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Abstract: Celiac disease (CD) is an autoimmune enteropathy caused by an intolerance to gluten
proteins. It has been hypothesized that probiotic bacteria may exert beneficial effects by modulating
inflammatory processes and by sustaining peptide hydrolysis at the intestinal level. This study aims
at evaluating the capacity of a probiotic mixture (two different strains of lactobacilli and three of
bifidobacteria) to hydrolyze gluten peptides following simulated gastrointestinal digestion of gliadin
(PT-gliadin). The capacity of bacterial hydrolysates to counteract the toxic effects of gliadin-derived
peptides in Caco-2 cells was also assessed. The protein and peptide mixtures, untreated or proteolyzed
with the probiotic preparation, were analyzed before and after each proteolytic step with different
techniques (SDS-PAGE, reverse phase HPLC, filtration on different molecular cut-off membranes).
These experiments demonstrated that PT-gliadin can be further digested by bacteria into lower
molecular weight peptides. PT-gliadin, untreated or digested with the probiotics, was then used to
evaluate oxidative stress, IL-6 cytokine production and expression of tight junctions’ proteins—such
as occludin and zonulin—in Caco-2 cells. PT-gliadin induced IL-6 production and modulation and
redistribution of zonulin and occludin, while digestion with the probiotic strains reversed these
effects. Our data indicate that this probiotic mixture may exert a protective role in CD.
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1. Introduction

Gliadin, a major component of the gluten, comprises a class of prolamines produced by plants of the
Triticum genus. Gliadin is responsible for the intestinal damage in celiac disease (CD), an autoimmune
disease mediated by T-cell activation in the gastrointestinal mucosa [1]. This disease arises in genetically
predisposed individuals after exposure to digested gluten. Gliadin peptides, the immunogenic part of
gluten, are poorly degraded by the enzymes of the gastrointestinal tract. Several gliadin epitopes show
different immunogenic and toxic properties. These epitopes present multiple proline and glutamine
residues that give rise to resistance to proteolysis by gastric, pancreatic and intestinal proteases. This
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results in incomplete digestion of gluten and the generation of immunogenic peptides such as the
33-mer, which has been shown to be relevant for the immune response in celiac disease [2,3].

CD may occur early in life, since the first exposure to gluten, or may develop in later years. In any
case, it is a lifelong disease which seriously affects patient’s quality of life. Indeed, the only available
therapy for those patients is to avoid ingestion of gluten via the gluten-free diet (GFD). However,
gluten may be present as contaminant at very low concentration in many food products due to cross
contamination during food processing or cooking, and this may pose serious health risks for celiac
patients. Furthermore, many celiac patients even if on a strict GFD still present IBS-like symptoms of
the disease (mainly abdominal pain or discomfort in association with a change in bowel habit and
often bloating) [4].

Several studies have reported intestinal microbiota perturbations in subjects with CD particularly
in patients with persistent symptoms despite adherence to a long-term GFD [5]. In particular,
an increase in the abundance of Bacteroides [6,7] and a decrease of Bifidobacterium spp. [7–9] in biopsies
and/or stools of active and non-active CD have been consistently found. An increase of Proteobacteria
has also been associated with CD but mainly with the active phase of the disease [6,9–11]. Whether
this imbalance is cause or consequence of the disease is still poorly understood; however, the dysbiosis
still persists in patients on a GFD, probably because of the reduction in polysaccharides intake.

Since the intestinal microbiota contributes to maintaining both the intestinal barrier function
and the integrity of the intestinal epithelium, this imbalance could have a role in the pathogenesis of
CD. Restoring a healthy microbiota in CD patients may provide beneficial effects in these subjects.
Supplementation with probiotics is an appealing treatment due to their anti-inflammatory and
immunomodulatory effects and to the low risk of adverse reactions. A number of studies were
conducted in children affected by CD, to evaluate the efficacy of different probiotic strains, showing
positive effect on decreasing the production of pro-inflammatory cytokine TNF-α, in restoring the
healthy percentage of main microbial components at the gut level and in modulating the peripheral
immune response [12–15].

