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Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus
secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation
and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by
nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role
of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target
cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.

1. Introduction

Acetylcholine is classically viewed as a neurotransmitter that
regulates cognitive and behavioural functions in the brain,
autonomous ganglionic transmission, and parasympathetic
postganglionic transmission. In the respiratory tract, acetyl-
choline is the predominant parasympathetic neurotrans-
mitter and its role in the regulation of bronchomotor
tone and mucus secretion from airway submucosal glands
is well established [1]. More recent findings suggest that
acetylcholine regulates additional functions in the respira-
tory tract, including inflammation and remodelling during
inflammatory lung diseases [2—4]. Moreover, it has become
apparent that acetylcholine is synthesized by nonneuronal
cells and tissues, particularly inflammatory cells and the
airway epithelium [5-7]. These cells also express receptors
for acetylcholine, including muscarinic receptors and nico-
tinic receptors that modulate inflammatory responses [2, 6].
Collectively, these findings have questioned the traditional
view on the physiological and pathophysiological role of
acetylcholine, which has opened up new possibilities for
therapeutic targeting of the pulmonary cholinergic system.
In this paper, we will discuss these recent findings in which
we will focus on the role of the airway smooth muscle cell as

a target for acetylcholine in inflammation and remodelling
during respiratory diseases such as asthma and COPD.

2. The Origin of Acetylcholine

Acetylcholine is biosynthesized from choline and acetyl-CoA
by choline acetyltransferase (ChAT) or carnitine acetyltrans-
ferase (CarAT) by several cell types in the respiratory tract
[6]. Airway neurons and airway epithelial cells express ChAT
and have been demonstrated by HPLC detection to release
acetylcholine [5]. The release of acetylcholine from other
nonneuronal tissues in the respiratory tract is suggested by
the fact that also macrophages, mast cells, fibroblasts, smooth
muscle cells, lymphocytes, and granulocytes express ChAT
immunoreactivity [6]; however the release of acetylcholine
from these cells and tissues has not yet been measured
directly in the respiratory tract. Acetylcholine exerts its func-
tions either via muscarinic receptors, a class of G-protein-
coupled receptor subtypes, or via nicotinic receptors, a class
of ligand-gated cation channels [8]. Most structural cells and
inflammatory cells that are present in the respiratory system,
including smooth muscle cells, fibroblasts, epithelial cells,
mast cells, granulocytes, lymphocytes, and macrophages,
express muscarinic and/or nicotinic receptors [2, 6]. For
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a detailed overview of individual receptor subtypes and
subunits expressed by these cells, we refer to a recent excellent
overview by Wessler and Kirkpatrick [6]. The expression of
muscarinic and nicotinic receptors, the expression of synthe-
sizing enzymes such as ChAT, and the direct measurement by
HPLC detection of acetylcholine release from nonneuronal
tissues and cell cultures are solid evidence for the existence
of a nonneuronal cholinergic system in addition to the more
established neuronal cholinergic system in the airways.

The processing of acetylcholine by nonneuronal cells
and tissues is not yet described in full although, for airway
epithelial cells, secretory mechanisms have been described.
Airway epithelial cells express the high affinity choline
transporter (CHT1) that is involved in choline uptake as
well as the organic cation transporter (OCT) subtypes 1
and 2, which play a dominant role in the release of
acetylcholine by airway epithelial cells [9, 10]. Furthermore,
the expression of the vesicular acetylcholine transporter
(VAChT) by epithelial cells has been reported suggesting that
storage of acetylcholine in vesicles and release via the fusion
of these vesicles with the plasma membrane, as occuring
in neurons, may represent an additional mechanism for
acetylcholine release by nonneuronal cell types [9, 10].

The breakdown of acetylcholine into acetic acid and
choline is catalysed by acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE), also known as pseudo-
cholinesterase. The functional expression of AChE by airway
epithelial cells is evidenced by observations that acetylcholine
concentrations in cell supernatants of airway epithelial cell
cultures were enhanced by the pharmacological inhibitor of
AChE, neostigmine [5]. Collectively, the above-mentioned
observations indicate that both neurons and nonneuronal
cells and tissues in the respiratory system express and release
acetylcholine. The functional role of nonneuronal acetyl-
choline on the airway smooth muscle includes bronchocon-
striction [11, 12]. Additionally, acetylcholine may modulate
airway hyperresponsiveness and remodelling, including the
regulation of airway smooth muscle growth and the regu-
lation of airway inflammation that promotes hyperrespon-
sivness and remodelling. This role for acetylcholine will be
discussed in the following sections.

