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Corticotropin-releasing factor (CRF) is a major neuromodulator that modulates cerebellar
neuronal activity via CRF receptors during stress responses. In the cerebellar cortex,
CRF dose-dependently increases the simple spike (SS) firing rate of Purkinje cells (PCs),
while the synaptic mechanisms of this are still unclear. We here investigated the effect
of CRF on the spontaneous SS activity of cerebellar PCs in urethane-anesthetized mice
by in vivo electrophysiological recording and pharmacological methods. Cell-attached
recordings from PCs showed that micro-application of CRF in cerebellar cortical
molecular layer induced a dose-dependent increase in SS firing rate in the absence
of GABAA receptor activity. The CRF-induced increase in SS firing rate was completely
blocked by a nonselective CRF receptor antagonist, α-helical CRF-(9–14). Nevertheless,
application of either a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM) or a
selective CRF-R2 antagonist, antisauvagine-30 (200 nM) significantly attenuated, but
failed to abolished the CRF-induced increase in PCs SS firing rate. In vivo whole-cell
patch-clamp recordings from PCs showed that molecular layer application of CRF
significantly increased the frequency, but not amplitude, of miniature postsynaptic
currents (mEPSCs). The CRF-induced increase in the frequency of mEPSCs was
abolished by a CRF-R2 antagonist, as well as protein kinase A (PKA) inhibitors. These
results suggested that CRF acted on presynaptic CRF-R2 of cerebellar PCs resulting in
an increase of glutamate release through PKA signaling pathway, which contributed to
modulation of the cerebellar PCs outputs in Vivo in mice.

Keywords: cerebellar Purkinje cell, in vivo whole-cell patch-clamp recording, complex spike (CS), corticotropin-
releasing factor (CRF), miniature postsynaptic currents, simple-spike (SS), protein kinase A (PKA)

INTRODUCTION

Corticotropin releasing factor (CRF) is a 41-amino acid peptide originally isolated from sheep
brain (Vale et al., 1981). CRF is synthesized and secreted in many regions of the central nervous
system, and is distributed in the hypothalamus, cerebral cortex, amygdala and spinal cord (Luo
et al., 1994). In the mammalian brain, CRF is released following stress and subsequently stimulates
the release of adrenocorticotropic hormone from the anterior pituitary, which plays a critical role
in the coordination of endocrine and behavioral responses to stress (Vale et al., 1981; Antoni, 1986;
Luo et al., 1994).
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In mammalian cerebellar cortex, climbing fibers produce
and release CRF onto Purkinje cells (PCs; Palkovits et al.,
1987). The release of CRF from climbing fibers can be
reliably induced by direct electrical or chemical stimulation
of the inferior olive, as well as by stimulation of specific
sensory afferents (Barmack and Young, 1990; Tian and Bishop,
2003). CRF binds to CRF receptors, consequently modulating
spontaneous and glutamate-induced activity in cerebellar PCs
(Fox and Gruol, 1993). Two types of CRF receptors, CRF-R1 and
CRF-R2, have been identified as G-protein-coupled receptors
(Chen et al., 1993). CRF binds to CRF-R1 with high affinity,
but has low affinity for CRF-R2 (Dautzenberg and Hauger,
2002). Immunohistochemical studies have demonstrated that
both CRF-R1 and CRF-R2 are expressed in the adult rodent
cerebellum (Bishop, 1990; Bishop et al., 2000; Lee et al., 2004).
CRF-R1 immunostaining is present throughout all lobules of
the cerebellar cortex, including the primary dendrites and
somas of PCs, molecular layer interneurons (MLIs), Golgi
cells, Bergmann glial cells and granule cells (Tian et al., 2008;
Tao et al., 2009). In contrast, CRF-R2 immunoreactivity has
been detected in the molecular layer during the postnatal
development of the mouse cerebellum, suggesting that CRF-R2
be expressed on parallel fibers (Lee et al., 2004). Furthermore,
the punctate labeling of CRF-R2 has been confirmed in the
molecular layer was localized to parallel fibers and their terminals
(Tian et al., 2006). Moreover, both CRF-R1 and CRF-R2
were expressed in climbing fibers from post-natal day 3 to
the adult rat cerebellum, and CRF-R1 immunoreactivity was
concentrated in apical regions of PC somas and later in primary
dendrites exhibiting a diffuse cytoplasmic appearance (Swinny
et al., 2003). Physiological studies showed that pharmacological
activation of CRF-R2 increased the spontaneous firing rate
of PCs in cerebellar slices (Bishop et al., 2006; Tao et al.,
2009). CRF modulates not only neuronal excitability and
membrane properties, but also synaptic transmission in other
brain nuclei and cell types (Kirby et al., 2008; Zhao-Shea
et al., 2015). CRF dose-dependently modulates excitatory
synaptic transmission through CRF-R1 in the noradrenergic
nucleus locus coeruleus in slice preparations (Prouty et al.,
2017). Recently, it has been reported that CRF increases
PC firing rate by modulating sodium and potassium, and
hyperpolarizing activated cationic current currents in cerebellar
slices (Libster et al., 2015). Up to now, CRF affects neuronal
excitability by modulating neuronal membrane properties and
synaptic transmission have been well studied, but the synaptic
mechanisms of this remain unclear. Therefore, we here studied
the effect of CRF on the spontaneous simple-spike (SS) activity
of cerebellar PC in urethane-anesthetized mice by in vivo
electrophysiological recording techniques and pharmacological
methods.

