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Abstract
Background: Autism spectrum disorder (ASD) is defined as a group of genetically 
and clinically heterogeneous neurodevelopmental disorders. Interplay between de 
novo and inherited rare variants has been suspected in the development of ASD.
Methods: Here, we applied 750K oligonucleotide microarray analysis and whole‐
exome sequencing (WES) to five trios from Taiwanese families with ASD.
Results: The chromosomal microarray analysis revealed three representative known 
diagnostic copy number variants that contributed to the clinical presentation: the chro-
mosome locations 2q13, 1q21.1q21.2, and 9q33.1. WES detected 22 rare variants in 
all trios, including four that were newly discovered, one of which is a de novo variant. 
Sequencing variants of JMJD1C, TCF12, BIRC6, and NHS have not been previously 
reported. A novel de novo variant was identified in NHS (p.I7T). Additionally, seven 
pathogenic variants, including SMPD1, FUT2, BCHE, MYBPC3, DUOX2, EYS, and 
FLG, were detected in four probands. One of the involved genes, SMPD1, had previ-
ously been reported to be mutated in patients with Parkinson's disease.
Conclusions: These findings suggest that de novo or inherited rare variants and copy 
number variants may be double or multiple hits of the probands that lead to ASD. 
WES could be useful in identifying possible causative ASD variants.
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1 |  INTRODUCTION

Autism spectrum disorder (ASD), which belongs to a group of 
neurobehavioral syndromes, is characterized by significantly 
impaired social interaction and communication as well as by 
restricted, repetitive, and stereotyped patterns of behaviors, in-
terests, and activities (Johnson, Myers, & American Academy 
of Pediatrics Council on Children With, 2007). The preva-
lence of ASD is estimated to be 1:59 children and 1:100 adults 
(Baio et al., 2018; Brugha et al., 2011). The rate of ASD is 
higher in males than in females (4:1), which is higher than 
those of Down syndrome and epilepsy. Developmental de-
lays are observed in approximately 40% of individuals with 
ASD, and approximately 70% show some level of intellectual 
disability. ASD has strong genetic contributions, and single‐
gene disorders are recognized as causative in less than 20% 
of ASD cases (Herman et al., 2007). The most consistently 
reported single gene disorders associated with ASD are frag-
ile X syndrome, Rett syndrome, and tuberous sclerosis. The 
prevalence of fragile X syndrome among subjects with ASD is 
1.5%–3% (Clifford et al., 2007). The genetic etiology of ASD 
is complex.

Chromosomal microarray analysis (CMA) examines 
gross chromosomal structural abnormalities and can detect 
deletions and duplications as well as the size and presence 
of known genes within a chromosomal region. The most 
common microarray abnormalities in ASD involve the chro-
mosome regions 15q11‐q13, 16p11.2, and 22q11.2 (Carter 
& Scherer, 2013; Roberts, Hovanes, Dasouki, Manzardo, & 
Butler, 2014). In the clinical setting, CMA, which has a di-
agnostic yield ranging from 7.0% to 9.0%, is recommended 
as the first tier test for children and adults presenting with 
ASD (Battaglia et al., 2013; McGrew, Peters, Crittendon, & 
Veenstra‐Vanderweele, 2012; Shen et al., 2010).

Technological improvements have led to tremendous 
advances in our understanding of the genetic basis of ASD 
over the past 10 years. Most genomic studies on ASD using 
next‐generation sequencing (NGS) have focused on protein‐
coding regions and analyzed trio information to identify 
sequence‐level de novo mutations (De Rubeis et al., 2014; 
Iossifov et al., 2014, 2012; Neale et al., 2012; O'Roak et al., 
2012; Sanders et al., 2012). Hundreds of genes have been im-
plicated in the cause of ASD. The identification of new genes 
involved in ASD has made this condition a strong candidate 
for genome‐based diagnostic testing, which consists of CMA 
and NGS, as well as whole‐genome sequencing (WGS) and 
whole‐exome sequencing (WES).