3. The Muscarinic Receptor:
Acetylcholine as a Proinflammatory and
Remodelling Mediator

Muscarinic receptors are expressed by most structural cells
in the airway wall, including the airway smooth muscle and
by inflammatory cells that are involved in the pathogenesis of
obstructive airway diseases [2]. Muscarinic receptors appear
to play a proinflammatory role on these cells, suggesting that
inhibition of muscarinic receptor function may have anti-
inflammatory effects in these diseases. Increased expression
of muscarinic M; and M3 receptors on airway structural
cells and sputum cells of COPD patients has been reported
[13, 14]. Likewise, reduced expression of the autoinhibitory
M, receptor on airway neurons in asthma has been reported
[1]. Both effects could contribute to enhanced acetylcholine
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release and function in these diseases. The proinflammatory
role of acetylcholine via muscarinic receptors is discussed
below.

3.1. Direct Effects of Acetylcholine on Airway Smooth Muscle.
The airway smooth muscle expresses muscarinic M, and M3
receptors roughly in a 4:1 ratio [15]. The muscarinic M3
receptor represents a primary target of acetylcholine in the
airways, involved in the regulation of bronchoconstriction
[15-18]. In addition, muscarinic receptors regulate prolifer-
ative and proinflammatory functions of the airway smooth
muscle. It was observed that coadministration of muscarinic
agonists with epidermal growth factor (EGF) in human
airway smooth muscle cells induces a synergistic proliferative
stimulus. This effect was associated with sustained activation
of p70 S6 kinase [19, 20], an effect mediated by Gg-
derived Gg, subunits that activate phosphatidylinositol-3-
kinase (PI3K) in concert with the EGF receptor [19, 21]. In
line with these findings, muscarinic receptor agonists induce
an increase in proliferation of airway smooth muscle cells
in combination with platelet-derived growth factor (PDGF)
[22], which is mediated by Gg-protein-coupled muscarinic
M3 receptors and appears to involve a synergistic inhibitory
phosphorylation of glycogen synthase kinase-3 (GSK-3)
[23]. GSK-3 is a multitasking enzyme that regulates multiple
signalling proteins and transcription factors involved in
contractile protein expression and cell proliferation of airway
smooth muscle [23-26].

Muscarinic-receptor-induced airway remodelling could
also involve mechanical regulation as airway smooth muscle
constriction results in airway epithelial cell compression
and subsequent activation of EGFR phosphorylation in the
airway epithelium [27]. Indeed, a recent clinical trial demon-
strates that repeated methacholine inhalations cause airway
remodelling in the absence of inflammation, characterized by
collagen deposition and increased TGF-f1 expression [28].
It is not yet clear whether such effects could also directly
regulate remodelling of airway smooth muscle; however,
mechanical strain of airway smooth muscle regulates cell
proliferation and contractile protein expression [29-31], an
effect enhanced in the presence of carbachol [32]. Clearly,
this hypothesis needs to be followed up in future studies.

Muscarinic receptors on airway smooth muscle cells
could also play a profound role in regulating the immun-
omodulatory function of airway smooth muscle [33, 34].
Cholinergic stimulation with the muscarinic receptor agonist
carbachol augments inflammatory gene expression in bovine
tracheal smooth muscle in combination with cyclic stretch,
which induces a synergistic increase in the expression of
IL-6, IL-8, cyclo-oxygenase (COX) 1 and 2, and urokinase-
type plasminogen activator (PLAU) [35]. It was recently
demonstrated that the activation of muscarinic receptors
also interacts with several cytokines and growth factors that
play an important role in the pathogenesis of asthma and
COPD, in particular with TNF-a, PDGF-AB and cigarette
smoke to enhance their inflammatory response in airway
smooth muscle cells [36]. Thus, muscarinic M3 receptor
stimulation of airway smooth muscle with methacholine
induces IL-6 and IL-8 production and augments the release
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of these cytokines induced by cigarette smoke extract [36].
Our unpublished data show that this effect is dependent
on downstream signalling to PKC, which activates the
IxBa/NF-xB and MEK/ERK1/2 pathways [37]. This indicates
that acetylcholine may also play an important role in
the immunomodulatory processes driven by human airway
smooth muscle.

