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Abstract: Rice, being a major staple food crop and sensitive to salinity conditions, bears heavy
yield losses due to saline soil. Although some salt responsive genes have been identified in rice,
their applications in developing salt tolerant cultivars have resulted in limited achievements. Herein,
we used bioinformatic approaches to perform a meta-analysis of three transcriptome datasets from
salinity and control conditions in order to reveal novel genes and the molecular pathways underlying
rice response to salt. From a total of 28,432 expressed genes, we identify 457 core differentially
expressed genes (DEGs) constitutively responding to salt, regardless of the stress duration, genotype,
or the tissue. Gene co-expression analysis divided the core DEGs into three different modules,
each of them contributing to salt response in a unique metabolic pathway. Gene ontology and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses highlighted key biological processes
and metabolic pathways involved in the salt response. We identified important novel hub genes
encoding proteins of different families including CAM, DUF630/632, DUF581, CHL27, PP2-13, LEA4-5,
and transcription factors, which could be functionally characterized using reverse genetic experiments.
This novel repertoire of candidate genes related to salt response in rice will be useful for engineering
salt tolerant varieties.

Keywords: salt stress; transcriptome; weighted gene co-expression network analysis (WGCNA);
co-expressed genes; network analysis; rice

1. Introduction

Salinity stress is one of the leading abiotic stresses that challenge the sustainability of crop
production [1]. A high level of salt in soil inhibits plant growth, induces wilting and the death of
plants. Salt stress causes ion toxicity by Na+ and Cl- ions leakage, which leads to disruption of the
cell membrane, inhibition of protein synthesis, and alteration of enzyme activity [2]. Importantly,
salinity also causes a reduction in photosynthesis, resulting in chlorosis and programmed cell death [3].
Different classes of genes including phosphatases, kinases, hormones, and transcription factors play
significant roles in salt stress responses [4]. In recent years, various genes conferring salt tolerance in
plants have been identified and shown to be involved in transcription, signal transduction, ion transport,
and metabolic pathways [5,6].
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Rice is a staple food crop of half of the world population and a genomic model crop of the monocot
family. Rice production is supposed to be increased by 0.6% to 0.9% every year until 2050 in order
to feed a rapidly increasing population [7]. Rice, being sensitive to salinity conditions, bears heavy
yield losses due to saline soil [8]. Extensive omics data have been generated and applied in various
studies towards rice yield and quality improvement. In particular, transcriptome sequencing and
computational approaches have greatly facilitated rice molecular research [9]. Some important salt
responsive genes such as OsSOS1, OsNHX1, OsHKT2;1, OsCAX1, OsAKT1, OsKCO1, OsTPC1, OsCLC1,
and OsNRT1;2 have been discovered in rice but so far, very limited achievements have been made to
develop salt-tolerant cultivars [10]. In fact, plant response to stress is a coordinated action of multiple
stress responsive genes, interacting with other components of stress signal transduction pathways [11].
Therefore, there are still large numbers of unidentified genes with high potential to improve salt
tolerance in rice. In recent years with the development of new high-throughput technologies such as
RNA sequencing (RNA-seq) and data analysis methods, the functional characteristics of thousands of
genes can be investigated systematically [12]. In rice, various RNA-seq studies have been conducted
to explore the differentially expressed genes under salinity stress [13–17]. These datasets represent
valuable genomic resources to perform meta-analysis to identify the core-conserved genes modulating
salt responses in rice, regardless of the stress intensity, genotype, environment, etc.

One important method to understand the gene function and gene association from genome-wide
expression is the co-expression network analysis [18,19]. The co-expression network approach
constructs the network of genes with co-activation across a group of samples. Nowadays, weighted
gene co-expression network analysis (WGCNA) is the most commonly used system biology approach
to identify the pattern of correlations among genes [20]. It is useful for the identification of the modules
of co-expressed genes, their correlation with external traits, and the pinpointing of key hub genes. It has
been widely applied to detect the co-expressed genes responsive to stress and cell wall organization
in cotton [21], salt stress response in Arabidopsis and rice [22,23], and the biotic stress response in
Arabidopsis [24].

In the present study, we re-analyzed three diverse salt-stress transcriptomic datasets in rice and
identified the core salt-stress responsive genes. Further, by applying WGCNA, we identified three
functional modules and several biological and metabolic pathways that are involved in rice response
to salt. Finally, we proposed various putative novel salt stress-responsive uncharacterized genes that
can be harnessed to improve salt tolerance in rice.

