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Abstract: Analysis of the fetal heart rate during pregnancy is essential for monitoring the proper de-
velopment of the fetus. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate
monitoring and features acquisition, resulting in diagnostic medical issues. The challenge lies in the
extraction of the fetal ECG from the mother ECG during pregnancy. This approach has the advantage
of being a reliable and non-invasive technique. In the present paper, a wavelet/multiwavelet method
is proposed to perfectly extract the fetal ECG parameters from the abdominal mother ECG. In a first
step, due to the wavelet/mutiwavelet processing, a denoising procedure is applied to separate the
noised parts from the denoised ones. The denoised signal is assumed to be a mixture of both the
MECG and the FECG. One of the well-known measures of accuracy in information processing is
the concept of entropy. In the present work, a wavelet/multiwavelet Shannon-type entropy is con-
structed and applied to evaluate the order/disorder of the extracted FECG signal. The experimental
results apply to a recent class of Clifford wavelets constructed in Arfaoui, et al. J. Math. Imaging
Vis. 2020, 62, 73–97, and Arfaoui, et al. Acta Appl. Math. 2020, 170, 1–35. Additionally, classical
Haar–Faber–Schauder wavelets are applied for the purpose of comparison. Two main well-known
databases have been applied, the DAISY database and the CinC Challenge 2013 database. The
achieved accuracy over the test databases resulted in Se = 100%, PPV = 100% for FECG extraction
and peak detection.

Keywords: ECG; abdominal ECG; fetal ECG; wavelets/multiwavelets; Clifford wavelets/multiwavelets;
Haar–Faber–Schauder wavelets/multiwavelets; entropy

MSC: 42C40; 92C55

1. Introduction and Motivation

According to annual WHO statistics, cardiovascular disease is considered as one of
the major causes of the death in the world (See https://www.who.int/news-room/fact-
sheets/detail/the-top-10-causes-of-death/ (accessed on 28 December 2020)). Therefore,
the diagnosis of these diseases is always a vital task. In hospitals’ cardiology departments,
the electrocardiogram signal remains one of the predominant and most widely used tools
for the diagnosis and analysis of cardiac arrhythmia. See also [1].

In reality, ECG examination may be a non-invasive tool performed by bio-physicians
to explore the functioning of the heart by the use of external electrodes brought into contact
with the skin. It is a signal that reflects the electrical activity of the heart. It informs
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about how the heart works by measuring its electrical activity. In fact, with each heartbeat,
an electrical impulse (or wave) passes through the heart. This wave causes a contraction
of the heart muscle so that it expels blood from the heart. The ECG measures and records
the electrical activity that passes through the heart permitting one to decide whether the
electrical activity observed is normal or abnormal. Although ECG examination may be
painless, and non-invasive, its interpretation remains complex, and requires methodical
analysis, and some clinical experience. It highlights various cardiac anomalies, and has an
important place in diagnostic examinations in cardiology, as for coronary artery disease.
See for example [2–4].

On the other hand, the FECG signal reflects the electrophysiological activity of the fetal
heart. Congenital heart defects originate in early stages of pregnancy, when the heart is still
in the formation stage, and they can affect any of the parts or functions of the heart. Cardiac
anomalies may occur due to a genetic syndrome, inherited disorder, or environmental
factors, such as infections or drug misuse [5–8]. Fetal abnormalities may be detected during
fetal development in time by analyzing the fetal ECG waveform.

The FECG is a crucial clinical issue for monitoring the development and well-being
of the fetus, throughout pregnancy and childbirth. The challenge is to be able to reliably
extract, from external and non-invasive sensors positioned on the mother’s abdomen,
an FECG signal of sufficient quality to allow clinical diagnosis. The main difficulty lies in the
fact that the abdominal ECG (AbdECG) signal of a pregnant woman is a mixture of several
signals (MECG, FECG and noise due to uterine contractions, artefacts by movements
of the fetus and the mother), and that the FECG is of lower energy compared to other
present signals.

In this paper, a wavelet/multiwavelet method is proposed to extract the FECG pa-
rameters from the MECG. The proposed approach is based on the extraction of significant
parameters from the MECG signal reconstructed by suitable wavelets/multiwavelets.
From the reconstructed signal, the existing forms of noise are eliminated and the parame-
ters related to the FECG are detected.

The ability to estimate the frequency spectrum of signals as a function of time makes
it useful in some cases of ECG processing. Indeed, in medicine, the ECG of a sick patient
is obviously different from that of a healthy one. However, this difference is sometimes
very difficult to spot when the EKG is given as a function of time. It becomes evident when
it is given as a function of the frequency. The inconvenient is that the mathematical tool
applied, which is based on Fourier series gives the quantity of each frequency present in the
signal for the whole observation period. Fourier transform, therefore, becomes ineffective
for a signal whose frequency spectrum varies considerably over time. Unlike the Fourier
analysis, wavelet analysis offers a wide range of basic functions from which a flexible
choice of the most appropriate analyzing mode for a given application is possible.

Now, we briefly recall the second concept to be used consisting of Shannon’s entropy.
It is well-known that entropy measure is one of best tools to obtain an optimal reconstruc-
tion of signals from a basis of information. The concept of entropy has been introduced
in fact very earlier in the 18th century, where researchers applied it for evaluating the
order/disorder of the information contained in a system based on probability theory. Next,
the concept of entropy has been widely spread and applied in many fields, such as statisti-
cal physics in studying microscopic behavior of systems, in computer science, information
processing, topological entropy, Kolmogorov–Sinai metric entropy [9], and dynamical
systems in mathematics. In the literature, many variants have been already acted, such as
Rényi and Kolmogorov [10–12]. Guido et al. proposed in [13] a shapelets based entropy
for the analysis of discrete-time signals. In [14], the authors served of Daubechies wavelets
to construct an entropy measure for biomedical images efficiency proof. See also [15–18].

These studies motivate us to adapt entropy measure to evaluate the order/disorder
of the extracted FECG signal based on wavelets. Our aim is to construct a variant of
Shannon’s entropy by using wavelet/multiwavelet coefficients [19–22]. This will permit us
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to evaluate, in a precise and automatic way, the optimal reconstruction level of signals, that
best represents the reality.

In wavelet theory, indeed, the concept of entropy is very known nowadays, and has
also been applied widely. In this context, wavelet theory permits the extraction of infor-
mation on the frequency content while preserving the localization in order to obtain a
time/frequency or space/scale representation of the signal. The entropy measure will be
used as an accuracy and efficiency tool of wavelet algorithms and thus to measure the
stability of the methods/algorithms developed.