The functional importance of these in vitro findings is
illustrated by our in vivo studies that indicate a protective
role for tiotropium bromide, a long-acting muscarinic
antagonist, in the progression of airway smooth muscle
remodelling. Thus, guinea pigs challenged with allergen for
12 consecutive weeks developed increased airway smooth
muscle mass, increased contractile protein expression, and
increased airway smooth muscle contractility, which were
partially to fully prevented by treatment with tiotropium
bromide [38]. In part, these inhibitory effects may have been
due to the anti-inflammatory properties of tiotropium as
airway eosinophilia was almost completely reduced by treat-
ment with this compound [39]. Mucus gland remodelling
and MUCS5A/C hypersecretion were also prevented [39].
These results indicate that acetylcholine plays an essential
role in remodelling of the airway smooth muscle (Figure 1).
These effects may be direct, as suggested by the in vitro
studies mentioned above, or indirect, as illustrated below.

3.2. Additional Effects of Acetylcholine on Airway Remodelling.
Airway smooth muscle cells are embedded in the airway
wall, and bidirectional communication between the muscle
layer and the cell types and matrix protein structures that
surround the muscle bundle is key to the development
of abnormalities in airway smooth muscle phenotype and
function in obstructive airways disease [40]. Fibroblasts are
key effector cells in the production of extracellular matrix
proteins that surround the airway smooth muscle bundle
in the adventitia and submucosa of the airway wall [41].
Fibroblasts express functional muscarinic M, and M3 recep-
tors (predominantly M, receptors with relatively fewer M3
receptors) [42]. In vitro, the muscarinic agonists carbachol
and oxotremorine cause an increase in (*H)-thymidine
incorporation (as a measure of cell proliferation) in human
lung fibroblast cell lines and primary fibroblasts. This effect
is mediated by the M, receptor and regulated by the
MEK/ERK1/2 pathway [42, 43]. Tiotropium, a long-acting
muscarinic antagonist, concentration-dependently inhibited
ACh-induced proliferation of primary human fibroblast
isolated from biopsies of lung fibrosis patients and myofi-
broblasts derived from these cells [44]. Furthermore, it was
found that muscarinic agonists stimulate the incorporation
of *H-proline into cellular proteins (as a measure of collagen
synthesis) in human lung fibroblast cell lines and primary
fibroblasts [45]. Also, tiotropium bromide inhibits collagen
expression in the lung and small airways in guinea pigs
repeatedly exposed to LPS [46]. Collectively, these studies
support a role for acetylcholine in regulating fibroblast cell
responses associated with remodelling.

A proinflammatory role of acetylcholine in fibroblasts
was recently questioned by a study showing that the release
of chemotactic mediators was not induced in fibroblasts

incubated with acetylcholine because of a relative lack of
Mj; receptor expression in these cells [47]. On the other
hand, primary lung fibroblast cultures from surgical speci-
mens of COPD patients treated with acetylcholine showed
enhanced IL-8 and matrix metalloproteinase-2 release. This
effect was mediated by muscarinic M3 receptors [14], and
tiotropium has an attenuating effect on metalloproteinase-
2 production from lung fibroblasts induced by inflammatory
stimulation [48]. It is possible that the enhanced expression
of muscarinic receptors by fibroblasts of COPD patients
explains the discrepancy between these two studies as
Profita et al. [14] showed that muscarinic M; and M;
receptor as well as ChAT expressions were increased in
fibroblasts from COPD patients. Although the quantification
of muscarinic receptor expression using antibodies should be
approached with care [49], functional differences between
healthy controls and COPD patients were also observed. In
this study, acetylcholine induced a significant increase in the
activation of the ERK1/2 and NF«B pathways in fibroblasts
of patients with COPD and promoted cell proliferation
to a greater extent than observed in fibroblasts of healthy
controls [14]. These findings clearly indicate the function
of fibroblasts in remodelling processes that occur in chronic
inflammatory airway diseases but the proinflammatory role
of lung fibroblasts in response to acetylcholine remains to be
studied in further detail.