2. Materials and Methods

2.1. Plant Material and Growth Conditions

The seeds of japonica rice cultivar “Hunan” were collected from Hunan Rice Research Institute,
Changsha, China. The experiment was conducted in controlled environment of a greenhouse. The seeds
were surface sterilized with 1% NaOCl solution to remove the contaminants. Sterilized seeds were
immersed in water at 37 ◦C for two days followed by germination at 30 ◦C with a photoperiod of 16 h
(light)/8 h (dark) and a relative humidity set at 70%. Seedlings were grown for a week in 2000 ml boxes
containing a 1

2 strength Hoagland nutrient solution. Then, the salt stress condition was applied by
adding to the nutrient solution 200 mM NaCl solution in one step and then the whole plant (shoot +

root) was harvested after 0, 3, 6, and 12 h time period later. The control seedlings were maintained
in a nutrient solution without salt treatment and samples were collected in parallel. Three biological
replicates were maintained for control and salt treatment for each time point.

2.2. RNA Isolation and qRT-PCR Gene Expression Analysis

Plant total RNA from control and salt-treated samples was isolated using an RNA extraction
kit (Tiangen, Beijing, China), and the first-strand cDNA was synthesized from 2 µg of RNA by
reverse transcriptase (Invitrogen, Carlsbad, CA, USA), and then diluted (1:4) for use in qRT-PCR with
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SYBR Premix ExTaq Mix (Takara, Dalian, Liaoning, China) in a total volume of 20 µL. Reactions were
performed in a LightCycler 480 thermal cycler (Roche, Basel, Switzerland), following the manufacturer’s
instructions. Three biological replicates were analyzed for each sample, and the expression level was
normalized to that of the rice Actin-1 gene (LOC4333919), which is stably and constitutively expressed
in rice tissues and under various stress conditions [25]. The primer sequences used in this study are
given in Table S1.

2.3. Data Acquisition and RNA-Seq Analysis

RNA sequence data for control and salt-treated japonica rice cultivars were downloaded from
the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) (https:
//www.ncbi.nlm.nih.gov/sra). After quality control, only datasets with high quality (clean data with at
least 90% of bases scoring Q30 and above) were kept and their SRA accessions and information are listed
in Table 1. The rice reference genome and gene model annotation files (MSU7.0) were downloaded
from the JGI database directly. We mapped the reads to the Oryza sativa L. japonica. cv. Nipponbare
genome using STAR (2.5.1b) [26] and then “Trimmed Mean of M-values” (TMM) normalized fragments
per kilobase of transcript per million fragments mapped (FPKM) values were used to estimate the
gene expression level [27]. A stringent criterion (fold-change ≥ 2 and q_value ≤ 0.05, with a significant
false discovery rate-adjusted p value (FDR) < 0.05) was used to screen out the differentially expressed
genes (DEGs) between each set of compared samples by the edgeR software [28]. Significance of the
overlap between DEGs in the three datasets was estimated using the hypergeometric test computed
with the “phyper” function in the R software (http://www.r-project.org) with a Bonferroni correction of
the p values.

Table 1. Overview of the RNA-seq datasets used in this study.

SRA Study SRA
Accession Tissue Treatment Sequencing

Platform Cultivar References

SRP076274 SRR3647326 Leaf Unstressed-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP076274 SRR3647327 Leaf Salt (200 mM)-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP076274 SRR3647328 Leaf Unstressed-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP076274 SRR3647329 Leaf Salt (200 mM)-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP076274 SRR3647330 Leaf Unstressed-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP076274 SRR3647331 Leaf Salt (200 mM)-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP076274 SRR3647334 Leaf Unstressed-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP076274 SRR3647335 Leaf Salt (200 mM)-110d old seedling Illumina HiSeq 2500 Nipponbare -

SRP083700 SRR4098173 Root Unstressed-2 weeks old seedling Illumina HiSeq 2000 japonica rice Yuan et al. [16]

SRP083700 SRR4098191 Root Salt (300 mM NaCl for 12 h)-2 weeks
old seedling Illumina HiSeq 2000 japonica rice Yuan et al. [16]

SRP114666 SRR5889379 Root Unstressed-seedling Illumina HiSeq 2500 Sea Rice 86 Chen et al. [17]