A recent clinical trial in adults affected by CD on a GFD with IBS symptoms revealed that a
probiotic mixture of lactobacilli and bifidobacteria was effective in reducing the severity of IBS-like
symptoms, and was associated with a modification of gut microbiota, characterized by an increase of
bifidobacteria and lactobacilli [16]. The probiotic mixture utilized in the clinical trial contained five
different bacterial strains, which were isolated from human fecal samples and are endowed with the
capacity to colonize the human gut. The aim of the present work was to evaluate the ability of this
probiotic mixture to digest gliadin peptides in vitro and to modify gliadin-induced pro-inflammatory
response and alterations of epithelium structure in human intestinal Caco-2 cells. This epithelial cell
line was originally derived from a colon carcinoma and has been extensively utilized as a model of
the intestinal barrier [17]. When grown to confluence, Caco-2 cells spontaneously differentiate into
a monolayer with many properties typical of absorptive enterocytes (i.e., polarization with brush
border layer as found in the small intestine, expression of enzyme activities as those of enterocytes and
formation of tight junctions between adjacent cells).

2. Materials and Methods

2.1. Materials

Gliadin from wheat, pepsin from porcine gastric mucosa, trypsin from porcine pancreas and
chymotrypsin from bovine pancreas, ionomycin and Phorbol 12-myristate 13-acetate (PMA) were
purchased from Merck-Sigma (Milan, Italy). Gradient grade acetonitrile and water for UPLC were
from Carlo Erba reagenti (Milan, Italy). The 33-mer peptide was purchased from GenScript (Hong
Kong, PRC), whereas carboxy-dichlorofluorescein diacetate (cDCF) was from Molecular Probes. Cell
culture reagents and media were from Gibco BRL (Life Technologies Inc., Grand Island, NY, USA).
All other reagents were analytical grade reagents from Merck-Sigma (Milan, Italy).
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2.2. Bacterial Strains

The probiotic product was provided by NOOS s.r.l. It consists of a mixture of 5 different
bacterial strains, namely Lactobacillus paracasei 101/37 LMG P-17504 (5 × 109 CFU/sachet), Lactobacillus
plantarum 14 D CECT 4528 (5 × 109 CFU/sachet), Bifidobacterium animalis subsp. lactis Bi1 LMG
P-17502 (3.4 × 109 CFU/sachet), Bifidobacterium breve Bbr8 LMG P-17501 (3.4 × 109 CFU/sachet) and
Bifidobacterium breve BL10 LMG P-17500 (3.4 × 109 CFU/sachet).

2.3. Gliadin Preparation and Proteolytic Digestion

Aliquots (120 mg) of a commercially available gliadin were solubilized with 4 mL of aqueous
solution of 0.02 N HCl and submitted to proteolysis by pepsin (3 mg), solubilized in 0.02 N HCl,
according to a ratio of 1:40 (gliadin:enzyme, w/w) for 1 h at 37 ◦C under gentle stirring. The pH was
then adjusted to a value of about 6 by adding a few granules of Tris salts. An amount of 3 mg of trypsin
in 50 mM acetic acid was added, according to a ratio of 1:40 (gliadin:enzyme, w/w). The proteolysis
was carried out overnight at 37 ◦C under gentle stirring to obtain the gliadin digest (PT-gliadin).
After digestion, the PT digest was heated at 100 ◦C for 15 min to inactivate the enzymes and then
divided in aliquots for further analyses. Aliquots of this digested gliadin and of untreated gliadin were
further incubated overnight at 37 ◦C in the presence or absence of the probiotic product. Specifically,
one sachet of product (containing a total amount of 20 × 109 CFU) was washed centrifuging at 2500g for
15 min in 40 mL of sterile PBS to eliminate excipients. The bacterial pellet was resuspended in 10 mL of
sterile PBS (final concentration 2 × 109 CFU/mL). One mL of the probiotic suspension was centrifuged
at 4600g for 10 min and the bacterial pellet resuspended in 2 mL of 30 mg/mL PT-gliadin digest or of
untreated gliadin. Samples were then incubated overnight at 37 ◦C in anaerobic atmosphere under
constant shaking to get the PT-gliadin plus bacteria (PT-gliadin+bact) digest and gliadin plus bacteria
(gliadin+bact). After incubation bacterial cells were removed by centrifugation (4600g for 10 min).

Another aliquot (30 mg) of gliadin, solubilized in 6 mL of 0.02 N HCl, was submitted to
chymotrypsin digestion (Chymo-gliadin), after pH adjustment to about 6, according to a ratio of 1:200
(gliadin:enzyme, w/w), at 37 ◦C overnight. At the end of treatment an aliquot of this chymotrypsin
digested gliadin was incubated overnight with bacteria, as described for PT-gliadin, thus obtaining
Chymo-gliadin plus bacteria (Chymo-gliadin+bact).