In summary, this work has several purposes. From a theoretical mathematical point
of view, the present work falls within the framework of the application of wavelets in
bio-signal processing. Essentially, it aims to prove the efficiency of Clifford wavelets against
classical ones and thus, to show that Clifford wavelets may be good candidates for signal
processing. Recall that the problem of choosing the best wavelets in practical tasks is
always and already persistent and ambiguous. Secondly, the present work also aims to
introduce a new form of Shannon’s entropy to measure the order/disorder of the extracted
and/or reconstructed signals from the noisy ones relative to the wavelet/multiwavelet
application. From a practical point of view, the present work considers the problem of
extracting the FECG signal from the MECG one and the localization of eventual peaks
especially for the FECG. Such a problem is still a challenge for biologists. Two databases
of ECG signals are used in order to show the effectiveness and/or the performance of the
method. Measurements through Se and PPV are applied for such a goal on DAISY and
CinC Challenge 2013 databases.

This paper is organized as follows. Section 3 is a brief state of the art of the most
common FECG extraction methods. CinC Challenge 2013 database methods are essentially
reviewed. Section 4 is concerned with wavelet and multiwavelet presentation. The basic
steps in the construction of the wavelets/multiwavelets to be applied in the present work
are recalled briefly, such as Haar and Faber–Schauder wavelets and their associated multi-
wavelet, and the Clifford wavelets and their associated multiwavelets. A brief comparison
between these classes of wavelets is provided. Section 5 is concerned with the presenta-
tion of our methodology applied in the present study. Firstly, the wavelet/multiwavelet
processing of signals is briefly described. Next, the Shannon-like entropy based on
wavelets/multiwavelets is introduced. The section is achieved by the description of the
FECG extraction using wavelets/multiwavelets, and the entropy measure of the optimal
order, followed by the relative measure of the accuracy and sensitivity. Section 6 is devoted
to the development of the bio-experimentation due to the wavelet/multiwavelet processing
of ECG signals in order to extract the FECG from the MECG. The experiments proved the
effectiveness of the proposed multiwavelet method in extracting the FECG signal. Addi-
tionally, the superiority of Clifford wavelets/multiwavelets as recent variants in wavelet
theory is shown compared to the classical HFSch class of wavelets/multiwavelets. Section
7 presents the conclusions, in which a brief review of the results developed in our present
work is provided with some eventual future directions.

2. FECG Extraction Brief Review

The FECG, which is believed to contain more information than conventional ultra-
sound methods, is always measured by electrodes on the mother’s abdomen. However,
the recorded signal always suffers from the mixture of several sources of noise and inter-
ference including the very high level of the MECG. In previous studies, several methods
have been proposed for extracting the ECG from signals recorded by electrodes placed on
the surface of the mother’s body. Despite technological improvements, extracting FECG
from abdominal recordings is still a difficult problem that has been addressed by a large
number of studies. However, due to the low signal-to-noise ratio of these signals, the ap-
plication of FECG was limited to the analysis of heartbeats and invasive ECG recordings
during childbirth.
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In [23], the authors proposed extracting the fetal electrocardiogram from a single-lead
maternal abdominal ECG. The algorithm is composed of three components. First, the mater-
nal and fetal heart rates are estimated by the deshaped short time Fourier transform, which
is a recently proposed non-linear time-frequency analysis technique. The beat tracking
technique is the second component, which is applied to accurately obtain the maternal and
fetal R peaks. The third component consists of establishing the maternal and fetal ECG
waveforms by the non-local median.

The authors of [24] presented an extended non-linear Bayesian filtering procedure
for extracting ECG from a single channel, as encountered in the fetal ECG extraction from
abdominal sensor. The recorded signals are modeled as the summation of several ECG
signals. Each of them is described by a non-linear dynamic model.

The present study also joins the one developed in [25], where the authors applied
wavelets for assessing fetal cardiac rhythms from abdominal ECGs.

In [26], a cancelation method for the maternal ECG has been developed based on
a combination of maternal QRS detection, heart rate, interval selection, fiducial points
location inside this interval, superimposition of the intervals, calculation of the mean signal,
and its sequential subtraction from the whole FECG.

Di Maria et al. in [27] developed a robust algorithm for analyzing abdominal FECG,
and testing its performance in the Computing in Cardiology Physionet Challenge 2013 by
combining frequency filtering and wavelet denoising.

In [28], the authors served of the CinC Challenge database for developing an FECG
extraction method from contaminated signals, using a multistage interference, and noise
cancellation relative to the time parameter, space, and frequency characteristics of the FECG,
and its interference. The proposed method joins both temporal and statistical properties of
ECG signals.

In [29], the CinC Challenge 2013 database has been applied to recognize the fetal heart
rate and its RR intervals from non-invasive fetal electrocardiogram signals. Kuzilek and
Lhotska proposed in [30] a wavelet technique to FECG analysis based on CinC Challenge
database. A wavelet Shannon entropy has been applied for peak detection.

In [31], a multilead component regression approach has been investigated for maternal
ECG removal and multichannel correlation-based FHR detector. Liu and Li investigated
in [32] a wavelet method for multiple purposes due to an FECG signal from CinC Challenge
database, such as FHR estimation, RR, and QT intervals.

Maier and Dickhaus proposed a dynamical hybrid method in [33] combining informa-
tion from an arbitrary number of abdominal channels into a virtual channel and estimating
the local RR interval and initial fetal QRS positions. Next, a dynamic programming is
applied to refine the obtained positions relative to SNR, signal amplitude, and RR inter-
val continuity.

Niknazar et al. [34] investigated the detection of fetal QRS due to multichannel ECG sig-
nals containing both fetal and maternal ECGs, using tensor decomposition. Akhbari et al. [35]
combined the tensor decomposition method with extended Kalman filters for the extraction
of the FECG signal. See also [36,37] for a similar study.

In [38], the authors proposed a non-invasive fetal QRS detection algorithm based on
fetal ECG source signal enhancement. The maternal QRS are preceded by a reduction in
noise allowing their detection to be possible and next followed by fetal QRS localization.
See also [39–42] for linear transformations methods and statistical ones.

Plesinger et al. in [43] developed an automatic extraction method of the R-wave
positions of children from non-invasive multichannel FECG records due to the CinC
Challenge 2013 database. The method consists of eliminating the mother’s heartbeats from
the total signal, defining the presumed multichannel shape of the R-wave for the child,
and its record-in recognition. See also [44,45].

In [46], a multistep method based on the so-called semi-blind source separation
technique is applied for the separation of the ECG sources and R-peaks. Additionally,
the FECG is estimated by the same technique. Starc in [47] used the Cinc Challenge
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database to apply filtering methods combined with shifting, and scaling for non-invasive
fetal multilead RR interval determination (See also [48–51]).

In the present research, the objective is to improve the signal processing methods used
in fetal cardiographs, and to provide efficient solutions to this problem, by developing
suitable techniques for extracting and filtering ECG signals from the fetuses recorded by
an array of electrodes placed on the mother’s womb. So, for a better extraction of ECG
waveforms from the fetus in order to aid in the medical diagnosis of cardiac pathology,
the approach envisaged consists of improving the estimation of the FECG signal using two
wavelet/multiwavelet-based methods such as the one developed in [52] and consisting
of the simplest wavelet/multiwavelet toolkit, and the last recent one developed in [53,54]
due to Clifford wavelets as the most recent forms in the field.