MATERIALS AND METHODS

Anesthesia and Surgical Procedures
The anesthesia and surgical procedures have been described
previously (Chu et al., 2011). In brief, the experimental

procedures were approved by the Animal Care and Use
Committee of Yanbian University and were in accordance with
the animal welfare guidelines of the U.S. National Institutes of
Health. The permit number is SYXK (Ji) 2011-006. HA/ICR
mice were bought from the experiment center of Jilin University
and housed under a 12 h light:12 h dark cycle with free access
to food and water. Either male (n = 28) or female (n = 23)
adult (6–8-week-old) HA/ICR mice were anesthetized with
urethane (1.3 g/kg body weight i.p.). A watertight chamber was
created and a 1–1.5 mm craniotomy was drilled to expose the
cerebellar surface corresponding to Vermis VI–VII. The brain
surface was constantly superfused with oxygenated artificial
cerebrospinal fluid (aCSF: 125 mM NaCl, 3 mM KCl, 1 mM
MgSO4, 2 mM CaCl2, 1 mM NaH2PO4, 25 mM NaHCO3, and
10 mM D-glucose) with a peristaltic pump (Gilson Minipulse
3; Villiers, Le Bel, France) at 0.4 ml/min. Rectal temperature
was monitored and maintained at 37.0 ± 0.2◦C using body
temperature equipment.

Electrophysiological Recording and Drug
Application
In vivo patch-clamp or cell-attached recordings from PCs were
performed with an Axopatch-200B amplifier (Molecular Devices,
Foster City, CA, USA). The signal of PC spontaneous activity
was acquired through a Digidata 1440 series analog-to-digital
interface on a personal computer using Clampex 10.3 software.
Patch pipettes were made with a puller (PB-10; Narishige, Tokyo,
Japan) from thick-wall borosilicate glass (GD-1.5; Narishige).
Recording electrodes (4–6 MΩ) contained a solution of the
following composition (in mM): potassium gluconate 120,
HEPES 10, EGTA 1, KCl 5, MgCl2 3.5, NaCl 4, biocytin 8,
Na2ATP 4 and Na2GTP 0.2 (pH 7.3 with KOH, osmolarity
adjusted to 300 mOsm). The electrophysiological recordings
from PCs were performed at depths 250–300 µm under pia
mater membrane, and identified by regular spontaneous SS
accompanied with irregular complex spike (CS; Chu et al.,
2011; Liu et al., 2014; Jin et al., 2015). During whole-cell
recoding configuration, the series resistances were in a range
of 10–40 MΩ, compensated by 80%. Membrane currents
were filtered at 2 kHz, digitized at 20 kHz. For recording
spontaneous SS activity, gabazine (20 µM) was routinely
included in external recording solutions to block GABAA
receptor-mediated inhibitory inputs from MLIs. Recordings of
miniature postsynaptic currents (mEPSCs) were performed in
the presence of a mixture of gabazine (20 µM) and tetrodotoxin
(TTX; 1 µM).

The reagents included human/rat CRF (Peptide Institute Inc.,
Japan); α-helical CRF-(9–14), BMS-763534, 5-Chloro-1-[(1S)-
1-cyclopropyl-2-methoxyethyl]-3-[[6-(difluoromethoxy)-2,5-
dimethyl-3-pyridinyl]amino]-2(1H)-pyrazinone; antisauvagine-
30, GABAzine (SR95531), hydrobromide (6-imino-
3-(4-methoxyphenyl)-1 (6H)-pyridazinebutanoic acid
hydrobromide), H89, protein kinase A (PKA) inhibitor;
and NBQX, (2, 3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]
quinoxaline-7-sulfonamide) were purchased from Sigma-
Aldrich (Shanghai, China). KT5720 and chelerythrine chloride
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FIGURE 1 | Cerebellar surface application of corticotropin-releasing factor
(CRF) increased in spontaneous simple-spike (SS) firing rate of cerebellar
Purkinje cells (PCs) in the absence of GABAA receptors activity. (A) Left,
representative cell-attached recording traces showing the spontaneous SS
firing activity of a PC in treatments of control, CRF (100 nM) and washout of
CRF (recovery). Right, histograms show the instantaneous frequency of SS
firing shown in the Left. Bin = 0.5 s (B) Time course of CRF-induced changes
in the SS firing rate of the PC. (C) Pooled data (n = 10 cells) showing the
mean frequency of SS firing in aCSF, control (gabazine), CRF (gabazine + CRF)
and washout of CRF (recovery). (D) The concentration-response curve shows
the CRF-induced increases in SS firing rate of cerebellar PCs. The EC50 value
obtained from the curve was 53.8 nM. The number of the recorded PCs
tested for each concentration indicated near the bars. Arrows indicate
complex spikes (CSs). ∗P < 0.05 vs. control.