To verify the capacity of bacterial strains to degrade the 33-mer peptide, 33-mer at a concentration
of 1 mg/mL was dissolved in PBS and in de Man, Rogosa and Sharpe (MRS) broth (Oxoid, Milan,
Italy), the optimal growth medium for lactobacilli and bifidobacteria. Samples were then incubated
overnight with bacteria as described for PT-gliadin.

2.4. SDS-PAGE Electrophoresis of Digested Gliadins

Aliquots of 30 µg of samples were separated on an SDS-PAGE Criterion TGX Precast gels (Bio-Rad,
Milan, Italy). Coomassie Blue was used to stain the bands and the images were acquired by using the
Chemidoc TM (Bio-Rad, Milan, Italy). Densitometry of the lanes from about 55 kDa to the bottom of
the lane was performed by using Image J software.

2.5. Gliadin Immunological Analyses

Aliquots of 0.5 mL containing 500 µg of PT-gliadin and PT-gliadin+bact were sequentially
filtered onto 30 and 3 kDa membrane filters by following manufacturer’s instructions (Amicon, Merck
Millipore, Darmstadt, Germany). Before performing ELISA test, samples were extracted from the
filtrates with 60% ethanol solution in water according to the manufacturer instructions. Retained
and eluted materials were re-diluted with ethanol solution to the initial volume and all the samples
were quantified by a competitive ELISA test (RIDASCREEN Gliadin competitive, R-Biopharm AG,
Darmstadt, Germany). The competitive ELISA test was used to quantify small peptide fragments
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of gliadin that cannot be detected by a sandwich ELISA format, in which at least two epitopes are
necessary. The limit of detection of the test is 2.3 mg gliadin/Kg corresponding to 2.3 ppm.

2.6. HPLC/DAD Analysis of Digested Gliadins

Aliquots of gliadin, PT-gliadin and PT-gliadin+bact were diluted 1:30 in mobile phase A and
filtered onto 0.45 µm filters. Aliquots of 200 µL of diluted samples were analyzed by HPLC/DAD on a
Waters apparatus consisting of Waters 60F pumps and 600 pumps control unit system equipped with
a Symmetry C18 column (300 Å, 5 µm, 4.6 × 250 mm) associated with a guard column of the same
material (Waters Corporation, Milford, MA, USA), an inline degasser and a Waters 717 auto-sampler
and a spectrophotometric photodiode array detector mod 2996. The mobile phase A consisted of
0.1% trifluroacetic acid (TFA) and mobile phase B was 0.1% TFA in acetonitrile. Gradient elution was
performed at a flow rate of 1 mL/min at 25 ◦C as follows: 90% A for 1 min, to 44% A in 29 min, to 0% A
in 1 min. The column was washed with 100% B for 10 min then re-equilibrated to 90% A for 20 min.
The instrument control and data acquisition were carried out using the Waters Millennium32 software.

2.7. UPLC/MS Analysis of 33-mer Peptide Standard or Digested Gliadins

The 33-mer peptide and the peptide mixtures obtained from proteolysis of gliadin were analyzed
by a LC-MS platform consisting of an UPLC ACQUITY system (Waters Corporation, Milford, MA,
USA), equipped with a C18 column (BEH C18 Column, 130 Å, 1.7 µm, 2.1 × 50 mm), connected on line
via an electrospray ion source (Waters Corporation, Milford, MA, USA) to a single Quadrupole (QDa)
detector and a spectrophotometric (PDA) detector. Each sample was automatically injected from an
autosampler onto the column at a flow rate of 0.5 mL/min at 25 ◦C. For the elution two solvent solutions
were used: aqueous solution with 0.1% formic acid (solvent A) and organic solution (acetonitrile) with
0.1% formic acid (solvent B). The following linear gradient was applied: 90% A for 1 min, to 30% A in
6 min, then 0% A for 2 min.