SRP114666 SRR5889380 Root Unstressed-seedling Illumina HiSeq 2500 Sea Rice 86 Chen et al. [17]

SRP114666 SRR5889381 Root Unstressed-seedling Illumina HiSeq 2500 Sea Rice 86 Chen et al. [17]

SRP114666 SRR5889382 Root Salt (sea water for 30 d)-seedling Illumina HiSeq 2500 Sea Rice 86 Chen et al. [17]

SRP114666 SRR5889383 Root Salt (sea water for 30 d)-seedling Illumina HiSeq 2500 Sea Rice 86 Chen et al. [17]

SRP114666 SRR5889384 Root Salt (sea water for 30 d)-seedling Illumina HiSeq 2500 Sea Rice 86 Chen et al. [17]

2.4. Gene Ontology and KEGG Analysis of the Core DEGs

Salt responsive core DEGs were identified by comparing all DEGs among different datasets
using Venn diagram analysis. These genes were then subjected to Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) significant enrichment analysis to identify
the enriched biological processes and metabolic pathways involved in salt tolerance. GO and
KEGG enrichment was analyzed using clusterProfiler. The heatmap was exhibited using “heat
map” R-package. The information of transcription factor families was downloaded from Plant TFDB
(planttfdb.cbi.pku.edu.cn/).

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://www.r-project.org
planttfdb.cbi.pku.edu.cn/
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2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

Gene co-expression networks were constructed using the WGCNA package in the R software.
The core DEGs were further divided into three modules using WGCNA and correlation of each
module with salt stress was calculated. Module-trait associations were estimated using the correlation
between the module eigengene and salt/control treatments. Network visualization for each module
was performed using the Cytoscape software version 3.6.1 with a cut-off of the weight parameter
obtained from the WGCNA set at 0.3. [29]. The gene co-expression network is a scale-free weighted
gene network with multiple nodes connected to different nodes via edges. Each node represents a
gene, which is connected to a different number of genes. The gene which is connected to a greater
number of genes is denoted with a bigger size and is more important for its interaction with a large
number of genes.

3. Results

3.1. Identification of the Salt-Responsive Core DEGs in Rice

In this study, we analyzed the global gene expression profiles of japonica rice cultivars for salt
stress response using different datasets, namely, SRP114666, SRP076274, and SRP083700. The details of
these datasets including treatment, tissue, and accession numbers are given in Table 1. From a total
of 28,432 expressed genes among the different datasets, 15,596 unique differentially expressed genes
(DEGs) were identified between control and stressed samples in the different datasets (Table S2).

In order to identify the salt responsive core DEGs, we cross-compared the DEGs among the three
different datasets, which resulted in 457 core DEGs that are common in rice, independently of the tissue
type, genotype, and the salt stress duration/intensity. These core DEGs were statistically significant
based on the hypergrometric test (p < 0.001) There were 628 common DEGs among SRP114666 and
SRP076274; 1204 common DEGs among SRP076274 and SRP083700; 1,647 common DEGs among
SRP114666 and SRP083700 (Figure 1A). The expression fold changes between control and stress
treatments of these 457 core DEGs greatly varied among datasets but were mainly up-regulated
under stress, confirming that these core DEGs are responsive to salt (Figure 1B). The thousands of
genes specific to each dataset may be caused by differences in salt tolerance levels of the genotypes,
their genetic make-up, the sampled tissues, salt stress treatments, and growth conditions.

We then characterized these 457 core DEGs to get insight into their contributing molecular
pathways. To achieve this, we first performed gene ontology (GO) to identify the significantly enriched
biological processes contributed by these DEGs. GO analysis unveiled that “peroxidase activity” was
the most enriched biological process followed by “response to stress” with the q-value lower than
0.1, suggesting that peroxidase genes are involved in salt response by regulating the antioxidant
activity (Figure 2A). Next, we performed Kyoto Encyclopedia of genes and genomes (KEGG) analysis
to identify enriched pathways contributed by the 457 core salt responsive DEGs. Phenylpropanoid
biosynthesis was the most significantly enriched KEGG pathway followed by glutathione metabolism,
indicating that phenylpropanoid and glutathione play key roles in salt response in rice (Figure 2B).
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Figure 1. Identification of salt responsive core differentially expressed genes (DEGs) in rice. (A) Venn 
diagram showing specific and common salt responsive DEGs among the RNA-seq datasets used in 
this study; (B) Expression profiles of the core salt responsive DEGs based on fragments per kilobase 
of transcript per million fragments mapped (FPKM) values. 