3. Two Wavelet/Multiwavelet Processors

In this section, principal tools to be applied in our study, consisting of wavelets and
their extension to multiwavelets, are recalled.

Wavelet analysis appeared in the early 1980s as a multidisciplinary tool that brought
together engineers, mathematicians and physicists. The mathematical synthesis led to new
results, which brought broader perspectives in each original discipline. By this time, most
scientific researchers had heard of wavelets.

Wavelets originated when certain subjects of study required frequency and time
analysis simultaneously. In the nineteenth century, Fourier analysis was the only technique
allowing the decomposition of a signal into frequencies’ components. Unfortunately, it
provides a frequency analysis but does not allow the temporal localization, especially for
abrupt changes. See for instance [22,55–60].

Fourier analysis is based on the fact that functions showing periodicity and certain
degree of regularity can be represented by a linear combination of sines and cosines.
The coefficients of this linear combination provide information at the level of the frequencies
present in the signal.

Multiwavelets have been introduced since the early 1990s as another view of wavelets
permitting us to re-write wavelet analysis in a vector form ([61,62]). The majority of cases
of existing multiwavelets’ constructions, especially in experimental cases, starts from one
wavelet or scaling function ψ/ϕ and consider the vector

Ψ = (ψ(.), ψ(.− 1), . . . , ψ(.− N)) or Φ = (ϕ(.), ϕ(.− 1), . . . , ϕ(.− N)),

where N is the corresponding filter length associated with such functions. This view of
wavelets has even though some advantages, such as short supports, smoothness, accuracy,
symmetry, and orthogonality. However, it surely induces some correlation between the
components of multiwavelet decomposition of signals due to the non-independence of
the multiwavelet components, especially in non-orthogonal case. In the present paper,
some types of multiwavelets will be applied differently, where the components are issued
each one from a different source. One of them has been already applied in [63] and has
shown to be powerful in estimating biomedical signals. A second variant is due to Clifford
wavelets, recently constructed in [53,54]. Such wavelets will be shown to be able to induce
in a natural way a variant of multiwavelets by considering their Clifford components such
as the real parts, the vector parts, the bi-vector parts, etc., as wavelets, and merge them to
obtain a multiwavelet.

In a first step, an improvement of wavelet processing is recalled by applying recent
families of multiwavelets issued from single ones, where independent components for
multiscaling and multiwavelet mother functions are used. Vector-valued mother multi-
wavelets due to [52–54,63] are considered, such as ΨHFSch = (ψH , ψFSch) for the case of
Haar–Faber–Schauder multiwavelet essentially issued from [52], and ΨCl = (ψ1, ψ2) for
the case of Clifford multiwavelets due to [53,54]. These will be recalled with brief details in
the next subsections.
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3.1. The Haar–Faber–Schauder System

Recall that the Haar mother wavelet (ψH = χ[0,1/2[ − χ[1/2,1[) is the most simple case
in explicit wavelets. It resembles piece-wise constant signals and it has been shown to
cover many situations in signal processing. It is compactly supported, not enough regular,
explicit, oscillating with one vanishing moment. It yields an orthonormal system (ψ

j,k
H )j,k∈Z,

where ψ
j,k
H (t) = 2−j/2ψH(2jt− k). More importantly, it is simple to implement. It is adapted

more to piece-wise constant (may be periodic) signals ([64]).
However, this system may not be well-adapted to approximate more complex cases

such as piece-wise linear ones for example. In this case, better systems may be adapted.
The second system known in functional approximation is the piece-wise linear Faber–
Schauder wavelet system based on the mother wavelet

2ψFSch(x) = Λ(2x)− 2Λ(2x− 1) + Λ(2x− 2),

where Λ(x) = max(0, 1− |x|). Such a system has been also proved to be suitable in many
situations in signal processing (see for example [65]). The Faber–Schauder wavelet also
presents many advantages, and important features, such as the simple explicit mathemati-
cal form, compact support, and orthogonality. These advantages have been encouraging
the work of [52], where the authors have developed an entropy-based procedure for approx-
imating signals with such wavelets by considering a multiwavelet case; its components
are exactly Haar and Faber–Schauder wavelets. In the present work, an exploitation
of such a case is also considered by choosing the Haar–Faber–Schauder multiwavelet
ΨHFSch = (ψH ψFSch)

T , where the upper script T stands for the transpose. This multi-
wavelet merges the characteristics of both Haar and Faber–Schauder systems and thus
constitutes a better loop for the processing of signals. It is also compactly supported, ex-
plicit, and has a reduced number of non-zero coefficients, obtained by recursively averaging
and differentiating.

3.2. Clifford Wavelets and Multiwavelets

In this subsection, a brief review of Clifford-valued wavelets, and multiwavelets
constructed on the real Clifford algebras is provided. For the convenience, the focus will be
on the simple case R3 and the useful tools for the associated wavelet analysis. Details may
be found in [53,54]. Consider the Euclidean space R3 with its canonical basis B = (i, j, k),
and equipped with an interior product defined on the basis by

i2 = j2 = k2 = −1 and ij + ji = ik + ki = jk + kj = 0.

Next,
e1 = ij, e2 = ik, e3 = jk, and e4 = ijk.

The real Clifford algebra R3 is the R-algebra with dimension 8, the basis of which is
B̃ = (1, i, j, k, e1, e2, e3, e4). Any element u ∈ R3 is written as

u = u0︸︷︷︸
real part

+ u1i + u2 j + u3k︸ ︷︷ ︸
vector part

+ v1e1 + v2e2 + v3e3︸ ︷︷ ︸
bivector part

+ v4e4︸︷︷︸
trivector part

.

In the sequel, a conjugation rule will be applied such as

u = u0 − u1i− u2 j− u3k− v1e1 − v2e2 − v3e3 + v4e4.