The airway epithelium is key to the development of
airway inflammation and remodelling as it presents the first
barrier to inhaled particles and allergens and regulates the
secretion of proinflammatory cytokines. Epithelial damage
during allergic airway inflammation plays a key role in
asthma and exposes sensory nerve endings in the submucosa
to the airway lumen, which promotes reflex mechanisms
leading to enhanced vagal release of acetylcholine [40].
Moreover, the airway epithelium is predominant in its
expression of ChAT and may present a direct source of
nonneuronal acetylcholine [5]. Acetylcholine is a prolifera-
tive stimulus for human bronchial epithelial cells in culture
in part by activation of muscarinic M; receptors [50, 51].
Acetylcholine also increased eosinophil, monocyte, and neu-
trophil chemotactic activity by bronchial epithelial cells [52,
53]. This effect probably involves muscarinic M; receptors
that induce leukotriene By release from epithelial cells, which
in turn stimulates eosinophil, neutrophil, and monocyte
chemotactic activities [52, 53]. Muscarinic receptor agonists
also induced the release of prostanoids from airway epithelial
cells. Thus, muscarinic M3 receptors promote the activation
of phospholipase A2, which stimulates the release of PGE,
from isolated tracheae, but only in preparations with an
intact epithelial layer [54]. In addition, a recent investigation
in human bronchial epithelial cells showed that acetylcholine
induces the production of IL-8, involving PKC, ERK1/2, and
NF«B pathway activation via muscarinic receptors [55].

Collectively, these findings indicate that acetylcholine,
derived from the vagal nerve and from nonneuronal origins
such as the airway epithelium, may induce cell responses
associated with airway wall remodelling and trigger proin-
flammatory cytokine release by structural cells of the airway
wall, including airway epithelial cells, airway fibroblasts, and
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FIGURE 1: Muscarinic receptor regulation of airway inflammation and remodelling. In healthy airways, acetylcholine release from neuronal
and nonneuronal origins release are limited. However, in response to environmental factors such as allergen or smoke, acetylcholine
release is enhanced, which cooperates with proinflammatory cytokines and growth factors to induce airway smooth muscle and fibroblast
cell responses including cell proliferation, smooth-muscle-specific protein expression, and the synthesis of chemokines and cytokines. As
such, acetylcholine by acting on muscarinic receptors may contribute to both acute and chronic aspects of obstructive airways disease.
Nicotinic receptors are expressed by airway structural cells and inhibit inflammatory cell activation; however, their role in regulating airway

remodelling is largely unknown.

the airway smooth muscle itself. These mechanisms may
promote airway inflammation and remodelling, including
airway smooth muscle thickening.

3.3. Indirect Effects: Acetylcholine as a Proinflammatory
Mediator. Airway inflammation in asthma and COPD likely
plays an important role in the development of airway hyper-
responsiveness and in the development of structural changes
in the airway wall including increased airway smooth
muscle mass. Inflammatory cells secrete cytokines and
growth factors that induce a proliferative stimulus in airway
smooth muscle cells (e.g., EGF, PDGF, and TGF-f) that
may be amplified by the actions of acetylcholine as outlined
above [56]. Moreover, acetylcholine, either from neuronal
or nonneuronal origin, may regulate inflammatory cell
responses in these diseases that explain the beneficial effects
of anticholinergics on airway smooth muscle thickening [2].
The anticholinergic agent tiotropium bromide prevented
allergen-induced airway eosinophilia in guinea pigs, indi-
cating that muscarinic receptor signalling supports airway
eosinophilia [39]. It has been demonstrated that muscarinic
M3 and My receptors are expressed in human and guinea pig
eosinophils; human eosinophils also appear to express the
muscarinic M5 receptor subtype [57]. However, Verbout et
al. found an inhibitory effect of these muscarinic receptors
on eosinophil activation [58]. Atropine, a nonselective mus-
carinic receptor antagonist, significantly potentiated antigen-
induced eosinophil activation and airway hyperreactivity by
increasing major basic protein deposition in the airways [58].
The inhibitory effect of muscarinic recepors on eosinophil
activation in antigen-challenged animals is mediated by
their suppressive effect on excitatory nerve growth factor
(NGF) pathway [59]. The effect of muscarinic receptors on
airway structural cells (epithelial cells, fibroblasts, airway
smooth muscle cells) as outlined above may account for
this discrepancy as proinflammatory cytokine production by
these cells, including the release of eosinophil chemotactic
activity, is enhanced by muscarinic receptor stimulation.