Figure 1. Identification of salt responsive core differentially expressed genes (DEGs) in rice. (A) Venn
diagram showing specific and common salt responsive DEGs among the RNA-seq datasets used in
this study; (B) Expression profiles of the core salt responsive DEGs based on fragments per kilobase of
transcript per million fragments mapped (FPKM) values.
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Figure 2. (A) Gene ontology and (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of core salt responsive DEGs.

3.2. WGCNA of the Salt-Responsive Core Genome

In order to identify the different co-expressed modules under salinity stress in rice, we conducted
a WGCNA on the 457 core DEGs. We successfully obtained three modules: Blue, grey and turquoise
(Figure 3). The blue module contained 196 DEGs, the grey module contained 32 DEGs and turquoise
module contained 229 DEGs (Table S3). All the modules had a positive correlation (r = 0.52, r = 0.43
and r = 0.65 for blue, grey, and turquoise, respectively) with salt stress, suggesting that genes in these
modules positively regulate salt tolerance in rice. Thus, these genes should be up-regulated under
salt stress to achieve salt tolerance. To further understand the particularity of each co-expressed
module with respect to their expression patterns in the different datasets, we plotted the log10 FPKM
values of the genes belonging to each module along with the eigengene expression values (Figure 4).
We observed that in all the detected modules, the gene expression levels were higher under salt stress
than in control condition, confirming the positive correlations observed earlier. The blue module
genes appeared to be more responsive to sea water treatment than 200–300 mM NaCl treatments.
Since seawater contains approximately 600 mM NaCl, we deduce that blue module genes are more
responsive to high salt concentration. The turquoise module genes displayed the opposite trend
with more induction under 200–300 mM NaCl treatments than under seawater treatment. Finally,
we found that the grey module genes were particularly highly expressed in the control condition and
the magnitude of induction under salt stress was weak as compared to the blue and turquoise genes.
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3.3. GO and KEGG Enrichment Analysis of the Detected Co-Expressed Modules

To reveal the specific functions played by each co-expressed module, we performed GO and KEGG
analysis of DEGs from each module separately. GO analysis indicated that “response to oxidative
stress” and “peroxidase activity” were the most significantly enriched biological processes in the blue
module (Figure S1A). This suggests that genes in the blue module are involved in tolerance to oxidative
stress perhaps via scavenging of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide
radicals, etc. KEGG analysis indicated “phenylpropanoid biosynthesis” and “plant hormone signal
transduction” as the most significantly enriched metabolic pathway, suggesting that genes in blue
module contribute to salt tolerance via regulating phenylpropanoid related metabolites and plant
hormones (Figure S1B). Regarding grey module, GO analysis identified “iron ion binding” as the
most significantly enriched biological process which means that most of the genes in this module
contribute to salt tolerance by regulating iron ion binding (Figure S2A). Curiously, KEGG analysis
of grey module DEGs displayed various metabolic pathways that were equally enriched, suggesting
that they are engaged in diverse molecular pathways (Figure S2B). Concerning the turquoise module,
GO analysis displayed “ADP binding” as the most significantly enriched biological process, denoting
that regulation of energy metabolism is essential for salinity tolerance (Figure S3A). Notably, KEGG
analysis of turquoise module genes identified “phenylpropanoid biosynthesis” and “gluthatione
metabolism” as the most significantly enriched metabolic pathway showing that genes in this module
regulate phenylpropanoid related metabolites but also the antioxidant gluthatione in response to salt
stress (Figure S3B).