2.8. Culture of Caco-2 Cells

The human colon carcinoma Caco-2 cell line, obtained from ICLC Cell bank (Genoa, Italy), was
grown in DMEM high glucose, supplemented with 10% heat inactivated fetal bovine serum, 4 mM
glutamine, 100 u/mL penicillin, 100 u/mL streptomycin and 1% non-essential amino acids (Gibco BRL
Life Technologies Inc., Grand Island, NY, USA). Cells were maintained at 37 ◦C in 5% CO2 and the
culture medium was changed every two days.

For experimental studies, cells between passages 20 to 30 were seeded at a density of 150,000
cells/well in 6-well plates, or on 8-well Lab-Tek chamber slides (Nunc, Merck Millipore, Darmstadt,
Germany) at a density of 50,000 cells/well, and grown for 21 days until differentiation. Cell viability
was assessed by MTT assay in the presence of gliadin peptides.

2.9. Inflammatory Cytokines Detection

Cells grown until differentiation were stimulated with PMA/ionomycin in the presence of
PT-gliadin or PT-gliadin+bact. Specifically, cells were pre-treated for 3 h with 1mg/mL PT-gliadin or
PT-gliadin+bact, then stimulated with 20 ng/mL PMA and 0.3 ug/mL ionomycin for the next 24 h. After
incubation, the cell culture supernatants were collected and assayed for the presence of IL-6 by means
of ELISA, following the instructions of the manufacturer (R&D System, Minneapolis, MN, USA).

2.10. Oxidative Stress Measurements

Caco-2 cells grown in 6-well plates were loaded with 10 µM cDCF for 30 min in Hank’s Balanced
Salt solution, then were treated for 1 h with 1 mg/mL PT-gliadin or PT-gliadin+bact in complete culture
medium. A positive control was obtained by using 200 µM H2O2. After treatment, cells were washed in
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cold PBS and intracellular fluorescence was assayed with a BD Accuri C6 flow cytometer. A minimum
of 50,000 events were recorded for each sample. The experiment was repeated three times in duplicate.

2.11. Immunofluorescence of Zonulin and Occludin

Caco-2 cells grown until differentiation on Lab-Tek chamber slides (Nunc, Merck Millipore,
Darmstadt, Germany) were treated for 3 h with 1 mg/mL PT-gliadin or PT-gliadin+bact in complete
medium, then were washed with PBS and fixed with 2% formaldehyde for 15 min at room temperature.
Cells were permeabilized with 0.1% triton, exposed to blocking buffer (5% BSA in PBS) for 30 min, and
then incubated for 2 h at room temperature with rabbit polyclonal anti-zonulin (ZO-1) (1:100 dilution)
or anti-occludin (1:100) antibody (Thermo Fisher, Waltham, MA, USA) in 1% BSA in PBS. After washing,
chambers were exposed for 1 h to the secondary goat anti-rabbit antibody Alexafluor 488 (1:100 dilution)
(Abcam, Cambridge, UK). Nuclei were stained for 1 min with 1µg/mL of 4′,6-diamidino-2-phenylindole
(DAPI) in saline solution, and the coverslips were mounted with Mowiol. Fluorescence signal was
analyzed by recording stained images using an AxioObserver inverted microscope, equipped with the
ApoTome System (Carl Zeiss Inc., Oberkochen, Germany). Microscopy imaging was performed using
the Axiovision software (Zeiss).

2.12. Statistical Analyses

Experiments were repeated at least three times in duplicate. Data are presented as mean ± S.D.
P-values have been calculated with the unpaired t-Student test and P-values less than 0.05 were
considered as significant.

3. Results

3.1. Proteolytic Activity of the Probiotic Mixture

In order to assess whether the probiotic mixture was able to further proteolyze gliadin after a first
enzymatic digestion by a combination of pepsin and trypsin (PT) or by chymotrypsin alone, various
analytical methods were set up. Figure 1A shows the separation by SDS-PAGE of gliadin (lane 2),
PT-gliadin (lane 3) and chymo-gliadin (lane 4) as such or digested with the probiotic mixture (lanes 5, 6
and 7, respectively). Gliadin (lane 2) shows five predominant bands with molecular weight ranging
between 35 and 50 kDa, whereas both PT-gliadin (lane 3) and chymo-gliadin (lane 4) clearly show
bands with a molecular weight lower than 35 kDa. The protein bands after bacterial treatment show
lower molecular weights. The densitometric analysis of the lanes is reported in Figure 1B and clearly
highlights that after PT or chymotryptic digestion and further digestion with bacteria, the intensity
of the bands is reduced, indicating an extensive proteolysis of the protein. Moreover, the untreated
gliadin (lane 2) seems to be partially digested by bacteria (lane 5).