On the Clifford algebra R3, a function f : R3 −→ R3 will be expressed as

f (x) = f0(x) + f1(x)i + f2(x)j + f3(x)k + f̃1(x)e1 + f̃2(x)e2 + f̃3(x)e3 + f̃4(x)e4,

where the fl and the f̃l , l = 0, 1, 2, 3 are real-valued functions on R3.
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One of the concepts used to construct wavelets on the real Clifford algebra R3 is the
notion of monogenicity, based on the Dirac operator

∂x = ∂x1 i + ∂x2 j + ∂x3 k.

and the Cauchy–Kowalevski extension (CK-extension). A function f = f (x1, x2, x3) is
said to be monogenic on R3 if ∂x f = 0. The CK-extension permits us to extend f to a
Clifford-valued function on R4 by

F(x0, x) = exp(−x0∂x) f (x) =
∞

∑
k=0

(−x0)
k

k!
∂k

x f (x). (1)

Exploiting the fact that F is monogenic, Clifford-valued wavelets are constructed. One
reason for this is due to the fact that Clifford wavelets are the last variants of wavelet
functions developed by researchers in order to overcome many problems that are not
well-investigated by classical transforms. The challenge iof such concepts is not the wavelet
functions themselves, but also the structure of Clifford algebras, and their flexibility to
include different forms of vector analysis in the same time. There are, in the literature,
two main methods to construct Clifford wavelets. The first one is based on the spin group,
which includes the factor of rotation in the wavelet analysis, provided with the translation
and dilation factors—see [17,66–70]. The second is based on monogenic polynomials. These
ones constitute natural extensions of orthogonal polynomials to the case of Clifford alge-
bras. Recall that orthogonal polynomials are widely applied in wavelet theory and signal
processing. See, for example, [66,71–87].

In the present work, the construction conducted in [53,54] will be applied, where a
class of Clifford–Hermite–Jacobi wavelet functions have been introduced by considering
the Clifford weight

ωα,β(x) = (1 + |x|2)αe−β|x|2 , x ∈ R3.

This leads to a Clifford mother wavelet

ψ
α,β
` (x) = Pα+`,β+`

`,m (x)ωα,β(x),

where the Pα,β
` (x) are the Clifford polynomials generated from the CK extension (1) of

ωα,β, which may be expressed as

F∗(t, x) =
∞

∑
`=0

t`

`!
Pα,β
` (x)ωα−`,β−`(x).

By fixing α = 1.5, β = α− 1 and taking the vector parts, the following mother Clifford
wavelets are obtained,

ψ1(x) = C1(−2|x|+ |x|3)(1 + |x|2)3/2e−|x|
2/2i,

ψ2(x) = C2(|x|+ 16|x|3 + 24|x|5 + 13|x|7 + |x|9)(1 + |x|2)3/2e−|x|
2/2i,

where the Cj’s (j = 1, 2) are normalization constants with respect to the L2-norm, and i =
(1, 0, 0). See [53,54] for more details on the original construction of these wavelets. These
will be considered as two-order multiwavelets by considering ΨCl = (ψ1 ψ2)

T .

3.3. Brief Comparison between the Two Classes of Wavelets/Multiwavelets

Each class of the two wavelets/multiwavelets recalled above has its advantages.
The first one is compactly supported, piece-wise linear and permits a reduced num-
ber (2 or 3) of non-zero coefficients, sufficient to cover the experiment. The Clifford
wavelets/multiwavelets are highly regular, with Gaussian decay, which permits some
artificial compactness of the support and thus joins the first one in some characteristics. Ad-
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ditionally, Gaussian decay also helps overcome the boundary problems usually confronted
in such studies. Moreover, the computation of the total number of the filters coefficients to
conduct a multiwavelet analysis is not necessary.

Associated filters such as Gabor and Clifford–Gabor, Hermite and Clifford–Hermite
are already developed and proved to be localized in both the spatial and frequency do-
mains. Such localization is a basic fact in signal processing as it is responsible for the
measurement of local structures such as points, lines, and edges, in order to facilitate subse-
quent interpretation of these structures at higher stages (known as high-level vision). More
details and facts are developed in [88,89] with applications related to signal processing,
compression, and quality. See also [90].

4. Methodology

In the present section, the purpose is to describe our methodology. It is globally based
on three steps. The first one is due to the wavelet/multiwavelet processing, in which
wavelets/multiwavelets are applied to separate the approximation parts (usually called the
denoised parts) of the signals from the noisy ones. The second step consists of evaluating
the entropy measure to conclude on the accuracy of the wavelet/multiwavelet method as
well as its sensitivity.

4.1. Wavelet/Multiwavelet Processing

Let Xt, t ≥ 0 be a signal with finite energy. Applying wavelets and/or multiwavelets
in the signal processing results for a level J of decomposition in a number of positions k.
Denote

AX J
t = ∑

k
CJ,kφJ,k(t) (2)

its wavelet/multiwavelet approximation at the level J relatively to wavelet/multiwavelet
multiresolution analysis, where the CJ,k are the wavelet/multiwavelet scaling or approxi-
mation coefficients of Xt evaluated as

CJ,k =
∫

Xt2J/2φ(2Jt− k)dt, (3)

where φ is the (multi)scaling function associated to the multiresolution analysis. Similarly,
the wavelet/multiwavelet detail component of Xt at a level j is

DX j
t = ∑

k
dj,kψj,k, (4)

where dj,k is the wavelet/multiwavelet detail coefficient at the level j and the position k,
evaluated as

dj,k =
∫

Xt2j/2ψ(2jt− k)dt, (5)

where ψ is the mother wavelet/multiwavelet of the multiresolution. The decomposition of
the signal Xt at the level J is written as

X J
t = AX J

t +
J

∑
j=0

DX j
t . (6)

When applying a two-order multiwavelet such as the Clifford multiwavelet ψCl
introduced above, a first component A1

J is obtained for each level J, corresponding to an
approximation at the level J according to the first component of the two-order multiwavelet,
a second component A2

J corresponding to an approximation at the level J according to
the second component of the two-order multiwavelet and next a superposition of detail
components D1

j and D2
j (0 ≤ j ≤ J) corresponding to the first and the second components of
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the analyzing multiwavelet, respectively. As a result, for the case of two-order multiwavelet
decomposition at a level J, it holds that

SJ = A1
J + A2

J +
J

∑
j=0

D1
j +

J

∑
j=0

D2
j . (7)

The task consists of applying two (but blind each one against the other) cameras,
each inducing an independent representation which can be noisy for the other, and next
superposing these two representations to attenuate the noise resulting from each one,
and then have a new and final performant image. The operation resembles the method of
installing two surveillance cameras, for example, to cover the maximum space, and thus
induce a complete image.

To resume, for a two-dimensional signal S = (S1, S2)
T , such as the one to be tackled

in the present paper, the detail component at a level J of decomposition is

DSJ = ∑
l

DJ,lΨJ,l , (8)

where the multiwavelet coefficients DJ,l are (2, 2)-matrices. The sum of these detail compo-
nents induces the approximation of the signal at the level J as

ASJ = ∑
j<J

DSj. (9)

As a consequence, the signal S may be approximated at the level J as

SJ = ASJ + DSJ . (10)

Using (9), the last approximation may be written as

S ' DSJ + DSJ−1 + DSJ−2 + · · ·+ DS0 + AS0. (11)

The principal problem in wavelet/multiwavelet information processing is the fixation
of a prior optimal reconstruction level that represents the closest model to the original data.
This problem is always subjective and in most cases approximated recursively by iterated
algorithms. The information extracted is considered as optimal when a desired relative
error (fixed a priory) is reached. For example, in wavelet processing, such an error is
evaluated by the L2-norm of the difference signal between the experimental or observed
signal and the approximated one.