were purchased from Tocris (Bristol, UK). CRF was dissolved
in ACSF and applied onto the molecular layer above the
recorded PCs at 0.1 µl/s for 100 s by a micro pump (KDS-210,
KD Scientific, Holliston, MA, USA). The stock solutions of
BMS-763534 and KT6720 were dissolved in dimethyl sulfoxide

(DMSO). The other drugs were finally dissolved in ACSF, and
applied directly onto the cerebellar surface by a peristaltic pump
(Gilson Minipulse 3; Villiers, Le Bel, France) at 0.5 ml/min. After
a stable cell-attached or whole-cell recording was configured,
the baseline was recorded for 100 s then perfusion of chemicals.
For completely inhibiting PKA and PKC, H-89, KT5720 and
chelerythrine chloride were perfused for 20 min before the next
experiments.

Statistical Analysis
Electrophysiological data were analyzed with Clampfit 10.4
(Molecular Devices, Foster City, CA, USA). Spontaneous SS
activity was calculated from a train of interspike intervals
recorded for 50 sof baseline, in the presence of drugs (75 s
from beginning of CRF application) and Recovery (10 min),
respectively. Some data were normalized with baseline and
used for further analyses. After the spontaneous CSs were
detected, the pauses of SS were calculated between the last
spikelet and the first spontaneous SS firing. The frequency
and amplitude of mEPSCs were analyzed using MiniAnalysis
software (Version 6.0.3; Synaptosoft, Decatur, GA, USA). The
original traces of mEPSCs were filtered digitally at 1 kHz.
Only synaptic events showing a clearly defined baseline and
a peak were used for amplitude analysis. During analysis, the
threshold for detection of mEPSCs was set at 3 pA and the
period to search an mEPSC was set at 30 ms. All the parameters
were maintained constant for an individual recorded neuron in
treatments of ACSF, drugs and recovery. Values are expressed
as the mean ± SEM One-way and repeated measures ANOVA
followed by Tukey’s post hoc test or Two-way ANOVA (SPSS
software; Chicago, IL, USA) was used to determine the level
of statistical significance between groups of data. P-values
below 0.05 were considered to indicate a statistically significant
difference between experimental groups.

RESULTS

Effect of CRF on SS Firing Rate of PCs
Under cell-attached recording conditions, a total of 82 cells
were identified as cerebellar PCs by exhibiting regular SS
and irregular CS activity (Figure 1A, arrows). Molecular layer
micro-application of CRF (100 nM) had a small effect on
the spontaneous SS firing rate. The mean SS firing rate was
28.7 ± 3.1 Hz, which was not significant compared with control
conditions (aCSF: 27.4 ± 3.2 Hz; P = 0.52; n = 8 cells in 6 mice;
data not shown).

Blockade of GABAA Receptors Activity,
CRF Increases PC SS Firing Rate
Since MLIs modulated the spontaneous activity of PCs via
GABAA receptors, we examined the effect of CRF on SS activity
in the presence of the GABAA receptor antagonist, gabazine
(SR95531; 20 µM). Perfusion of gabazine induced a small effect
on the spontaneous SS firing rate (Figure 1A). Themean SS firing
rate was 25.5 ± 1.8 Hz, which was not significant different than
control conditions (aCSF: 25.1 ± 2.1 Hz; P = 0.37; n = 10 cells
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FIGURE 2 | CRF-induced increase in spontaneous SS firing rate of cerebellar
PCs was blocked by a non-selective CRF-Rs antagonist, α-helical CRF-(9–14;
α-helical). (A) Left, representative traces showing the spontaneous SS firing
activity of a PC in control, α-helical (1 µM), α-helical + CRF (100 nM) and
washout of CRF (recovery). Right panel shows the instantaneous frequency of
the SS firing shown in the left. Bin = 0.5 s (B) Time course of the PC SS firing
rate in control, α-helical, α-helical + CRF and recovery. (C) Pooled data
showing the normalized frequency of SS firing in control, α-helical, α-helical +
CRF and washout of CRF (recovery). Arrows indicate CSs. n = 6 cells.

in 7 mice; Figure 1C). In the presence of gabazine (20 µM;
control), CRF (100 nM) induced increase in the instantaneous
frequency of SS firing (Figure 1A). The mean SS firing rate
was 30.7 ± 2.4 Hz, which was significantly higher than under
control conditions 25.5 ± 1.8 Hz; P = 0.031; n = 10 cells
in 7 mice; Figures 1B,C). The CRF-induced increase in SS

firing rate was concentration-dependent (Figure 1D), with a
50% effective concentration (EC50) of 53.8 nM. The maximum
concentration that increased the spontaneous SS firing rate was
1 µM (24.6 ± 2.8% of baseline; P = 0.003 vs. control; n = 7 cells
in 6 mice). These results indicate that molecular layer application
of CRF induces a dose-dependent increase in PC SS firing rate in
the absence of GABAA receptor activity.