The same samples were subjected to sequential molecular fractionation by the use of two different
membrane filters with a cut-off of 30 and 3 kDa. As shown by a sensitive R5 antibody based competitive
ELISA, PT-gliadin is largely retained by 30 kDa cut-off filters, while over 80% of PT-gliadin+bact is
found in the filtrate. Moreover, further filtration with 3 kDa cut-off membrane demonstrated that more
than 12% peptides from PT-gliadin+bact have a molecular weight lower than 3 kDa (Figure 2).

A similar pattern is exhibited when gliadin, PT-gliadin and PT-gliadin+bact were analyzed by
reverse phase HPLC (Figure 3). Gliadin presents a large peak with retention time between 25 and
40 min, which clearly shows contribution from the different protein subtypes. In PT-gliadin the
chromatographic profile is totally different and there is one major contribution of a chromatographic
signal with retention time between 10 and 25 min, and a small contribution of peptides which are less
hydrophobic (presumably with a lower molecular weight) and have retention times between 3 and
10 min. The further digestion with bacteria clearly enhances the amount of less hydrophobic peptides.
Particularly, a peak with a retention time of 7 min can be evidenced, which is present only in trace
amount in the PT digest.
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Figure 2. Molecular fractionation of digested gliadin. PT-gliadin and PT-gliadin+bact were sequentially
filtered onto membrane filters of 30 and 3 kDa and the amount of peptides assessed by ELISA. ** p <

0.01; *** p < 0.001.

The same peptide mixtures were also analyzed by UPLC//MS/DAD platform, applying analytical
conditions optimized for 33-mer standard peptide. Analyses of PT-gliadin allow to identify, among
others, a peptide with an m/z signal at 802.3, also described by Laparra et al. [18], but no peptides
corresponding to the 33-mer peptide could be evidenced. Conversely, the chromatographic profile of
chymo-gliadin allows to identify a m/z signal at 978.2, at the same retention time of [MH+4] of 33-mer
peptide, i.e. 4.40 min. The 33-mer peptide was analyzed by this MS platform after probiotic treatment.
Figure 4 shows the kinetics of 33-mer digestion after incubation in the presence of the probiotic mixture.
It can be observed that when the 33-mer peptide is incubated with bacteria in MRS culture medium,
which confers adequate nutrients to the bacteria, the 33-mer peptide remains unaltered. However,
when the peptide is incubated in PBS, its amount is reduced by about 50% in the presence of bacteria
after 24 h incubation, indicating that they can degrade this peptide, though not completely.
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Figure 4. Kinetics of 33-mer digestion in de Man, Rogosa and Sharpe broth (MRS) or in phosphate
buffered saline solution (PBS). A total of 1 mg/mL 33-mer peptide was incubated in the presence of
109 CFU/mL at 37 ◦C up to 24 h. The amount of peptide was quantified via ultraperformance liquid
chromatography with diode array and mass detectors (UPLC/DAD/MS).

Figure 5 reports the results of the analyses of the chymo-gliadin, revealing the presence of the
peak corresponding to 33-mer peptide at 4.40 min, and the attenuation of m/z signal corresponding to
[MH+4] of 33-mer peptide after probiotic digestion.

3.2. Effect of PT-Gliadin and PT-Gliadin+Bact on the Caco-2 Tight Junctions

Since the main function of the intestinal epithelium is that of a selective barrier regulating the
passage of various substances into the subepithelial compartment, here we examined the integrity
of the tight junctions by analyzing the localization of zonulin (ZO-1) and occludin, the best studied
components of the junctions. To this aim, we utilized the intestinal epithelial cell line Caco-2, that is
widely used as a model for the in vitro study of human intestinal epithelium functions. We performed
immunofluorescence analyses to establish whether the ZO-1 release and occludin rearrangement
following PT-gliadin treatment would be prevented by further digestion with bacteria.