4.2. Wavelet/Multiwavelet Entropy

In this section, the purpose is to show that the entropy measure may be a good
processor to obtain an optimal approximation of the data. The assessment of the wavelet
entropy will allow us to determine in a precise way the optimal order of reconstruction.
Recall indeed that the entropy in its general form in both mathematical and physical points
of view is a type of dimension. Therefore, it should be, somehow, a global measure of
invariance for the studied system. Its value will tend to a stability as the multiresolution
level increases.

Shannon’s entropy is introduced to measure the randomness or the order/disorder of
the information contained in a system. It also permits us to calculate the minimum amount
of data required to describe such a system without loss of information [91,92]. In [93],
entropy-based algorithms have been derived to select from a wavelet packet library the best
basis to express the information well. In [94,95], the concept of entropy has been applied
in the same direction as previously conducted to extract, from a discrete wavelet packet,
substantial information about turbulent flow fields. In [96], some experimental scenarios
have been applied based on wavelet entropy for an optimal scale search and coherent
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secondary flow characterization. In [97], Rosso developed a wavelet entropy method called
spectral entropy to measure the complexity of a system by measuring the homogeneity of
the spectral distribution of a signal from its discrete wavelet transform. Mathematically,
given a probability pi of a particle i to occur in some situation in the system, the Shannon
entropy of the whole system is evaluated as

Entropy = −∑
i

pi log pi. (12)

In the present section, a modified variant of Shannon’s entropy will be applied. For j
fixed as a level of approximation, a notion of wavelet/multiwavelet energy at the level j is
defined as

EXt,j = ∑
k
‖Cj,k‖2, (13)

where the Cj,k are the approximation coefficients relative to the wavelet/multiwavelet
multiresolution at the position k and the level j. The total energy of the signal is evaluated as

EXt = ∑
j

EXt,j. (14)

Next, a probability distribution of energy is introduced, which describes in some sense
the contribution of the j-level approximation Xt,j of Xt in its total energy. Let

pj =
EXt,j

EXt
. (15)

It may be also understood as the probability or the frequency of the presence of a parti-
cle in the box (j, k) relative to the basis element (ϕj,k, ψj,k). Next, the wavelet/multiwavelet
entropy analogue to Shannon’s is simply obtained by replacing, in (12), the probability pi
by the one evaluated in (15). In practice, of course, a finite J-estimation of such entropy has
to be computed as

Ent(J) = −
J

∑
j=0

pj log pj, J ∈ N. (16)

Our aim in the present work is to show that this entropy is a good measure that
informs us about the ‘best’ (‘optimal’) approximation of the FECG.

Indeed, a basic problem raised in optimal reconstruction aims is how to define au-
tomatically and accurately the optimal reconstruction level. In this section, multiwavelet
entropy will be shown to be a good method permitting one to stop the procedure with
the best approximation guaranteed. The optimal level of reconstruction of a signal using
multiwavelets is evaluated by the evaluation of the error between the original signal and
the reconstructed one. The optimal level is the one that offers the lowest error. On the other
hand, the multiwavelet entropy approach allows the detection of the optimal order for the
reconstruction during the decomposition phase, without going to the reconstruction itself,
which proves its efficiency in front of classical error estimates.

Assessment of the multiwavelet entropy allows one to determine in a precise way the
optimal level of reconstruction. Indeed, as entropy in its general form and definition as
well as mathematical/physical meaning is a type of dimension. Therefore, it should be,
somehow, a global measure of invariance for the studied system. Its value should therefore
be stationary or quietly constant as the multiresolution level increases.

4.3. The FECG Extraction

In the present section, multiwavelets are applied for the extraction of FECG signal.
The explicit HFSCH multiwavelet introduced in [52,63] will be served as classical processor,
and the Clifford one developed recently in [53,54], and recalled previously as explicit
Clifford wavelet.
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Now, a description of the wavelet/multiwavelet processing of the ECG, FECG and
MECG signals will be exposed. The abdominal ECG signal is a compound signal containing
both the mother own ECG, the fetal ECG, and the noise,

AbdECG = MECG + FECG + Noise. (17)

At a decomposition level J, the noise has to be eliminated so that,

AbdECGJ = AMECGJ + DMECGJ + AFECGJ + DFECGJ . (18)

In ECG processing, it is well-known that the MECG signal is widely stronger with
regard to time than the FECG signal embedded in it. Moreover, the noises in which the
FECG is embedded are also stronger. Therefore, it is natural that the energy of the MECG
signal is the highest while the energy of the FECG signal is the lowest. This will allow the
multiwavelet approximation coefficients of the decomposed signal to be easily separated,
and thus the FECG can beextracted.

The diagram in Figure 1 illustrates the principle of FECG extraction using the multi-
wavelet method. The extraction of FECG from the wavelet MECG is based on the principle
of thresholding and/or the separation of mixed signal components. The phenomenon looks
like a mixed signal composed of many sinusoids with different frequencies and amplitudes,
and mixed with some noises. A first filtering eliminates the noise, and extracts the periodic
or pseudo-periodic part of the total signal, which is theoretically composed of the sum of
the sinusoids, and thus propagates with the lower frequency. The second phase consists of
separating the sinusoids based on the fact that their wavelet coefficients, and thus their
frequency spectra, form separated bands.

The approximation and detail projections of the FECG signal will be thus extracted as
AFECGJ = AAbdECGJ − AMECGJ
and
DFECGJ = DAbdECGJ − DMECGJ .

(19)

Finally, the concept of thresholding and peak detection is used to detect the R-peaks
of the FECG signal. An overview of our method is summarized in Algorithm 1. The true
positive peaks, as well as false positive, and false negative are localized, and thus used in
the computation of the measurements of accuracy and performance.

Algorithm 1 FECG extraction
Input AbdECG
Output FECG
Begin
[Detail1,App1] = Wavelet/multiwavelet decomposition(AbdECG);
MECG = Wavelet/multiwavelet reconstruction(App1);
[Detail2,App2] = Wavelet/multiwavelet decomposition(MECG);
App3 = App1-App2;
FECG = Wavelet/multiwavelet reconstruction(App3);
Return FECG
End

The pre-processing is an initial filtering step. Indeed, the real AbdECG signal is a
mixture of various signals and noises due to the breathing movements of the patient,
the change in position of the instrument, the interaction between the electrodes and the
skin, etc. These factors may cause a drift from the baseline, which is considered as a low
frequency noise. It affects the usefulness of the ECG signal, and consequently, the clinical
evaluation. Depending on the noise present, a necessary filtering should be performed.
Such a filter accepts only frequencies between 5 and 20 and stops the rest. The so-called
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pre-processed signal is obtained. The resulting signal will be used as AbdECG for the next
steps. Readers may refer to [98] for the subject of pre-processing ECG signals.