Recently, Guo et al. applied WGS, WES, and CMA to in-
vestigate genomic variants in ASD families and compared the 
performances of WGS and WES for use in diagnostic testing 
(Guo et al., 2019). The authors reported the diagnostic util-
ity of WGS for detecting disorder‐related variants (particu-
larly multiple rare‐risk variants that contribute to phenotypic 

severity in individuals with ASD), identifying genetic het-
erogeneity in multiplex ASD families and predicting novel 
ASD‐associated genes for future study.

In this study, we aimed to define causative or suscepti-
bility variants for ASD and their copy number variants by 
CMA. We studied five subjects who are typical of those seen 
in developmental pediatric clinics. The sample was stratified 
based on the clinical phenotype of the patients.

2 |  MATERIALS AND METHODS

2.1 | Subjects with ASD
Five patients with a clinical diagnosis of ASD were enrolled in 
the study. Autism screening was performed using the Autism 
Behavior Checklist, Taiwanese version (ABC‐T), which 
was modified from the third edition of the Autism Behavior 
Checklist of Autism Screening Instrument for Education 
Planning (Krug, Arick, & Almond, 1980). Family members 
were also enrolled for inheritance pattern analysis. Blood 
samples were obtained, and genomic DNA was extracted 
using the Nucleospin® Blood Kit (Macherey‐Nagel, GmbH 
& Co. KG, Duren, Germany). This study was approved by the 
China Medical University Hospital (CMUH105‐REC1‐039).

2.2 | Single‐nucleotide polymorphism (SNP) 
array analysis
DNA samples (250  ng) were hybridized to the Affymetrix 
CytoScan 750K array according to the manufacturer's in-
structions. The 750K array contained greater than 750,000 
markers for copy number analysis and 200,000 SNP probes 
for genotyping. The following standard experimental proce-
dures were performed: digestion, ligation, polymerase chain 
reaction (PCR), PCR purification, fragmentation, labeling, 
hybridization, washing, staining, and scanning. After hybrid-
ization, GeneChip Scanner 3000 7G, Affymetrix GeneChip 
Command Console software, and Affymetrix ChAS 2.0 
software were used for scanning the arrays, extracting the 
images, and performing the analysis, respectively. All data 
had to pass quality control (QC) metrics including the me-
dian of the absolute values of all pairwise differences ≤ 0.30, 
SNPQC ≥ 15, and a waviness standard deviation ≤ 0.12.

2.3 | WES
In total, 100 ng of genomic DNA based on Qubit quantifi-
cation was mechanically fragmented on a M220 focused 
ultrasonicator Covaris (Covaris, Woburn, MA, USA), and 
QC was performed using an Agilent Bioanalyzer 4200 
(Agilent Technologies, Santa Clara, CA, USA) to ensure 
an average fragment size of 150–200 bp. End repair, A‐tail-
ing, adaptor ligation, and enrichment of DNA fragments 
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were then performed. A 200–400  bp band was gel‐se-
lected, and exome capture was performed using a TruSeq 
Exome Library Preparation Kit (Illumina, San Diego, CA, 
USA). The DNA library was quantified in the Qubit 3.0 
Fluorometer (Invitrogen) and Agilent 4200 Bioanalyzer 
(Agilent Technologies). Samples were sequenced on an 
Illumina NextSeq500 platform and 150‐bp paired‐end reads 
were generated.