Our results show that untreated Caco-2 monolayers had the typical ZO-1 and occludin localization
at the cell periphery [19], whereas the treatment with PT-gliadin for 3 h induces a marked reduction of
ZO-1 fluorescence and a redistribution at the cytosolic level for occludin. When cells were treated with
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PT-gliadin+bact, neither ZO-1 release nor occludin relocation could be observed, although an increase
in punctate cytoplasmic staining of occludin was evident (Figure 6).
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PT-gliadin or PT-gliadin+bact and, after 3 h of treatment, cells were fixed and stained with antibodies
against ZO-1 or occluding, and with 4′,6-diamidino-2-phenylindole (DAPI) to counterstain nuclei. Bar,
50 µm.
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3.3. Modulation of IL-6 Production and Oxidative Stress by Caco-2 Cells Exposed to PT-Gliadin Digested or
Not with Bacteria

Caco-2 cells were also assessed for the production of IL-6 when stimulated with non-cytotoxic
concentration of gliadin peptides. The PT-gliadin was able to cause a significant increase in IL-6
production compared to control. Conversely, when the cells were stimulated in the presence of
PT-gliadin+bact no increase in IL-6 could be observed, instead a significant reduction in IL-6 production
compared to control cells was observed (Figure 7A).
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Figure 7. (A) Interleukin 6 (IL-6) production in Caco-2 cells stimulated with PMA/ionomycin in the
presence of gliadin peptides. Cells were exposed to 1mg/mL PT-gliadin or PT-gliadin+bact, then
supernatants of cell culture were analyzed by ELISA. (B) Intracellular reactive oxygen species (ROS) as
determined by flow cytometry. Cells were exposed to 1mg/mL PT-gliadin or PT-gliadin+bact, stained
with cDCF and then analyzed by flow cytometry. * p < 0.05; *** p <0.001.

In order to verify whether digestion with probiotic bacteria could modulate the pro-oxidant effects
of PT-gliadin, Caco-2 cells were treated with PT-gliadin or PT-gliadin+bact and then assessed for
intracellular hydroperoxides (Figure 7B). In our experimental conditions after PT-gliadin treatment
no significant evidence of oxidative stress could be observed; however, treatment of cells with
PT-gliadin+bact caused a significant reduction of intracellular reactive oxygen species, indicating that
the probiotic digest reduces the basal level of oxidative stress in the cells.

4. Discussion

The intestinal microbiota is a complex ecosystem in which thousands of bacterial species are
present and play a key role in the host’s health. Intestinal microbiota is involved, among other functions,
in the maturation, maintenance and behavior of the mucosal immune system and contribute to the
digestive process of food in a symbiotic manner [20]. Bacterial species may express enzymes different
than those produced by humans and may favor the digestion of complex carbohydrates, fiber in
particular, but also of proteins.

The potential use of probiotics in CD management is supported by the intestinal dysbiosis
generally associated with CD [5–11] and the role attributed to these beneficial bacteria in degradation
of toxic compounds, in maintaining gut barrier function and in regulating the response of the innate
and adaptive immune system. The results of our study indicate that selected strains of lactobacilli
and bifidobacteria are able to hydrolyze the gliadin fragments generated by digestive proteases into
smaller peptides. We demonstrated that the treatment of PT-gliadin fragment mixture with probiotic
bacteria is able to significantly decrease the molecular dimension of these fragments, as highlighted by
different kind of experiments, such as the SDS-PAGE, HPLC measurements and molecular fractionation
experiments. In particular, as estimated by a specific ELISA assay, the amount of peptides with
molecular weight lower than 3 kDa is markedly higher in PT-gliadin+bact in comparison to PT-gliadin.
Moreover, the probiotic strains were able to reduce the amount of the 33-mer immunotoxic peptide
when this compound was the sole amino acidic source. This confirms that the selected bacteria have a
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specific transport system to intake immunogenic oligopeptides, as already suggested for other bacterial
strains [21].

Some previous in vitro studies have demonstrated that the proteolytic activity of bacteria may
modify gliadin fragments [18,22,23]. The presence of some Bifidobacterium strains (B. bifidum IATA-ES2,
B. longum IATA-ES1, and B. animalis IATA-A2) during the intestinal digestion of gliadin led to the
generation of different fragment sequences in vitro, with lower molecular mass than those generated in
non-treated samples [18], as observed in our study. The CD immunogenic 33-mer peptide was degraded
and lost its antigenicity in both in vitro and in vivo assays when it was exposed to a bacterial prolyl
endopeptidase derived from Flavobacterium meningosepticum [24]. It has been demonstrated that the
combined activity of different peptidases promoted the hydrolysis of 33-mer. Overall, five peptidases
are required to completely degrade the 33-mer and other synthetic immunogenic peptides [25]. A recent
study identified 10 strains of lactobacilli that, when pooled, provided the peptidase portfolio required
to completely degrade the immunogenic gluten peptides, including the 33-mer, involved in CD [26].
A consortium of different strains was necessary to obtain this result because no single bacterial strain
possesses all the peptidases required to completely hydrolyze gluten immunogenic epitopes [25,27,28].