Both CRF-R1 and CRF-R2 Are Involved in
CRF-Induced Increase of PC SS Firing
Rate
Bath application of an non-selective CRF-Rs antagonist, α-helical
CRF-(9–14) (1 µM) for 200 s did not significantly change the SS
firing rate of PCs (Figures 2A,B), with a normalized SS firing rate
of 98.5 ± 4.8% of control (100.0 ± 2.7%; P = 0.72; n = 6 cells
in 6 mice; Figure 2C). In the presence of α-helical CRF-(9–14),
micro-application of CRF failed to increase SS firing rate, with
the normalized SS firing rate being 103.3 ± 3.5% of control
(98.5± 4.8%; P = 0.31; n = 6 cells in 6 mice; Figures 2B,C). These
results indicate that CRF increases the SS firing rate of PCs via
activation of CRF receptors.

FIGURE 3 | Blockade CRF-R1 failed to abolish the CRF-induced increase in
spontaneous SS firing rate of cerebellar PCs. (A) Representative cell-attached
recording traces showing the spontaneous SS firing activity of a PC in control,
BMS-763534 (BMS, 100 nM), BMS + CRF (100 nM) and washout of CRF
(recovery). (B) Time course of the PC SS firing rate in control, BMS-763534
(BMS, 100 nM), BMS + CRF (100 nM) and washout of CRF (recovery).
(C) Pooled data showing the normalized frequency of SS firing in in control,
BMS-763534 (BMS, 100 nM), BMS + CRF (100 nM) and washout of CRF
(recovery). ∗P < 0.05 vs. control or CRF.
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FIGURE 4 | Blockade CRF-R2 failed to prevent the CRF-induced increase in
spontaneous SS firing rate of cerebellar PCs. (A) Left, representative
cell-attached recording traces showing the spontaneous SS firing activity of a
PC in control, antisauvagine-30 (200 nM), antisauvagine-30 (200 nM) + CRF
(100 nM) and washout of CRF (recovery). Right panel shows the
instantaneous frequency of the SS firing shown in the left. Bin = 0.5 s (B) Time
course of the PC SS firing rate in control, antisauvagine-30, antisauvagine-30
+ CRF and recovery. (C) Summary of data showing the normalized frequency
of SS firing in control, antisauvagine-30, antisauvagine-30 + CRF and washout
of CRF (recovery). (D) Bar graph showed the change of SS frequency in the
treatments of CRF, CRF + antisauvagine, and CRF (100 nM) + BMS.
∗P < 0.05 vs. control or CRF. Arrows indicate CSs. n = 6 cells.

Furthermore, we employed a selective CRF-R1 antagonist,
BMS-763534 (BMS, 200 nM) to examine whether the
CRF-induced increase in the PC SS firing rate via activation
of CRF-R1. Bath administration of BMS for 200 s did not
significantly change PC SS firing rate, with a normalized
SS firing rate of 101.8 ± 3.9% of control (100.0 ± 2.7%;
P = 0.68; n = 6 cells in 5 mice; Figures 3A,B). In the
presence of BMS-763534, micro-application of CRF still
induced an increase of SS firing rate (normalized SS firing rate
108.5 ± 3.1% of control, 100.0 ± 2.8%; P = 0.04; n = 6 cells
in 5 mice; Figure 3C). The results indicate that activation

of CRF-R1 contributes to CRF-induced increases in PC SS
firing rate.

Moreover, we used a selective CRF-R2 antagonist,
antisauvagine-30 (200 nM) to determine whether the
CRF-induced increase in PC SS firing rate was involved in
CRF-R2. Bath administration of antisauvagine-30 for 200 sdid
not significantly change the SS firing rate of PCs (normalized
SS firing rate 102.4 ± 4.6% of control; 100.0 ± 2.4%; P = 0.74;
n = 6 cells in 6 mice; Figures 4A–C). In the presence of
antisauvagine-30, micro-application of CRF still induced
an increase in SS firing rate, with a normalized SS firing
rate of 114.3 ± 2.7% of control (102.4 ± 4.6%; P = 0.037;
n = 6 cells in 6 mice; Figures 4B,C). Notably, blockade of
CRF-R1, CRF increased SS firing rate by 8.5 ± 2.1% of control,
which was significantly weaker than controls (18.1 ± 1.8%;
P = 0.037; n = 6 cells in 5 mice; Figure 4D), and blockade
of CRF-R2, CRF increased SS firing rate by 14.3 ± 1.5%
of control, which was also significantly lower than controls
(18.1 ± 1.8%; P = 0.037; n = 6 cells in 6 mice; Two-way ANOVA
Figure 4D).