3.4. Networks Displaying Relationships among Genes within Co-Expressed Modules

We constructed the network of the detected co-expressed modules with the aim to identify key
hub genes. Genes encoding transcription factors (TFs) are represented with different node colors
except sky blue. The size of the node circle is positively correlated with the number of genes that
it partners in interaction. Genes in the blue module were divided into three clusters, each having
a network of a different number of genes (Figure 5). In gene networks, a smaller subset of genes
(hub genes) interacts with many other genes and it is suggested that they are three times more likely to
be essential than genes with fewer interaction partners [30]. In the present study, we identified 15 hub
genes from the three modules encoding different proteins including carboxyesterase, calmodulin
binding protein, DNA binding protein, LEA4-5, low temperature and salt responsive proteins (Table 2).
Among the 15 hub genes, we report two unknown genes (LOC_Os05g27340, LOC_Os01g72009) and
two proteins of unknown domains DUF630/632 (LOC_Os02g43770) and DUF581 (LOC_Os09g20240).
Transcription factors (TF) are well known to play a crucial role in abiotic stress tolerance in plants
by regulating the expression of stress-responsive genes [31,32]. Therefore, we searched for the
TFs within each module detected by WGCNA in this study. TFs in the blue module include
C2H2-type zinc finger (LOC_Os03g60570, LOC_Os01g62190, LOC_Os04g59380, and LOC_Os07g01180),
basic helix–loop–helix, bHLH (LOC_Os11g25560), myeloblastosis, MYB (LOC_Os01g18240),
basic leucine-zipper, bZIP (LOC_Os09g29820), NAC (LOC_Os04g43560) and plant regulator RWP-RK
family protein (LOC_Os02g04340). Each of these TFs interacts with several target genes and
may regulate their expression (Figure 5A). TF genes detected in the turquoise module are bZIP
(LOC_Os01g64000), HSF (LOC_Os03g53340), NAC (LOC_Os05g10620), ARF (LOC_Os06g09660),
homeobox (LOC_Os02g43330), and MYB (LOC_Os02g04640) (Figure 5B). Notably, the grey module
does not have any gene encoding TF (Figure 5C).
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Table 2. The hub genes detected in the three WGCNA modules.

Modules Gene_id Arabidopsis Orthologs Predicted Functions

Blue

LOC_Os03g15270 AT5G16080 Carboxyesterase 17
LOC_Os05g27340 AT5G01750 Unknown
LOC_Os01g72009 AT5G04080 Unknown
LOC_Os07g48710 AT2G41010 Calmodulin (CAM)-binding protein of 25 kDa
LOC_Os02g13800 AT3G24520 Heat shock transcription factor C1
LOC_Os02g43770 AT3G60320 Protein of unknown function (DUF630 and DUF632)

Grey

LOC_Os02g51080 AT1G74470 Pyridine nucleotide-disulphide oxidoreductase family
protein

LOC_Os03g20700 AT5G13630 Magnesium-chelatase subunit chlH, chloroplast,
putative/Mg-protoporphyrin IX chelatase,

LOC_Os01g17170 AT3G56940 Dicarboxylate diiron protein CRD1
LOC_Os09g20240 AT1G78020 Unknown DUF581

Turquoise

LOC_Os03g42520 AT1G07985.1 Expressed protein
LOC_Os03g60260 AT1G07985.1 Aromatic and neutral transporter 1
LOC_Os03g17790 AT2G38905.1 Low temperature and salt responsive protein family
LOC_Os04g48270 AT3G61060.1 Phloem protein PP2-A13
LOC_Os08g23870 AT5G06760.1 Late Embryogenesis Abundant 4-5, LEA4-5

3.5. qRT-PCR Validation of Selected Genes from Each Module under Temporal Salt Stress

In order to experimentally confirm the results of our computational analysis, we selected 16 genes
mainly the hub genes from the three modules and performed a quantitative reverse-transcription
PCR (qRT-PCR) analysis of their expression levels after 3 h, 6 h, and 12 h salt stress treatments
in an independent rice cultivar “Hunan”. The results showed that the expression levels of all the
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selected genes were significantly changed at each time point under salt stress as compared to control,
demonstrating that the genes were all responsive to salt (Figure 6).Genes 2019, 10, x FOR PEER REVIEW 10 of 16 
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4. Discussion

Salt stress is major abiotic stress reducing production in major cereal crops including maize [33],
barley [34], wheat [35], and rice [36]. Rice is a very sensitive crop to salinity stress and its yield and
productivity are critically impaired due to highly increasing salinity levels in agricultural soil. Thus, it
is important to understand the molecular mechanisms underlying salt response in rice. In recent years,
transcriptomic data has opened up the doors to analyze and unravel the molecular mechanism and
biological processes involved in abiotic and biotic stress response in plants. RNA sequencing (RNA-seq)
analysis is a critical, easy, rapid, and economical approach of transcriptome studies [37]. Different
stress responsive genes have been identified by RNA-seq analysis and their expression under salinity
stress already been clarified in various plants including Glycine max [38], rice [39], sweet potato [40],
and wild barley [41]. RNA-seq generates a bundle of information for a target phenotype or stress;
however, resourceful utilization of this data has been a bottleneck. Recently, availability of several
bioinformatics and statistical tools have helped plant scientists to pinpoint key biological processes
and metabolic pathways involved in biotic or abiotic stress tolerance, through meta-analysis of large
RNA-seq datasets [42].