Muscarinic receptors are also expressed by macrophages
and neutrophils and appear to play an important proinflam-
matory role in these cells. Muscarinic M3 and Ms receptors
are expressed by macrophages, and muscarinic receptor
agonists, such as carbachol, induce an increase in intracel-
lular calcium and promote chemotaxis of these cells [60].
Alveolar macrophages also appear to express muscarinic
M, M,, and M3 receptor subtypes [13]. Stimulation by
acetylcholine of these cells induces the release of leukotriene
B4, which promotes neutrophil chemotaxis. This contention
is in agreement with a study showing that, in bovine alveolar
macrophages, muscarinic M3 receptors induce the release
of leukotriene By [61]. Furthermore, it was recently shown
that human alveolar macrophages respond to acetylcholine
with the release of chemotactic activity for granulocytes,
an effect likely involving leukotriene B, release [47]. The
anticholinergic agent tiotropium suppressed the secretion
of leukotriene B4 by more than 70% after acetylcholine
stimulation [47].

Treatment with tiotropium bromide significantly re-
duced airway inflammation and the Th2 cytokine pro-
duction in bronchoalveolar lavage fluid (BALF) in both
acute and chronic models of asthma. The levels of TGF-
81 in BALEF, the goblet cell metaplasia, thickness of airway
smooth muscle, and airway fibrosis were all significantly
decreased in tiotropium bromide-treated mice as well [62].
Tiotropium also concentration-dependently inhibited neu-
trophilic inflammation in response to cigarette smoke. Fur-
thermore, the cigarette-smoke-induced pulmonary release
of leukotriene B(4), interleukin-6, keratinocyte-derived
chemokine, monocyte chemotactic protein-1, macrophage
inflammatory protein-1 alpha and -2, and tumour necrosis
factor alpha was dose-dependently reduced in murine model
of COPD [63]. Neutrophil-elastase-induced goblet cell
hyperplasia and gastrointestinal reflux-induced pulmonary
inflammation can also be prevented by tiotropium treatment
[64, 65]. These findings collectively indicate that acetyl-
choline, for example, nonneuronal acetylcholine derived
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from the inflammatory cells themselves, promotes inflam-
matory responses in the airways via muscarinic receptors.

4. The Nicotinic Receptor: Acetylcholine as
an Anti-Inflammatory Mediator

The airway smooth muscle also expresses nicotinic receptors
including the a3 and a7 nicotinic receptor subtypes [6]. The
role of the nicotinic receptor in airway smooth muscle is
currently largely unknown. However, in sharp contrast to
the proinflammatory role of muscarinic receptor stimula-
tion, nicotinic receptors appear to play an important anti-
inflammatory role in many cell types and organs. Nicotinic
receptors are found in the airways on parasympathetic
nerves, macrophages, eosinophils, neutrophils, mast cells
[66-70], lymphocytes [71-73], airway smooth muscle cells
[74], epithelial cells [75], and fibroblasts [76].

Acetylcholine from neuronal or nonneuronal origin can
induce an anti-inflammatory effect via a7 nicotinic receptors
in various models of acute inflammation [77, 78]. This is also
established in models of pulmonary inflammation including
a mouse model of hypersensitivity pneumonitis [79], asthma
(80, 81], and inflammation following influenza infection
[82, 83]. These in vivo findings are supported by in vitro
findings showing that stimulation of the «7 nicotinic recep-
tor in murine macrophage cell lines results in inhibition of
LPS-induced TNF and HMGBI release [84-86]. Moreover,
acetylcholine and nicotine receptor agonists exert a strong
inhibitory effect on the release of TNF-a and other cytokines
such as IL-6, IL-1f3, IL-12, IL-18, and IFN-y without affecting
the production of anti-inflammatory cytokines although in
some cases upregulation of IL-10 production is observed
[79, 87-89]. Acetylcholine anti-inflammatory properties are
regulated by a7 nicotinic receptor on macrophages, because
macrophages from a7-subunit-nicotinic-receptor-deficient
mice failed to show inhibition of TNF-« release [66]. Local
administration of GTS-21 (a selective a7 cholinergic receptor
agonist) also inhibits TNF-« release in the mouse lung during
LPS-induced inflammation [90].