Effect of CRF on the Activity Spontaneous
Complex Spikes (CSs)
In the presence of CRF (100 nM), the normalized pause
of SS firing was 123.5 ± 6.1% of control (100.0 ± 6.7%;
P = 0.026; n = 10 cells in 7 mice; Figures 5A,B), and
the normalized number of spikelets was 134.6 ± 6.3% of
control (100.0 ± 4.7%; P = 0.015; n = 10 cells in 7 mice;
Figures 5A,C). However, application of α-helical CRF-(9–14;
1 µM) for 200 s did not significantly change the CSs-evoked

FIGURE 5 | Effects of CRF on the spontaneous CSs activity of cerebellar PCs.
(A) Representative cell-attached recording traces showing the spontaneous
CSs of a PC in treatments of control, CRF (100 nM) and washout of CRF
(recovery). (B) Summary of data (n = 10 cells) showing the normalized pause
of SS firing in control, CRF (100 nM) and washout of CRF (recovery).
∗P < 0.05 vs. control. (C) Bar graph shows the normalized number of
spikelets in control, CRF (100 nM) and washout of CRF (recovery).
∗P < 0.05 vs. control. n = 10 cells.
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FIGURE 6 | α-helical CRF-(9–14) abolished the effect of CRFon the
spontaneous CSs activity of cerebellar PCs. (A) Representative cell-attached
recording traces showing the spontaneous CSs of a PC in treatments of
control, α-helical CRF-(9–14), α-helical CRF-(9–14) + CRF (100 nM) and
recovery. (B) Summary of data (n = 8 cells) showing the normalized pause of
SS firing in control, α-helical CRF-(9–14), α-helical CRF-(9–14) + CRF (100 nM)
and recovery. (C) Bar graph shows the normalized number of spikelets in
control, α-helical CRF-(9–14), α-helical CRF-(9–14) + CRF (100 nM) and
recovery. n = 8 cells.

pause of SS firing or the number of spikelets (Figure 6). In
the presence of α-helical CRF-(9–14), the normalized SS firing
pause was 96.7 ± 5.8% of control (100.0 ± 6.6%; P = 0.65;
n = 8 cells in 8 mice; Figures 6A,B), and the normalized
number of spikelets was 97.7 ± 7.3% of control (100.0 ± 4.6%;
P = 0.73; n = 8 cells in 8 mice; Figures 6A,C). In the presence
of α-helical CRF-(9–14), application CRF failed to increases in
CSs-evoked pause of SS (Figures 6A,B) and number of spikelets
(Figures 6A,C).

CRF Increased Presynaptic Excitatory
Inputs of Cerebellar PCs
In vivo patch-clamp recordings showed that cerebellar molecular
layer micro-application of CRF significantly decreased the
interevent interval of mEPSCs, and shifted the cumulative
probability-interevent interval curve of mEPSCs to the
left (normalized mean frequency, 146.5 ± 5.7% of control;
100.0 ± 4.2%; P = 0.003; n = 6 cells in 5 mice; Figures 7A–D).
Application of antisauvagine-30 did not change the frequency
and amplitude of mEPSCs (not shown). However, the
CRF-induced decrease of mEPSC interevent interval was
not observed in the presence of antisauvagine-30 (200 nM;
Figures 7A,B). In the presence of antisauvagine-30 and
CRF, the normalized mean frequency was 103.2 ± 5.9%
of control (100.0 ± 4.2%; P = 0.65; n = 6 cells in 5 mice;
Figure 7D). In addition, micro-application of CRF did not
significantly change the cumulative probability-amplitude
curve (Figures 7A,C) or the mEPSC amplitude, with a
normalized mean amplitude of 102.5 ± 3.1% of control

FIGURE 7 | CRF increased the frequency of miniature postsynaptic currents
(mEPSCs) in cerebellar PCs via CRF-R2. (A) Representative membrane
current traces of a cerebellar PC recorded in control (gabazine 20 µM + TTX
1 µM), CRF (100 nM) and antisauvagine-30 (200 nM) + CRF (100 nM). (B)
Cumulative probability-interevent interval curve of mEPSCs in control, CRF
and antisauvagine-30 + CRF. (C) Cumulative probability-amplitude curve of
mEPSCs in control, CRF and antisauvagine-30 + CRF. (D) Summary of the
normalized mEPSCs frequency of the PCs in control, CRF and
antisauvagine-30 + CRF. (n = 6). (E) Pooled data showing the normalized
mEPSCs amplitude of the PCs in control, CRF and antisauvagine-30 + CRF.
n = 6. ∗P < 0.05 vs. control.

(101.8 ± 3.6%; P = 0.81; n = 6 cells in 5 mice; Figure 7E).
These results indicate that CRF increases the frequency of
mEPSCs via activation of CRF-R2, suggesting that activation of
presynaptic CRF-R2 contributes to the excitation of cerebellar
PCs.