The present study was aimed at understanding the central players of salt response in rice through
an analysis of three RNA-seq datasets. We unraveled 457 genes constantly altered under salt stress in
all datasets which may be essential for rice salt responses since they were not specific to a tissue type,
genotype, or stress intensity. Moreover, a subset of these genes was validated through qRT-PCR in an
independent rice cultivar, proving that the salt responsive core DEGs detected in the present study is
common in rice. GO and KEGG enrichment analyses of the core DEGs unveiled various biological
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pathways contributed by these genes under salt stress. “Peroxidase activity” was the most enriched
biological process under salt response in rice (Figure 2A). During various environmental stimuli,
plants generate and accumulate significant level of reactive oxygen species (ROS) such as superoxide
anions (O-2O2-), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (1O2) [43].
High accumulation of ROS leads to oxidative damage to cellular membranes (lipid peroxidation),
proteins, RNA, and DNA, resulting in irreversible cellular damage and even cell death [44]. Plants
have strong ROS scavenging enzymes and antioxidants to neutralize ROS. Peroxidase is one of the
scavenging enzymes and is reported to have important role in enhancing tolerance against various
stresses including salinity [45]. Earlier studies have reported hydrogen peroxide (H2O2) accumulation
during salt stress treatment in rice [46]. Thus, based on the result of our study, an increase activity of
peroxidase genes may lead to salt tolerance in rice. Many genes also contributed to “phenylpropanoid
pathway”, suggesting that during salt stress, regulation of phenylpropanoid metabolites helps rice
to combat salt damage. Various enzymes involved in phenylpropanoid pathway such as Phenyl
ammonium Lyase (PAL) serve as biochemical markers for stress conditions [47]. Earlier reports
suggested that higher PAL levels are directly related to increased tolerance to environmental stress [48].
Ref. [49] found that increased NaCl concentrations enhance PAL enzyme activity in Jatropha curcas
seedlings. PAL and flavonoid pathways related structural genes are considered as two critical defense
signaling cascades during environmental stress in plants [50]. Ref. [51] reported that activation of PAL
as a key component of the antioxidant system in salt-challenged maize is a promising target for maize
salt resistance engineering. We also found “iron ion binding” as a significantly enriched biological
process. Iron (Fe) is one of the crucial micronutrients for plant growth and development. During the
whole life cycle of a plant, iron performs most of the major functions from chlorophyll biosynthesis
to energy transfer [52]. It has been reported that salinity inhibits the deposition and distribution of
nutrients in the plants [53,54]. The most frequent feature during salinity is chlorosis due to a limited
supply of Fe to plants. Ref. [55] showed the inhibitory effect of salinity on the accumulation of Fe content
in the shoots of peas. We speculate that manipulation of target core DEGs will favor optimum Fe supply
to rice plants under salinity stress. Another important enriched metabolic pathway was “starch and
sugar metabolism”. Starch is an important molecule that mediates plant responses to abiotic stresses,
including drought, salinity and extreme temperatures [56,57]. When the photosynthesis is potentially
limited, plants remobilize starch to provide energy and carbon. Sugar metabolites are considered
as osmoprotectants and compatible solutes to alleviate the negative effects of stress [58]. Sugar is
another important carbohydrate and signaling molecule that also cross-talks with the ABA-dependent
signaling mechanism to mitigate the stress damage [59]. Thus, we infer that the genes involved in
starch and sugar metabolism regulate salt response in rice by inducing the carbohydrate metabolism.