2.4 | Data analysis
Base calling and quality scoring were performed by an 
updated implementation of real‐time analysis on the 
NextSeq500 system. Bcl2fastq Conversion Software 
was used to demultiplex data and convert the BCL files 
to FASTQ files. Sequenced reads were trimmed for low‐
quality sequences and mapped to the human reference ge-
nome (hg19) using the Burrows–Wheeler alignment (Li & 
Durbin, 2009). Finally, SNPs and small insertions/dele-
tions were detected using Genome Analysis Toolkit and 
VarScan using their default settings (Koboldt et al., 2012; 
McKenna et al., 2010). ANNOVAR was used to annotate 
the VCF files by gene, region, and filters from several 
other databases (Wang, Li, & Hakonarson, 2010). Finally, 
we annotated the mutations using several databases and 
tools, including dbSNP (build 147), GnomAD (http://gno-
mad-old.broad insti tute.org/), Denovo‐db (http://denovo-
db.gs.washi ngton.edu/denovo-db/), ClinVar, Polyphen‐2, 
SIFT, and CADD (Adzhubei et al., 2010; Kircher et al., 
2014; Kumar, Henikoff, & Ng, 2009; Landrum et al., 2014; 
Sherry et al., 2001; Turner et al., 2017). Pathways were an-
alyzed using STRING (https ://string-db.org). Additionally, 
ASD‐related genes reported in the public databases OMIM 
and AutDB were selected (Basu, Kollu, & Banerjee‐Basu, 
2009).

2.5 | Variant validations and 
segregation analysis
We used PCR and Sanger sequencing to validate candi-
date variants from WES. Segregation analysis was carried 

out on family members. PCR primers were designed using 
Primer3 (http://bioin fo.ut.ee/prime r3-0.4.0/). Table S1 lists 
the designed primers. The products were directly sequenced 
with an ABI PRISM BigDye kit using an ABI 3130 DNA 
sequencer (Applied Biosystems). Sequencing results were 
analyzed using the software Chromas, version 2.23.

3 |  RESULTS

Following QC of the WES data, five probands were analyzed 
further and confirmed by Sanger sequencing. For these, a 
mean coverage depth of 141X was achieved (Table 1). Patient 
1, a 21‐year‐old male who presented with autism combined 
with epilepsy, had an ABC‐T score of 28 (Table 3). The 750K 
microarray showed a 2q13 duplication (482.154 kbp) con-
taining three OMIM genes (RGPD6, MALL, and NPHP1). 
WES revealed four rare variants in SHANK3 (c.3658A > G; 
p.T1220A; rs751183635), DNAH10 (c.2800C > T; p.R934C; 
rs757691040), ESR2 (c.1228C > T; p.R410C; rs528840784), 
and NAALADL2 (c.1424G  >  A; p.R475H; rs372908344) 
(Table 2). Among them, SHANK3 and ESR2 are involved 
in negative regulation of signal transduction (GO:0,009,968). 
Furthermore, three pathogenic mutations were observed, 
SMPD1 (p.P186L), FUT2 (p.R202X), and BCHE (p.T343fs).

Patient 2, an 8‐year‐old male, had an ABC‐T score of 27 
(Table 3). The 750K microarray revealed no abnormalities. 
WES revealed three rare variants in DLGAP3 (c.1759G > C; 
p.G587R; rs762072609), SLC1A2 (c.1091G > A; p.R364H; 
rs147645566), and CLTCL1 (c.1061G  >  A; p.R354H; 
rs201506683) (Table 2). Additionally, two pathogenic mu-
tations were observed, MYBPC3 (p.E334K) and DUOX2 
(p.K530X).

Patient 3, a 15‐year‐old male, had an ABC‐T score of 
20 (Table 3). The 750K microarray showed a 1q21.1q21.2 
duplication (1949.031 kbp) containing 10 OMIM genes 
(HYDIN2, PRKAB2, FMO5, CHD1L, BCL9, ACP6, 
GJA5, GJA8, GPR89B, and NBPF11). WES revealed 
seven rare variants in WFS1 (c.2144G  >  T; p.S715I; 
rs772022154), TNN (c.1681T > C; p.Y561H; rs777370361), 
JMJD1C (c.6344T  >  G; p.F2115C; novel) (Figure 1a), 

T A B L E  1  Whole‐exome sequencing alignment and mean base depth statistics for 5 probands for the analysis