Figure 1. The multiwavelet FECG extraction principle.

4.4. Performance Measurements

In order to assess the accuracy of our method, especially the detection of the positive
real peaks, we used, as in the existing methods, the most used measures such as the fetal
heart rate (FHR), the positive predictive value (PPV), and the sensitivity (Se). There are, in
fact, other measures that may be applied, such as the Challenge’s scoring system based
on the mean squared error between smoothed and re-sampled versions of the reference
FHR, and the root mean square difference of corresponding RR intervals. The FHR is
evaluated as

FHR =
Number of peaks detected

Duration of signal
∗ 60. (20)

The FHR gives a clear idea of the arrhythmias and other abnormalities attained by the
fetus. The accuracy, the Positive predictive value (PPV), sensitivity (Se) and, F1-measure
introduced in [37] are estimated, respectively, by

Accuracy =
TD

TD + FP + FN
∗ 100, (21)

PPV =
TD

TD + FP
∗ 100, (22)
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Se =
TD

TD + FN
∗ 100, (23)

and
F1 = 2 ∗ PPV ∗ Se

PPV + Se
. (24)

where TD is the truly diagnosed (or true positive peak), FP is the false positive peak and
FN is the false negative peak.

5. Results

In the experimental part, the main purpose is to apply our method to basically two
different bases. In the first, an abdominal electrocardiogram signal is applied issued from
the DAISY database [99]. Next, in order to show the performance of the method, and to
compare with other cases, we applied it on signals extracted from the well-known CinC
Challenge 2013 database.

5.1. Data Collection and Bases

The most important task in such type of studies is the quality, and the availability of
data to be used. Recording data with high quality may be affected by several factors, such
as the number of electrodes applied, their type, heterogeneity of the patient population,
conditions, and gestational ages, noise causes, and factors, sampling frequency, amplitude
resolution, etc.

For FECG data, for example, the possibility of being invasive or non-invasive is always
present for collection methods of data. In fact, it is noticeable that invasive collected signals
have better quality than those collected via non-invasive methods. However, the main
drawback may be explained by the fact that invasive methods may only apply an intra-
uterine electrode during labor, where the recording electrodes are in direct contact with
the fetal skin. This is one of the main inconveniences for invasive methods for collecting
FECG data.

Non-invasive methods apply, however, signals recorded from the maternal abdomen,
in any stage of pregnancy. They use a high number of electrodes. Non-invasive recording
of FECG signals also present a main drawback due to their low signal-to-noise ratio.

The main databases used in the present work are essentially the Database for the
Identification of Systems, abbreviated as DAISY dataset, and the Computing in Cardiology
Challenge 2013, abbreviated as Cinc Challenge 2013. The DAISY database [99] (http://
homes.esat.kuleuven.be/~smc/daisy/12-28-2020) consists of a single dataset of cutaneous
potential recording of a pregnant woman.

The second database consists of non-invasive FECG multichannel abdominal record-
ings, as part of the PhysioBank [100] (https://archive.physionet.org/challenge/2013/04-
19-2021). The 2013 PhysioNet/CinC Challenge attracted a total of 53 teams trying to
non-invasively extract fetal ECG information from maternal abdominal leads. Most teams
used a two-step approach, where the first step aimed to remove the maternal QRS, fol-
lowed by a second step to extract the fetal QRS. Removal of the maternal component was
achieved using techniques including subspatial decomposition or reconstruction ([28,30–
32,39,45,101]), adaptive filtering and averaging ([33,34,36,38,40,41]), wavelet denoising
([43,46,47,98,102]) and a fusion of several approaches [37]. The final step in the detection
of fetal QRS uses various approaches, including adapted filtering ([31,33,43]), detection
of Christov beats [26], entropy ([30,31]), RS slope [103], expectation weighting [104], echo
state recurrent neural network [40], or merging of several [42] methods. Behar et al. [37],
instead of relying on a single technique for maternal ECG extraction, decided to implement
a merger of several different extraction methods. Another successful approach has been
the use of adaptive QRS models for the mother, fetus, or both, thus allowing realistic
non-stationary conditions [36].

http://homes.esat.kuleuven. be/~smc/daisy/
http://homes.esat.kuleuven. be/~smc/daisy/
https://archive.physionet.org/challenge/2013/
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5.2. The Processing of DAISY Signals

In this part, an abdominal electrocardiogram signal is applied that is issued from the
DAISY database [99]. It contains three channels recorded signals for 10 s time intervals.
The proposed method is implemented using MATLAB software.

The first result is illustrated graphically by Figure 2 due to the implementation of the
existing method in [105]: (a) the channel 2 AbdECG; (b) pre-processed signal; (c) maternal
peaks; and (d) FECG.

Figure 2. Identification of maternal peaks and MECG removal [105]—DAISY.

Next, in Figure 3, the FECG peaks detected are indicated. A fetal heart rate of 132 bpm
(beats per minute) was obtained for channel 2. The normal range of FHR lies between 120
and 160 bpm.

Figure 3. The FECG and its detected peaks [105]—DAISY.

The real peaks, which are detected, are truly diagnosed (TD) peaks. Some peaks which
are detected ,although they are actually not true, are categorized as false positives (FPs).
An actual peak that is not detected is considered as a false negative (FN) [105].

To test our wavelet/multiwavelet method, and to evaluate its effectiveness, an implemen-
tation for channel 2 was conducted. Figure 4 shows the result of HFSCH wavelet/multiwavelet
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processing for (A) channel 1 AbdECG, (B) the MECG signal, (C) the FECG signal and (D)
the FECG peaks.

Figure 4. FECG extraction and peak detection using HFSch multiwavelet: (A) AbdECG (B) MECG
(C) FECG (D) FECG peaks—DAISY.

Next, the wavelet/multiwavelet processors continued to act. Figures 5–7 illustrate
the result of the application of the Clifford wavelets ψ1, ψ2, and their associated Clifford
multiwavelet ψCL.

Figure 5. FECG extraction and peak detection using ψ1 Clifford wavelet: (a0) AbdECG (b0) MECG
(c0) FECG (d0) FECG peaks—DAISY.

Figure 6. FECG extraction and peak detection using ψ2 Clifford wavelet: (a1) AbdECG, (b1) MECG,
(c1) FECG, and (d1) FECG peaks—DAISY.



Entropy 2021, 23, 844 16 of 29

Figure 7. FECG extraction and peak detection using ΨCL Clifford multiwavelet: (a2) AbdECG,
(b2) MECG, (c2) FECG, and (d2) FECG peaks—DAISY.

Next, further assessment of the wavelet/multiwavelet proposed approach is devel-
oped on channels 3 and 4 of AbdECG. Table 1 summarizes the results of the R-peaks
detected by different methods. Table 2 shows the accuracy results and Table 3 shows the
sensitivity results.

