∧
∆n . For small and 

moderate sample sizes, post- hoc power values will have 
large variabilities and may not be informative about the 
power based on the true Δ.

Shown in figure 1 are the histograms of power from the 
existing post- hoc power approach based on 1000 Monte 
Carlo sample sizes for effect size Δ=0.2 (figure 1A), Δ=0.5 
(figure 1B) and Δ=0.8 (figure 1C), along with power from 
the prospective power function (vertical line) for sample 
size n=50. As expected, power increased in both cases as 
the true effect size Δ became larger; the sample mean for 
the post- hoc power was 0.167, 0.443 and 0.761, respec-
tively. For all three effect sizes, there was a large amount 
of variability in the post- hoc power, covering the entire 
range of power function between 0 and 1.

Shown in figure 2 are the histograms of power from 
the proposed post- hoc power approach based on 
1000 Monte Carlo sample sizes with the mean differ-
ence Δ=0.2 (figure 2A), Δ=0.5 (figure 2B) and Δ=0.8 
(figure 2C), along with power from the prospective 
power function (the vertical line) for sample size 
n=50. As in figure 1, the mean power increased from 

0.259 to 0.463 to 0.711 when Δ changed from 0.2 to 
0.5 to 0.8. Unlike in figure 1, power was larger than 
0.1 in all three cases. Moreover, the sample SDs for the 
three effect sizes were 0.111, 0.177 and 0.162 for the 
proposed, compared with 0.151, 0.239 and 0.194 for 
the traditional power method. The smaller variability 
of the proposed post- hoc power was the result of being 

less sensitive to variability in  
∧
∆n  , compared with the 

existing post- hoc power.
Shown in figure 3 are the histograms of power 

from the existing post- hoc power approach based on 
1000 Monte Carlo sample sizes for effect size Δ=0.2 
(figure 3A), Δ=0.5 (figure 3B) and Δ=0.8 (figure 3C), 
along with power from the prospective power function 
(the vertical line) for sample size n=100. As in figure 1, 
as Δ changed from 0.2 to 0.5 to 0.8, the mean power 
increased from 0.226 to 0.670 to 0.951. Again, post- hoc 
power was quite variable, covering the entire range in 
all cases, except for Δ=0.8, where the minimum was 
0.48. With Δ=0.8 and n=100, the smaller sampling vari-

ability  
∧
∆n   along with the large effect size led to power 

values close to 1, greatly reducing the variability of 
post- hoc power, as compared with n=50.

Shown in figure 4 are the histograms of power from 
the proposed post- hoc power approach based on 1000 
Monte Carlo sample sizes with the mean difference Δ=0.2 
(figure 4A), Δ=0.5 (figure 4B) and Δ=0.8 (figure 4C), 
along with power from the prospective power function 
(the vertical line) for n=100. As in figure 3, the mean 
power grew from 0.303 to 0.636 to 0.901 as Δ increased 
from 0.2 to 0.5 to 0.8. The sample SDs for Δ=0.2, Δ=0.5 
and Δ=0.8 were 0.135, 0.174 and 0.086, compared with 
0.184, 0.221 and 0.071 for the existing power in figure 3. 
Except for Δ=0.8, the proposed post- hoc power was less 
variable than its existing counterpart. For Δ=0.8, the trend 
was reversed and post- hoc power was more variable for 
the proposed than the traditional approach. This is made 
clear by comparing the two histograms in figure 3C and 
figure 4C. For Δ=0.8, there was much less variability in 
power from the traditional than the proposed approach; 
about 70% of power values were between 0.95 and 1 for 
the traditional approach, compared with about 30% for 
the proposed approach. Thus, this smaller variability of 
power from the traditional approach again reflects its 

higher sensitivity to the observed  
∧
∆n  than the proposed 

alternative.

dIsCussIon
In this paper, we proposed a new approach for post- hoc 
power analysis. Unlike the existing approach, the proposed 
alternative is conceptually sound and can be applied to 
gauge variability of statistical findings and thus inform reli-
ability of such findings. The approach is illustrated using 
simulated data by comparing with the traditional approach. 
The simulation study results show that the proposed 
approach is less sensitive to observed effect sizes and is more 
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informative about power estimates based on the underlying 
true and observed effect size. The simulation results also 
show that even when performed correctly post- hoc power 
analysis may yield power values that are different from the 
power based on the underlying effect size under the current 
paradigm. On the other hand, we believe that the current 
paradigm may not provide useful power estimates for real 
prospective studies. As true effect sizes are rarely known for 
certain in most studies, treating our guessed effect sizes as 
such ground truth in computing power is flawed practice. 
Thus, power analysis for prospective studies also needs to 
account for uncertainty about true effect sizes to provide 
practical and useful power estimates. Work is underway to 
extend the proposed post- hoc power approach to power 
analysis for prospective studies.
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