Case Total raw reads
Total effective 
reads

Reads mapped to 
genome

Average read depth of 
target regions

Number of 
SNVs on target

ASD23 172,869,310 159,621,404 159,588,187 139.246 34,233

ASD24 186,622,966 172,125,108 172,094,954 143.877 34,284

ASD25 192,186,388 173,661,734 173,616,740 126.054 34,093

ASD26 191,244,742 176,442,474 176,407,661 154.055 34,942

ASD27 167,228,010 153,870,614 153,839,987 141.935 33,945

Average 182,030,283 167,144,267 167,109,506 141.033 34,299

http://gnomad-old.broadinstitute.org/
http://gnomad-old.broadinstitute.org/
http://denovo-db.gs.washington.edu/denovo-db/
http://denovo-db.gs.washington.edu/denovo-db/
https://string-db.org
http://bioinfo.ut.ee/primer3-0.4.0/
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APP (c.1748A  >  G; p.E583G; rs778495527), SYNE1 
(c.9878C > T; p.S3293F; rs770774159), MPP6 (c.61G > A; 
p.D21N; rs771283348), and MCC (c.60_61insAGC; 
p.G21delinsSG; rs72442525) (Table 2). WFS1, TNN, APP, 
and MCC are involved in the negative regulation of Wnt 
and canonical Wnt signaling pathways (GO:0030178 and 
GO:0090090), negative regulation of signaling transduction 
(GO:0009968) and endoplasmic reticulum calcium ion ho-
meostasis (GO:0032469). Moreover, a pathogenic mutation 
in the EYS gene (p.C2139Y) was observed.

Patient 4, a 6‐year‐old male, had an ABC‐T score of 27 
(Table 3). The 750K microarray revealed no abnormalities. 
WES revealed seven rare variants in TSC2 (c.5418T  >  G; 
p.F1806L; rs200004126), SETBP1 (c.2842C > T; p.R948C; 
rs751366974), TCF12 (c.770G  >  A; p.R257H; novel) 
(Figure 1b), LZTS2 (c.1259G > A; p.R420Q; rs759282265), 
BIRC6 (c.6600G > T; p.Q2200H; novel) (Figure 1c), EPHA6 
(c.527A > C; p.N176T), and ASMT (c.451G > A; p.G151S; 
rs192710293) (Table 2). TSC2, LZTS2 and BIRC6 are in-
volved in the negative regulation of Wnt and canonical Wnt 
signaling pathways (GO:0030178 and GO:0090090) and 
negative regulation of signaling transduction (GO:0009968). 
No pathogenic mutations were detected.

Patient 5, a 10‐year‐old male, had an ABC‐T score of 36 
(Table 3). The 750K microarray showed a 9q33.1 duplica-
tion (1090.359 kbp) containing three OMIM genes (PAPPA, 
ASTN2, and TRIM32). WES revealed one de novo variant in 
the NHS (c.20T > C; p.I7T) gene (Table 2 and Figure 1d). 
NHS p.I7T has not been previously reported. Additionally, 

a pathogenic mutation in the FLG gene (p.E2422X) was 
observed.

The mutations in our five patients were further confirmed 
by Sanger sequencing of DNA from both parents to deter-
mine the origins of mutation or to reveal de novo mutations.

4 |  DISCUSSION

In this study, WES was performed to identify possible ASD 
causal variants in five Taiwanese families; one novel de 
novo variant in one trio and rare variants in each trio were 
successfully identified. These genes are involved mainly in 
the negative regulation of Wnt and canonical Wnt signal-
ing pathways, negative regulation of signaling transduction 
and endoplasmic reticulum calcium ion homeostasis. We de-
tected no association of the ABC‐T score with a particular 
pathway. However, possible causal variants may be missed if 
located within a noncoding region; thus, WGS will be neces-
sary in future studies.

Three ASD patients (ASD25, ASD26, and ASD27) 
were found to carry a novel missense variant of four genes 
(JMJD1C, TCF12, BIRC6, and NHS) (Table 2). JMJD1C 
encodes a putative histone demethylase and is involved in 
the epigenetic control of gene transcription. This study iden-
tified a variant of JMJD1C, c.6344T > G, which results in 
the substitution of phenylalanine by cysteine (p.F2115C). 
The p.F2115C mutation is in the JmjC domain, a domain 
family that is part of the cupin metalloenzyme superfamily. 