CRF-Rs couple to Gsα, resulting in the activation of adenylyl
cyclase and generation of the second messenger cyclic AMP, and
further stimulates PKA or PKC to phosphorylate downstream
targets in the cytosol and nucleus (Hauger et al., 2003, 2009; Tao
et al., 2009). Therefore we examined whether the CRF-induced
increase in mEPSCs via PKA or PKC signaling pathways.
Application of PKA inhibitor, H-89 for 10 min, not only
increased the interevent interval of mEPSCs (Figures 8A,B),
but also abolished the CRF-induced increase in the frequency
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FIGURE 8 | Protein kinase A (PKA) inhibitor, H-89 abolished the
CRF-increased frequency of mEPSCs in cerebellar PCs. (A) Representative
mEPSCs of a cerebellar PC recorded in control (gabazine 20 µM + TTX
1 µM), H-89 (10 µM) and H-89 + CRF (100 nM). (B) Cumulative
probability-interevent interval curve of mEPSCs in control, H-89 and H-89 +
CRF. (C) Cumulative probability-amplitude curve of mEPSCs in control, H-89
and H-89 + CRF. (D) Summary of the normalized mEPSCs frequency of the
PCs in each treatment. (E) Pooled data showing the normalized mEPSCs
amplitude of the PCs in each treatment. n = 7. ∗P < 0.05 vs. control.

of mEPSCs. The normalized mean frequency of mEPSCs was
55.4 ± 6.8% (H-89) and 56.3 ± 6.5% (H-89 + CRF) of
control (100.0 ± 5.1%; P < 0.0001; n = 7 cells in 4 mice;
Figure 8D). In addition, inhibition of PKA induced a decrease
in the amplitude of mEPSCs (Figures 8A,C). The normalized
mean amplitude of mEPSCs was 43.6 ± 4.5% (H-89) and
46.5 ± 6.7% (H89 + CRF) of control (100.0 ± 3.7%; P < 0.0001;
n = 7 cells in 4 mice; Figure 8E). Further, we used a
more specific PKA inhibiter, KT5760 to determine whether
CRF-induced increase in mEPSCs frequency via PKA signaling
cascade. Perfusion of KT5720 (1 µM) for 10 min, completely
prevented the CRF-induced increase in the frequency of mEPSCs
(Figure 9A). The normalized mean frequency of mEPSCs was
66.7 ± 7.6% (KT5720) and 68.5 ± 8.1% (KT5720 + CRF) of
control (100.0 ± 7.2%; P < 0.001; n = 5 cells in 5 mice;
Figure 9B). The normalized mean amplitude of mEPSCs was
61.6 ± 7.4% (KT5720) and 62.3 ± 7.9% (KT5720 + CRF) of

FIGURE 9 | A specific PKA blocker, KT5720 prevented the CRF-increased
frequency of mEPSCs in cerebellar PCs. (A) Representative mEPSCs of a
cerebellar PC recorded in control (gabazine 20 µM + TTX 1 µM), KT5720
(1 µM) and KT5720 + CRF (100 nM). (B) Summary of the normalized mEPSCs
frequency of the PCs in each treatment. (C) Pooled data showed the
normalized mEPSCs amplitude of the PCs in each treatment. n = 5.
∗P < 0.05 vs. control.

control (100.0 ± 7.5%; P < 0.001; n = 5 cells in 5 mice;
Figure 9C). In addition, application PKC inhibitor, chelerythrine
(50µM) failed to prevent the CRF-induced increase in frequency
of mEPSCs (not shown). These results indicate that the
CRF-induced an increase in frequency of mEPSCs depends
on activation of PKA cascade rather than activation of PKC
signaling pathway.

DISCUSSION

In this study, we demonstrated that molecular layer application
of CRF induces a dose-dependent increase in PC SS firing rate via
activation of both CRF-R1 and CRF-R2. Antagonism of CRF-R1
or CRF-R2 significantly attenuated the CRF-induced increase
in SS firing rate of the PCs. In vivo whole-cell patch-clamp
recordings showed that CRF-induced increase in the frequency
of mEPSCs was prevented by CRF-R2 antagonist, as well as PKA
inhibitors. Our results suggested that CRF acted on presynaptic
CRF-R2 of cerebellar PCs resulted in an increase of glutamate
release through PKA signaling pathway, which contributed to
modulation of PCs outputs in vivo in mice.

CRF Modulates Cerebellar Function and
PC SS Firing Activity by Activation of Both
CRF-R1 and CRF-R2
In the cerebellar cortex CRF is released from climbing fibers
to PCs during direct electrical or chemical stimulation of
the inferior olive, as well as by stimulation of sensory
afferents (Palkovits et al., 1987; Barmack and Young, 1990;
Tian and Bishop, 2003), and modulates spontaneous and
glutamate-induced activity in cerebellar PCs (Fox and Gruol,
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1993). Consistent with previous studies (Bishop et al., 2000;
Dautzenberg and Hauger, 2002; Libster et al., 2015), our
results show that molecular layer micro-application of CRF
dose-dependently increases the SS firing rate of cerebellar PCs
in the absence of GABAA receptor activity.