Noteworthy, the results observed in our study were obtained with a multi-strain probiotic
preparation containing two strains of lactobacilli (L. paracasei, L. plantarum) and three strains of
bifidobacteria (two different B. breve and B. animalis) that probably exert complementary effects on
the hydrolysis of gliadin peptides. The biological effect of proteolysis of gliadin by probiotic bacteria
was analyzed in relation to intestinal permeability, inflammation or oxidative stress on the intestinal
cells. Our results clearly show that the PT fragments from gliadin are able to induce tight junction
destabilization and an inflammatory state on intestinal Caco-2 cells. On the other hand, the low
MW fragments generated after bacterial treatment seem to prevent the disruption of tight junction
proteins, antioxidant and anti-inflammatory activities, overcoming the negative effect induced by
untreated PT-gliadin. The reversion of IL-6 increased production exerted by gliadin that was induced
by probiotic digestion of PT fragments appears of great interest. Indeed, in CD patients, gliadins
induce the production of pro-inflammatory cytokines, among others IL-6, which stimulates growth of
T cells and differentiation of cytotoxic T cells and has been suggested as a marker of both CD activity
and response to treatment [29,30].

Other probiotic strains have shown the capacity to reverse the negative effect exerted by gliadin
on the barrier function of intestinal cells and inflammation. Bifidobacterium animalis ssp. lactis was
able to counteract the gliadin-induced change in tight junctional protein ZO-1 expression [31], and
Lactobacillus rhamnosus GG contributed in vitro to the maintenance of normal permeability in Caco-2
cell cultures exposed to gliadin [32]. Some Bifidobacterium strains (B. bifidum IATA-ES2, B. longum
IATA-ES1, and B. animalis IATA-A2) reduced the production of TNF-α induced in cultured intestinal
cells by gliadin peptides generated during gastrointestinal digestion [18].

It is well known that oxidative stress and inflammation are closely related phenomena and that
gliadin-derived peptides are able to induce oxidative stress in Caco-2 cell cultures [33]. Our results
indicate that the digestion of gliadin peptides with probiotic bacteria can induce an antioxidant effect
which can result in a modulation of the intracellular redox balance, thus protecting the cells from the
toxic effects of PT-gliadin.

Promising results could come also by chymotryptic proteolysis experiment, because our
preliminary evidences indicate that the probiotic product is able to modulate the amount of the 33-mer
peptide generated by chymotrypsin digestion. This could be reasonable, considering the presence
of different kind of proteases in the intestinal tract, each according to its specificity, to proteolyze the
proteins in smaller fragments. Our results are in line with previous publications which demonstrate that
probiotic lactobacilli and bifidobacteria may digest gluten peptides, thus reducing their immunogenic
potential [18,26,34]. Most notably, these properties may well justify the beneficial effects observed after
administration of the same probiotic product studied in our paper to CD patients affected by IBS-like
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symptoms even if on a GFD [16], and reinforce the concept of the therapeutic potential of probiotics
in CD.

5. Conclusions

In conclusion, our results suggest that the probiotic strains tested are able to reduce the toxicity of
gliadin that remains after peptic-tryptic digestion by degrading immunodominant gliadin peptides,
thus inhibiting their noxious effects on intestinal epithelial cells. The results obtained from our in vitro
studies could have a higher value if verified in animals. In fact, recent work has identified an animal
model of gliadin-induced enteropathy which has made it possible to confirm the beneficial effects
of probiotic bacteria strains observed in vitro. Indeed, the administration of B. longum CECT 7347
(previously named IATA-ES1) has been shown to reduce the production of inflammatory cytokines
and the CD4+ T-cell mediated immune response in this animal model [35], while LGG was able to
protect the intestinal mucosa of rats from PT-gliadin-induced damage, by preventing the reduction of
the expression of the intercellular junction proteins [36].
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