F I G U R E  1  Chromatograms of the 
heterozygous missense variants in JMJD1C 
(a), TCF12 (b), BIRC6 (c), and de novo 
variant in NHS (d)
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Mutations in this gene are associated with Rett syndrome 
and intellectual disability (Saez et al., 2016). TCF12 en-
codes a member of the basic helix‐loop‐helix E‐protein 
family that recognizes the consensus‐binding site (E‐box) 
CANNTG. This study identified a variant, c.770G  >  A, 
which results in substitution of an arginine by histidine 
(p.R257H) in TCF12. BIRC6 encodes an inhibitor of apop-
tosis protein with baculoviral inhibition of apoptosis pro-
tein repeat (BIR) and ubiquitin‐conjugating enzyme E2, 
catalytic (UBCc) domains. This study found a variant of 
BIRC6, c.6600G  >  T, which results in substitution of a 
glutamine by histidine (p.Q2200H). NHS encodes a pro-
tein with four conserved nuclear localization signals that 
function in brain development. This study identified a vari-
ant, c.20T > C, which results in substitution of isoleucine 
by threonine (p.I7T) in NHS. Mutations in this gene are 
associated with Nance–Horan syndrome (Shoshany et al., 
2017). These variants were not found among the 277,264 
alleles in the GnomAD database and were predicted to be 
damaging in silico by SIFT and to be likely damaging by 
Polyphen2.

Most of the variants identified in this study were found 
in autosomal genes, whereas one was identified in the X‐Y 
pseudoautosomal gene, ASMT, which has been reported to be 
associated with the autism phenotype and sleep disturbance 
(Cai et al., 2008; Wang et al., 2013). In the present study, 
we identified one reported missense variant, pG151S, in the 
Taiwanese population with ASD. Additionally, we detected 
no obvious dominant or recessive compound heterozygous 
mutations in ASD‐related genes.

By considering pathogenic mutations with ClinVar, we 
found variants in four of five probands (80%). The pathogenic 
mutations were detected in SMPD1, FUT2, BCHE, MYBPC3, 
DUOX2, EYS, and FLG2 in four different patients (Table 4). 
SMPD1 encodes a lysosomal acid sphingomyelinase that con-
verts sphingomyelin to ceramide. Defects in this gene are a 
cause of Parkinson's disease (Mao et al., 2017). FUT2 encodes a 
Golgi stack membrane protein and is highly associated with the 
development of inflammatory bowel disease (Wu et al., 2017). 
BCHE encodes a cholinesterase enzyme and is a member of 
the type‐B carboxylesterase/lipase family of proteins. Some 
of the genetic variants are prone to the development of pro-
longed apnea following administration of the muscle relaxant 
succinylcholine (Panhuizen, Snoeck, Levano, & Girard, 2010). 
BCHE p.T343fs has been reported in colon adenocarcinomas 
and esophageal carcinomas. MYBPC3 encodes the cardiac iso-
form of myosin‐binding protein C. Mutations in MYBPC3 are 
one cause of familial hypertrophic cardiomyopathy (Aurensanz 
Clemente et al., 2017). MYBPC3 is one of the American 
College of Medical Genetics and Genomics genes. DUOX2 
encodes a glycoprotein and a member of the NADPH oxidase 
family. DUOX2 mutations are the most powerful genetic pre-
disposing factors for thyroid dyshormonogenesis (Chen et al., T
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2018). EYS is mutated in autosomal recessive retinitis pigmen-
tosa (Mucciolo et al., 2018). FLG2 encodes an intermediate 
filament‐associated protein that functions in aggregation and 
the collapse of keratin intermediate filaments in mammalian 
epidermis. Mutations in this gene are associated with ichthyosis 
vulgaris and atopic dermatitis (Hassani et al., 2018).

In conclusion, we report on five ASD patients with rare 
variants and one patient with a de novo variant. However, this 
association study was performed with only a small number 
of cases; therefore, further studies with larger sample sizes 
are needed.
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