WGCNA divided the core DEGs into three modules, each of them contributing to salt tolerance in
a unique metabolic pathway (Figure 3). Importantly, we found that increasing the expression level
of the core DEGs is beneficial for salt tolerance in rice. Network construction highlighted several
hub genes predicted to play central roles in salt response in rice. Interestingly, most of these genes
were unreported with regard to their involvement in salt response in rice. Several genes from the
families of the hub genes (CAM, HSF, and DUF630/632) identified in blue module have been reported
to regulate the abiotic stress response. For example, transgenic rice over-expressing the calmodulin
gene OsCam1–1 (LOC_Os03g20370) is more tolerant to salt stress than wild type [60]. Ref. [61] reported
the role of DUF630/632 in controlling leaf rolling in rice, while its role under salinity tolerance is not yet
confirmed. We also reported the hub TF Heat Shock Factor c1 (HSFc1). Earlier reports showed that HSF
(OsHsfc1b) regulates salt tolerance and development in rice [62]. The hub genes in grey module are
pyridine nucleotide-disulphide oxidoreductase family proteins (LOC_Os02g51080, LOC_Os03g20700),
dicarboxylate diiron protein, ACSF, CHL27 (LOC_Os01g17170) and Domain of unknown function
DUF581 (LOC_Os09g20240). The DUF581 encoding gene was differentially expressed by hormones
and environmental cues in Arabidopsis [63]. Pyridine nucleotide-disulphide oxidoreductases active
site I is evolutionarily conserved in Glutathione Reductase (GR) in rice and Arabidopsis [64]. GR plays
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an important role in defending the plant from oxidative damage induced by various biotic and abiotic
stressors [65]. In the turquoise module, we identified low temperature and salt responsive protein
(LOC_Os03g17790), phloem protein 2-A13, (LOC_Os04g48270), and Late Embryogenesis Abundant 4-5
(LOC_Os08g23870). These genes might play preponderant functions for salt stress response in rice.
OsLEA3 gene overexpression in rice showed enhanced tolerance against drought and salinity [66].
AtLEA4-5 is a member of the group 4 late embryogenesis abundant (LEA) proteins, which are involved
in the tolerance of water deficits in Arabidopsis [67]. Dossa et al. [68] recently demonstrated that
overexpression of a hub gene from the sesame core-abiotic stress responsive genes confer tolerance
to multiple stresses in Arabidopsis. In this study, qRT-PCR analysis of the detected hub genes in an
independent rice cultivar revealed that they were mostly up-regulated at different time points under
salt stress, showing that increasing their expression levels would enhance salt tolerance in rice. Overall,
the hub genes identified in the present study provide novel tools to be harnessed for engineering
highly salt tolerant rice cultivars.

Transcription factors have been well documented to play key roles in stress tolerance by regulating
the stress-responsive gene expression [69]. We have identified C2H2 type zinc finger, MYB, bZIP,
and NAC transcription factor family proteins as major regulators of the core salt responsive genes in rice.
Several members of these TF families have been reported to regulate plant response to environmental
stress including salinity [70,71]. MYB TFs are involved in plant development, secondary metabolism,
signal transduction, and biotic and abiotic stress tolerance [72]. OsMYB6 gene overexpression increased
drought and salinity tolerance in rice [73]. bZIP TFs have been identified in different plants including
Arabidopsis and rice [74,75]. They regulate the responses to biotic and abiotic stresses, including
pathogen defense, hormone and sugar signaling, light response, and salt and drought tolerance [76].
OsbZIP71 conferred salinity and drought tolerance in rice [77]. Stress-responsive NAC proteins have
been reported as positive regulators of abiotic stress tolerance [78]. Hong et al. [78] identified a novel
stress-responsive rice NAC gene, ONAC022 and reported that its overexpression improves drought
and salinity tolerance. Furthermore, rice plants overexpressing STRESS-RESPONSIVE NAC1 (SNAC1)
showed significantly improved drought and salt tolerance [79]. Altogether, we propose that these
novel transcription factors could be functionally characterized using reverse genetic experiments.

5. Conclusions

In short, this study identified the core salt responsive genes and modules from diverse
transcriptome datasets in rice. GO and KEGG analyses highlighted “peroxidase activity”,
“phenylpropanoid pathways” and “plant hormone signal transduction”, as key biological processes
and metabolic pathways involved in salt response in rice. Network analysis pinpointed several
putative TFs from C2H2, Zinc-finger domain, homeobox domain, bZIP, and MYB families that could
be important regulators of salt response in rice. Furthermore, hub genes identified in this study may
be potential targets to engineer rice plants with improved salt tolerance. Additionally, this work
lays a strong foundation for further investigation of the unknown proteins such as CHL27, PP2-13,
DUF630/632, and DUF581 in rice and in other plants with reference to salt and other abiotic factors.
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