In addition to exerting anti-inflammatory effects on
macrophages, activation of a7 nicotinic receptors on endo-
thelial cells inhibits TNF-«a-induced expression of intercel-
lular adhesion molecule-1 and chemokines IL-8, RANTES
(regulated on activation, normal T cell expressed and
secreted), and monocyte chemoattractant protein-1 [91],
thereby preventing migration of inflammatory cells from
the blood to the tissues. Systemic administration of nicotine
or a selective a7 agonist also attenuates acid-induced lung
injury by reducing TNF-a« and MIP-2 concentrations and
by reducing neutrophil accumulation in the airspaces of the
lung in rats, resulting in decreased pulmonary oedema and
pulmonary inflammation [67]. Paradoxically, profibrotic,
and proinflammatory effects of nicotine have also been
reported, as nicotine appears to promote fibronectin depo-
sition by fibroblasts [92]. Nonetheless, most reports point
to an anti-inflammatory and antiremodelling role for the
a7 nicotinic receptor. Thus, nicotinic agonists, including
acetylcholine, can limit cytokine release and tissue inflam-
mation. It was recently shown that a7 nicotinic receptors

stimulation of alveolar macrophages and neutrophils also
reduced chemokine production including MIP-2, transalve-
olar neutrophil migration, and LPS- and E. coli-induced
acute lung injury in the airways of mice [67]. Collectively,
these data indicate that acetylcholine may exert potent anti-
inflammatory effects in the lungs, primarily via a7 nicotinic
receptors. Although expressed by airway smooth muscle,
the role of the a7 nicotinic receptor is currently unknown.
Clearly, experiments to identify the role of the a7 nicotinic
receptor in airway smooth muscle, including its role in
remodelling and in the immunomodulatory function of
airway smooth muscle, are warranted.

5. Conclusion

Acetylcholine is the predominant parasympathetic neuro-
transmitter in the airways and an autocrine or paracrine
hormone. Many structural and inflammatory cells, notably
the airway epithelium, express and secrete acetylcholine and
respond to acetylcholine (either neuronal or nonneuronal)
via muscarinic and nicotinic receptors. The airway smooth
muscle is of major importance to the physiological and
pathophysiological actions of acetylcholine, which induces
bronchoconstriction, airway smooth muscle thickening, and
the modulation of cytokine and chemokine production
by these cells (Figure 1). Additionally, muscarinic receptors
regulate proinflammatory and remodelling responses of
fibroblasts and airway epithelial cells and promote the release
of leukotriene B, and other chemotactic mediators from
macrophages and epithelial cells, resulting in eosinophil and
neutrophil chemotactic activity.

In contrast to this proinflammatory role, nicotinic
receptors expressed by inflammatory cells and structural
cells exert potent anti-inflammatory effects, in which the a7
nicotinic receptor appears to play a central role. This receptor
subtype can be targeted both by neuronal and nonneuronal
acetylcholine and may present a useful therapeutic target for
treatment. The role of the a7 nicotinic receptor in airway
smooth muscle, and in airway remodelling in asthma and
COPD, is currently largely unknown but clearly warrants
future investigation. In addition, it is essential to design
future studies to identify the (patho)physiological basis for
the clear discrepancy between nicotinic and muscarinic
receptor subtypes in the regulation of inflammation and re-
modelling.

Clearly, the airway cholinergic system holds excellent
therapeutic potential. Muscarinic receptor antagonists, cur-
rently widely used as bronchodilators for the treatment
of COPD, may have beneficial anti-inflammatory and
antiremodelling effects. Although direct evidence for this
assumption is lacking in asthma and COPD patients,
treatment with the anticholinergic agent tiotropium reduces
exacerbation frequency in COPD patients and reduces lung
function decline in GOLD stage II COPD patients [93, 94].
These clinical findings are consistent with anti-inflammatory
and remodelling effects of tiotropium, but proof for this
hypothesis still needs to be obtained. In addition, the anti-
inflammatory effects of the a7 nicotinic receptor suggest



that agonists for this receptor subtype are a strategy worth
pursuing for the treatment of asthma and COPD.
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