Both CRF-R1 and CRF-R2 are expressed in the adult rodent
cerebellum (Bishop et al., 2000; King and Bishop, 2002; Lee
et al., 2004; Tian et al., 2006). CRF-R1 is distributed over
the somas and primary dendrites of the PCs in the molecular
layer of the cerebellar cortex (Bishop et al., 2000; King and
Bishop, 2002), whereas CRF-R2 has been found throughout the
molecular layer in cerebellar cortex, including parallel fibers
and their terminals (Bishop et al., 2000; Jedema and Grace,
2004). In this study, the CRF-induced increase in SS firing rate
of PCs was abolished by a non-selective CRF-Rs antagonist,
indicating that CRF modulates the output of PCs via CRF-Rs.
A previous study demonstrated that CRF-R2α mRNA, but not
that of CRF-R1 or CRF-R2β, is endogenously expressed in the rat
cerebellum (Tao et al., 2009). In this study, a selective CRF-R1
antagonist significantly attenuated the CRF-induced increase in
SS firing rate of PCs, suggesting that CRF-R1 is expressed on
PCs and modulates SS activity. In addition, CRF-R2 has been
found in a subpopulation of PCs and Bergmann glial cells in
the cerebellum (Swinny et al., 2003; Lee et al., 2004; Bishop
et al., 2006). Under in vitro conditions, it has been demonstrated
that a selective CRF-R2α agonist increases the SS firing rate of
PCs, and this response can be blocked by a CRF-R2α-specific
antagonist (Bishop et al., 2006). This indicates that CRF-R2α is
present in the cerebellum and modulates the SS firing rate of
PCs. Activation of CRF-R2 has been also found to inhibit P-type
Ca2+ currents and to increase the spontaneous firing frequency
of PCs in cerebellar slices (Tao et al., 2009). Our results show that
CRF-induced increases in SS firing rate are significantly inhibited
by a selective CRF-R2 antagonist, indicating that activation of
CRF-R2 contributes to the CRF-induced increase in PC SS firing
rate.

Ionic and Synaptic Mechanisms of
CRF-Induced Increase in PC SS Firing Rate
CRF is present in specific populations of climbing fibers
and mossy fibers in particular, the lateral aspect of vermal
lobules VII and VIII in cerebellar cortex (Bishop, 1990;
Bishop et al., 2000). Extracellular application of CRF enhances
the spontaneous and excitatory effects of both aspartate and
glutamate, suggesting that CRF acts as a neuromodulator in
cerebellar circuitry (Bishop, 1990; Bishop et al., 2000). Under
in vitro conditions, CRF dose-dependently reduces the amplitude
of the afterhyperpolarization, but does not significantly alter
membrane properties of the PCs, suggesting that CRF regulates
the activity of PCs via an indirect pathway (Fox and Gruol, 1993).
In addition, CRF coupled with CRF-R1 results in depolarization
of noradrenergic nucleus locus coeruleus neurons through a
cyclic AMP-dependent reduction in potassium conductance
(Jedema and Grace, 2004; Reyes et al., 2007). Recently, it
has been demonstrated that CRF dose-dependently modulates
excitatory synaptic transmission in the noradrenergic nucleus
locus coeruleus, suggesting that CRF affects neuronal activity via

modulation of synaptic transmission (Prouty et al., 2017). We
here showed that cerebellar molecular layer micro-application
of CRF significantly increased the mEPSCs frequency, but not
the amplitude. Consistent with previous studies (Lee et al.,
1993; Lawrence et al., 2002; Lewis et al., 2002), the results
indicated that CRF-enhanced presynaptic glutamate release
results in an increase inmEPSC frequency, as well as contributing
to CRF-induced increases in SS firing activity. Notably, the
CRF-induced increase in mEPSC frequency was completely
blocked by a selective CRF-R2 antagonist, indicating that
CRF increases the frequency of mEPSCs via the activation of
CRF-R2 located at presynaptic sites. Cerebellar PC receives
numerous parallel fiber excitatory inputs, and CRF-R2 has been
found in parallel fibers and their terminals (Bishop et al.,
2000; Jedema and Grace, 2004). Thus, activation of parallel
fiber presynaptic CRF-R2 could contribute to an increase in
mEPSCs in cerebellar PCs. However, we cannot exclude the
possibility that the mEPSC increase is mediated by glutamate
release from climbing fiber excitatory inputs, since CRF-R2
might be expressed on climbing fiber terminals. It has been
reported that CRF facilitates norepinephrine release through a
presynaptic facilitation mechanism in the dentate gyrus (Lee
et al., 1993). CRF-R2 has been found on afferent terminals
of the vagus nerve in the nucleus of the tractus solitarius
(Lawrence et al., 2002), and on parallel fiber terminals in the
cerebellar cortex (Tian et al., 2006). CRF has been found to
have an indirect excitatory effect on dorsal vagal neurons via
the activation of CRF-R2 at presynaptic sites (Lewis et al.,
2002). Although it has been found that CRF-R2 is localized
presynaptically in the cerebellar cortex (Tian et al., 2006) and
activation of CRF-R2 increases PC firing rate in cerebellar
cortical slices (Bishop et al., 2006; Tao et al., 2009), there
has been no direct evidence to show the effect of CRF on
cerebellar presynaptic CRF-R2. Our present results suggest
that activation of presynaptic CRF-R2 contributes, at least
in part, to an increase in the SS firing rate of cerebellar
PCs.