Table 1. R-peaks detected—DAISY.

Ch. No. Total
pks

Pks det in
[105]

HFSch Multiwavelet pks
det for FECG

ψ1 pks
det

ψ2 pks
det

ψCL pks
det

2 22 22 22 22 22 22
3 21 21 21 21 21 21
4 21 22 21 21 21 21

Table 2. Accuracy (%) with different method—DAISY.

Channel
Number Acc [105] HFSch Multiwavelet

Acc for FECG Acc Using ψ1
Acc

Using ψ2

Acc Using
ψCL

2 100 100 100 100 100
3 100 100 100 100 100
4 86.95 100 100 100 100

Table 3. Sensitivity (%) with different method—DAISY.

Channel
Number

Sens
[105]

HFSch Multiwavelet
Sens for FECG Se Using ψ1

Se Using
ψ2

Se Using
ψCL

2 100 100 100 100 100
3 100 100 100 100 100
4 95.23 100 100 100 100

The next step is to apply our multiwavelet entropy for the ECG signals to prove
that such entropy may be an automatic black-box allowing us to reach the optimal recon-
struction level rapidly and accurately. In Figure 8: (A) illustrates the classical HFSCH
multiwavelet entropy, (B) shows the Clifford wavelet ψ1 entropy, (C) illustrates the entropy
measure for single Clifford wavelet ψ2, and (D) shows the result of entropy estimation
using Clifford multiwavelet ψCL.
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Figure 8. Entropy estimation for FECG signal-DAISY with wavelet/multiwavelet: (A) HFSCH
multiwavelet entropy, (B) ψ1-Clifford wavelet entropy, (C) ψ2-Clifford wavelet entropy, (D) ψCL-
Clifford multiwavelet entropy.

5.3. The Processing of Cinc Challenge Database

In this subsection, the aim is to act our method on the well-known Cinc Challenge
2013 database ([100]), in order to confirm the performance and the efficiency of the method
developed for more signals from other bases. The Cinc Challenge 2013 database consists of
one-minute fetal ECG recordings, including each one four non-invasive abdominal signals.

Recall that the present method aims to localize fetal QRS by assuring more improve-
ment than existing ones. The accuracy was evaluated using 75 non-invasive four-channel
abdominal ECG recordings from the 2013 PhysioNet/Computing in Cardiology challenge.
These recordings were made on ten women (healthy and pathological patients), aged
between 21 and 33 years (27.1± 4.3 years) and between gestational weeks 20 and 28 weeks
(25.0± 2.5 weeks). No ectopic beat was found for the mother or the fetus. Data were
collected by a bipolar probe setup at a sampling rate of 1000 Hz. Each recording had its
maternal QRS (MQRS) and FQRS annotated and corrected. In our study, an interval of
acceptance was fixed to±20 ms between the detection and the nearest reference annotation
to account for the higher expected heart rate (in the standard, ±150 ms is suggested).

As in the previous database, the last Clifford multiwavelet yielded the best results,
we applied it for the present CinC challenge 2013 database. In our experimental tests, we
applied samples from the set-a series; a12, a29, a47, a59, as shown in the corresponding
figures and tables. Recall that for a normal ECG, the space between two QRS is always the
same regardless of the time of recording. Each P wave must be followed by a QRS. For the
detection of peaks, a threshold has been set for each signal according to the maximum
frequency for a R-peak. In order to not detect the FP peaks, the additional peaks have been
eliminated in the interval RR, so we computed the RR interval, and thus, the false peaks
were not taken, they were considered as noise. Figures 9–12 illustrate the FECG extraction
for the first signal.
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Figure 9. Signal 1 (a12–CinC) FECG extraction using ψCL-multiwavelet.

Figure 10. Signal 2 (a29–CinC) FECG extraction using ψCL-multiwavelet.

Figure 11. Signal 3 (a47–CinC) FECG extraction using ψCL-multiwavelet.
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Figure 12. Signal 4 (a59–CinC) FECG extraction using ψCL-multiwavelet.

Next, as previously mentioned, the relative peaks localization due to the ψCL-Clifford
multiwavelet is illustrated in Figure 13 for the first CinC Challenge signal, Figure 14 for the
second signal, Figure 15 for the third, and Figure 16 for the fourth CinC Challenge signal.
Additionally, for each one of these signals, the accuracy and the sensitivity are provided in
Tables 4–6, respectively.

Figure 13. ψCL–Clifford multiwavelet FECG extraction and peak detection for signal a12–CinC.

Figure 14. ψCL–Clifford multiwavelet FECG extraction and peak detection for signal a29–CinC.
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Figure 15. ψCL–Clifford multiwavelet FECG extraction and peak detection for signal a47–CinC.

Figure 16. ψCL–Clifford multiwavelet FECG extraction and peak detection for a59–CinC.

Table 4. R-peaks detected/CinC.

Sig. No. Total pks HFSch Multiwavelet
pks det ψ1 pks det ψ2 pks det ψCL pks det

a12 5 5 5 5 5
a29 5 5 5 5 5
a47 5 5 5 5 5
a59 5 5 5 5 5

Table 5. Accuracy (%) with different method/CinC.

Sig. No. HFSch Multiwavelet Acc
for FECG Acc Using ψ1 Acc Using ψ2 Acc Using ψCL

a12 100 100 100 100
a29 100 100 100 100
a47 100 100 100 100
a59 100 100 100 100

Table 6. Sensitivity (%) with different method/CinC.

Sig. No. HFSch Multiwavelet
Sens for FECG Se Using ψ1 Se Using ψ2 Se Using ψCL

a12 100 100 100 100
a29 100 100 100 100
a47 100 100 100 100
a59 100 100 100 100

Now, as previously, the modified Shannon’s entropy developed in the present paper
is applied to CinC Challenge 2013 database signals, in order to compare with the previous
base, and to show more the performance of the method. In Figure 17, the entropy due to HF-
SCH multiwavelet (Figure 17A), ψ1-Clifford wavelet (Figure 17B), ψ2-Clifford wavelet (Fig-
ure 17C), ψCL-Clifford multiwavelet (Figure 17D), respectively, are illustrated for the first
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signal. Figure 18, illustrates the entropy due to the same wavelets/multiwavelets for the
second signal. Figure 19, illustrates the entropy due to the same wavelets/multiwavelets for
the third signal. Finally, Figure 20 illustrates the entropy due to the same wavelets/multiwa-
velets for the last signal in the CinC challenge database.

Figure 17. Entropy estimation for FECG a12–CinC with wavelets/multiwavelets: (A) HFSCH, (B) ψ1,
(C) ψ2, and (D) ψCL.

Figure 18. Entropy estimation for FECG a29–CinC with wavelets/multiwavelets: (A) HFSCH, (B) ψ1,
(C) ψ2, and (D) ψCL.
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Figure 19. Entropy estimation for FECG a47–CinC wavelets/multiwavelets: (A) HFSCH, (B) ψ1,
(C) ψ2, and (D) ψCL.