Additionally, CRF has also been shown to modulate neuronal
excitability and membrane properties various cell types (Qiu
et al., 2005; Kirby et al., 2008; Chu et al., 2012). CRF has
direct effects on the dorsal raphe nucleus neurons, eliciting an
inward current in 5-hydroxytryptamine neurons via activation
of CRF-R2 and in non-5-hydroxytryptamine neurons through
CRF-R1 (Kirby et al., 2008). We previously found that CRF
depolarizes hypothalamic paraventricular nuclei neurons by
activation of hyperpolarization activated inward currents
via postsynaptic CRF-R1 (Qiu et al., 2005). In the cerebellar
cortex, CRF increases the SS firing rate of PCs, regardless of
whether they are firing tonically or switching between firing
and quiescent periods (Libster et al., 2015). However, this
is associated with a voltage shift of the activation curve of the
persistent sodium current and hyperpolarizing-activated current,
as well as activation of voltage-dependent potassium current
(Libster et al., 2015). Our present results showed that application
CRF at 100 nM induced enhance of spontaneous activity, which
expressing increases in the number of spikelets and the SS
pause. However, the previously study showed that exogenous
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application of CRF at 1µM induced reductions in the CF-evoked
excitatory postsynaptic current and CS afterhyperpolarization
(Schmolesky et al., 2007). The contradict results were considered
as the following reasons. The concentrations of CRF was high
(1 µM) in the previous study under in vitro conditions, but we
used low concentration (200 nM) of CRF in the present study
in living mice. Moreover, there are many effective factors under
in vivo conditions, and the concentration of CRF reached to
PCs was lower than 200 nM. Therefore, the lower concentration
CRF might enhance the CS activity, but high concentration
might depress the CF-PC synaptic transmission. In addition,
the effects of CRF on cerebellar PC activity might be affected
by urethane anesthesia. However, urethane depresses neuronal
excitability through activation of barium-sensitive potassium
leak conductance, without affecting glutamate-mediated
excitatory synaptic transmission or GABAergic inhibitory
synaptic transmission (Sceniak and Maciver, 2006).

CRF-Rs couple to Gsα, resulting in the activation of
adenylyl cyclase and generation of the second messenger
cyclic AMP has been previously demonstrated (Hauger et al.,
2003, 2009). Increasing cyclic AMP level further stimulates
PKA to phosphorylate downstream targets in the cytosol
and nucleus (Hauger et al., 2003, 2009). CRF-R1 signaling
to cyclic AMP-PKA pathway contributes to the regulation
of synaptic plasticity in hippocampus (Sheng et al., 2008).
CRF-R1 upregulates brain-derived neurotrophic factor mRNA
levels via the cyclic AMP PKA signaling pathway in cerebellar
granular cells (Bayatti et al., 2005). However, CRF-R2 coupling
to Gs modulates limbic dopaminergic neurotransmission by
stimulating intracellular calcium release via the cyclic APM-PKA
signaling pathway (Riegel and Williams, 2008). In this study,
we found that inhibition of PKA activity significantly reduced
the both minis amplitude and frequency, suggesting that the
adenylyl cyclase-cyclic AMP signal-transduction pathway played
an important role during the presynaptic neurotransmitter
release. Because the PKA phosphorylate proteins synapsin I
and II, resulting increases the number of synaptic vesicles

in the releasable pool (Greengard et al., 1993). Therefore,
inhibition of PKA activity induced a decrease in the amount of
phosphorylated synapsins, and caused a decrease in presynaptic
glutamate release. Notably, PKA inhibitor not only increased
the basal interevent interval of mEPSCs, but also abolished
the CRF-induced increase in the frequency of mEPSCs,
indicated that CRF increased the frequency of mEPSCs was
dependent on activation of PKA pathway. Our results are
consistent with previous studies (Bayatti et al., 2005; Riegel
and Williams, 2008; Gutknecht et al., 2009), suggesting
that CRF-R2 coupling to Gs induces activation of adenylyl
cyclase-cyclic AMP signal-transduction, which might lead to
phosphorylation of proteins on synaptic vesicles in presynaptic
nerve terminals, resulting in an increase in glutamate release
onto cerebellar PCs. On the other hand, activation of PKA
can phosphorylate several other proteins that are necessary
for the vesicle mobilization/priming and exocytosis of synaptic
vesicles, and inhibition of basal PKA phosphorylation decreases
the synaptic vesicle priming and pool size (Nagy et al., 2004;
Maximov et al., 2007). Therefore, we could not occlude the
CRF-induced increase in mEPSCs through a difference signaling
pathway.
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