Figure 20. Entropy estimation for FECG a59–CinC wavelets/multiwavelets: (A) HFSCH, (B) ψ1,
(C) ψ2, and (D) ψCL.

To achieve the aim of our study, a comparison of both the accuracy and the sensitivity
for the two databases used is provided in Table 7 below.
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Table 7. Performance measurment: accuracy, sensitivity (%), PPV (%) and F1-measure/DAISY/CinC.

Database Accuracy (%) Se (%) PPV (%) F1

DAISY 100 100 100 100
CinC 100 100 100 100

A comparison our study for fetal ECG parameters extraction is also addressed with
some of the best studies conducted in CinC Challenge 2013 team, such as [101,106]. The re-
sults are summarized in Table 8.

Table 8. Evaluation results of the proposed method for locating both fetal QRS from all 75 aECG
recordings compared to best CinC Challenge results [101,106].

Method TA/[106] EKS/[106] SQA + FTM
[101] New Method

TP - - 9573 10,088
FP - - 639 24
FN - - 596 81

Accuracy(%) 96.0± 13.4 91.2± 23.2 88.57 98.96
Se (%) 97.4± 11 93.1± 20.3 94.13 99.76

PPV (%) 97.2± 10.7 92.8± 20.3 93.74 99.2
F1 97.1± 10.8 93.0± 20.3 93.9 99.47

6. Discussion

For the DAISY database, in Figure 3, a fetal heart rate of 132 bpm (beats per minute)
was obtained for channel 2. The normal range of FHR lies between 120 and 160 bpm.

Next, the eventual peaks were localized, and classified as TD, FP, and FN, for the
extraction of the real ones. To test our method, and to evaluate its effectiveness, an imple-
mentation for channels 2 was conducted.

Next, in order to further validate our method, and for further assessment, the proposed
approach was implemented for channels 3 and 4 of AbdECG. A comparison of the results
obtained and those shown in [105] was conducted. Table 1 shows the R-peaks detected by
our proposed methods and the one in [105]. It is clear that our approach allow the detection
of all the peaks present in FECG signal.

The findings confirm that our proposed method achieved much better results and all
R-peaks of the FECG are detected successfully.

Next, by applying the new modified entropy to reach the optimal reconstruction level
rapidly, and accurately, the efficiency of such a tool to reach an optimal level of accuracy
can be seen in Figure 8. For the classical wavelets, the order is J = 8. It decreases next to
J = 6 for the classical multiwavelets and reached a reduced level J = 4 for the Clifford
multiwavelets, showing their superiority as recent variants of wavelets.

In fact, a large number of studies applied the DAISY database, although it is criticized
for several reasons, such as, the waveform of the different channel signals, where it is no-
ticed that there is almost no delay between two corresponding R-peaks of different channel
signals, which may be not reasonable. To confirm and/or to guarantee the performance of
the proposed method, a second database was applied, the CinC challenge 2013.

The results due to the second CinC Challenge 2013 database are illustrated firstly in
Figures 9–12 for the FECG signal extraction from the MECG one. The figures show the
ability of our method to achieve such an extraction.

Next, as for the previous case, the localization of relative peaks for each signal issued
from the Cinc Challenge database is provided in Figures 13–16, for signals 1, 2, 3, and 4,
respectively, showing the success of localizing such peaks. Additionally, the accuracy and
sensitivity are summarized in Tables 3–5, also confirming the success in localizing the
peaks of the FECG extracted.
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Figures 17–20 show that an optimal, and reduced order for the wavelet/multiwavelet
method may be reached for a level J = 4 for the CinC Challenge 2013 database signals.

Finally, Tables 7 and 8 confirm, by means of a comparison with existing results,
especially the best ones in CinC Challenge 2013, the performance of the present study
for both databases in terms of sensitivity, accuracy, intervals of localized and detected
annotations, with a 100% percentage for both the Se and the PPV.

7. Conclusions

In the present paper, wavelet/multiwavelet processors have been applied for ECG
signal processing. Extraction of the FECG signal from the MECG one has been proved to be
possible, and efficient, by using two main sets of wavelets/multiwavelets, such as, the Haar–
Faber–Schauder system, as the most recent, and simple explicit set, and Clifford wavelets, as
newest set of wavelets/multiwavelets constructed by means of Clifford algebras. Moreover,
a modified Shannon entropy has been introduced relative to these multiwavelets and also
examined on the same experimental examples to show the efficiency of the introduced
method. The experiments proved the effectiveness of the Clifford wavelets in front of the
classical HFSCH example, although this system has also proved its efficiency in many cases
of information processing.

In fact, many aims have been achieved in the present work. Clifford wavelets/multiwa-
velets have been shown to be efficient in processing ECG signals, which may be a positive
answer to the best choice of wavelet/multiwavelet functions to be used for practical aims.
Furthermore, a modified variant of Shannon’s entropy has been constructed to measure
the order/disorder of the extracted and/or reconstructed signals. From a practical point of
view, the problem of extracting the FECG signal from the MECG one has been investigated,
provided with a good localization of eventual peaks of the FECG signal. Such a problem is
still a challenge for biologists. Applied to two well-known databases, the proposed study
achieved the scores Se = 100%, and PPV = 100% for the extraction of FECG signal and the
localization of its peaks. We intend for our results to be extended and/or applied to other
signals for denoising, extracting and/or separating mixed signals.
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Abbreviations

ECG Electrocardiogram
MECG Mother electrocardiogram
FECG Fetal electrocardiogram
WHO World Health Organization
AbdECG Abdominal electrocardiogram
EKG Electrocardiography
pj The probability at the level j
Se Sensitivity
PPV Positive predictive value.
DAISY Data base for the Identification of Systems
CinC Challenge 2013 Computing in Cardiology Challenge 2013
R-peaks Real peaks
STFT Short time Fourier transform
QRS ventricular depolarization curve
RR Interval between two R-peaks
FHR Fetal heart rate
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QT The sum of depolarization (QRS) and repolarization (T)
SNR Signal-to-noise ratio
R-Wave Ventricular depolarization
HFSCH Haar-Faber-Schauder
TD Truly diagnosed
FP False positive
FN False negative
AFECGJ Approximation of the fetal electrocardiogram at the level J
AMECGJ Approximation of the mother electrocardiogram at the level J
ASJ Approximation of a signal S at the level j
DFECGJ Detail component of the fetal electrocardiogram at the level J
DMECGJ Detail component of the mother electrocardiogram at the level J
DSJ Detail component of a signal S at the level J
dj,k detail coefficient at the level j and the position k
Cj,k Approximation coefficient at the level j and the position k
ESj The energy of a signal S at the level j
ES The total energy of a signal S
Ent The entropy of the signal
Ent(J) The entropy of the signal at the level J
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