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ABSTRACT: Mass spectrometry imaging (MSI) is a powerful
tool that can be used to simultaneously investigate the spatial
distribution of different molecules in samples. However, it is
difficult to comprehensively analyze complex biological systems
with only a single analytical technique due to different analytical
properties and application limitations. Therefore, many analytical
methods have been combined to extend data interpretation,
evaluate data credibility, and facilitate data mining to explore
important temporal and spatial relationships in biological systems.
Image registration is an initial and critical step for multimodal
imaging data fusion. However, the image registration of multi-
modal images is not a simple task. The property difference between
each data modality may include spatial resolution, image characteristics, or both. The image registrations between MSI and different
imaging techniques are often achieved indirectly through histology. Many methods exist for image registration between MSI data
and histological images. However, most of them are manual or semiautomatic and have their prerequisites. Here, we built MSI
Registrar (MSIr), a web service for automatic registration between MSI and histology. It can help to reduce subjectivity and
processing time efficiently. MSIr provides an interface for manually selecting region of interests from histological images; the user
selects regions of interest to extract the corresponding spectrum indices in MSI data. In the performance evaluation, MSIr can
quickly map MSI data to histological images and help pinpoint molecular components at specific locations in tissues. Most
registrations were adequate and were without excessive shifts. MSIr is freely available at https://msir.cmdm.tw and https://github.
com/CMDM-Lab/MSIr.

■ INTRODUCTION
Mass spectrometry imaging (MSI) is a powerful, label-free, and
increasingly used analytical tool for investigating the spatial
distribution of molecules. To acquire MSI, the sample surface
is analyzed pixel-by-pixel with a mass spectrometer. By
selecting a peak in the resulting spectrum that corresponds
to the compound of interest, the MS data can be used to map
its distribution in the sample. The spatial distribution of
multiple molecules in specific molecular classes, such as
proteins, peptides, metabolites, lipids, and glycans, can be
analyzed through MSI in a single experiment.1 Thus, MSI has
been exploited in many fields, such as proteomics,2

pharmaceutical research and development,3 cancer diagnos-
tics,4 forensics,5 and natural product analysis.6

Each analytical technique has different usage limitations and
analytical properties.7 An increasing number of analytical
techniques are being used together. Similarly, to analyze more
metabolites and improve data interpretation, MSI with
multiple ionization techniques is increasingly being used.1 In
addition, different imaging techniques from radiology,1 spec-
troscopy,7 and microscopy1,7 have been combined with MSI.

Magnetic resonance imaging (MRI) is a medical imaging
technique offering 3D anatomical structure information of a
sample with high spatial resolution and a precise sample shape.
However, MRI cannot be used to monitor metabolic
information. Thus, MRI combined with MSI may be a
powerful tool to connect human diseases and metabolic
disorders through biomolecular pathways. For example,
desorption electrospray ionization MSI was used in an
oncometabolite to guide brain tumor surgery, and the
distribution of the target metabolite was mapped to 3D MRI
to assist clinical decision-making.8 Vibrational spectroscopy
imaging (VSI) is a technique to investigate the distribution and
composition of molecules from a sample in a label-free manner.
In VSI methods, the vibrations of chemical bonds, which
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provide the fingerprint signature of a molecule, are examined.
Different vibrational modes are often used to investigate and
identify specific chemical bonds in a molecule. VSI can be used
to examine the abundance, structure, and conformation of
biomolecules, complementing the problem that MSI cannot be
used to identify isomers, enantiomers, isobars, and neutral
molecules.9 Microscopy provides high-resolution morpholog-
ical and structural information that is lacking in MSI. MSI and
microscopy are currently the most common multimodal
systems used to identify and classify tissue sections. In
bright-field microscopy, histological stains are often used to
highlight tissue morphology and cell structure with a specific
dye; in cancer or functional disorder research, tissues have
been routinely stained after MSI experiments to study the
molecular profile relationship with the histological features of
normal or abnormal tissue regions.10

Image registration is the initial and necessary step in most
multimodal imaging data fusion methods. However, each
modality’s spatial resolution and image characteristics vary,
which makes the registration of multimodal images challeng-
ing.7 Several methods can help register histology and MSI, but
most have prerequisites. One method is image registration
through matching reference points. MSI and histological
images are registered by aligning these reference points using
linear transformations (rigid or affine).7 Another method is
semiautomatic registration between MSI data and histological
matches through autofluorescence microscopy images.11 In
this method, manually matching the laser ablation markers and
MS image pixels was needed, and the method was only suitable
for ionization techniques that generate laser ablation markers.

Data-driven registration is a method that has recently gained
more attention. In brief, MSI data are first summarized by
multivariate techniques to a single representative image. Then,
an image property of the representative image, such as the
tissue region, contour, or histoanatomical structure, is used to
register histology. To date, several automatic data-driven
registration methods and tools have been proposed. Veselkov
et al. developed a comprehensive framework including
automatic registration for MSI data analysis.12 In this image
registration approach, affine transformations were optimized
using the gradient descent optimization method to maximize
the number of overlapped tissue-related pixels between the MS
image and another modal image. Abdelmoula et al. developed a
method for the automatic generic registration of MSI data and
histological data via the nonlinear dimensionality reduction
method t-distributed stochastic neighbor embedding (t-
SNE).13 The t-SNE method is used to summarize the MSI
data and project them onto a nonlinear data structure while
preserving their features. It provides sufficient histoanatomical
structure information to register MSI data to histological
images of the same or adjacent regions. Patterson et al.
proposed the R package RegCombIMS,14 an extension of the
R package Cardinal,15 which provides automatic registration
between multiple MSI data sets targeting different analytes
through histological image intermediates.

Each method has its prerequisites, such as labeling reference
points or an autofluorescence microscope, and not every MSI
experiment can satisfy them. Among current image registration
methods, the method proposed by Abdelmoula et al.13 is
generic under any situation, but the t-SNE algorithm is not
scalable and time-consuming. Recently, Race et al. proposed a
modified method16 to solve the speed problem of t-SNE.
However, there is no ready-made software to assist in image

registration between MSI data and histological images for users
without an image processing background or coding skills.
Thus, we provide MSI Registrar (MSIr), an easy-to-use free
web service for automatic image registration between MSI data
and the corresponding histological image.

■ RESULTS AND DISCUSSION
Overview of MSIr. MSIr is a web-based platform with

Node.js (version 14.16.0) and the Express framework (version
4.17.1). The user interfaces of MSIr are built through the React
library (version 17.0.2). MSI data and histological image
registration was implemented using Python (version 3.8.2).
MSI data must be converted to centroid imzML format before
execution. The main procedures in MSIr include histological
image processing, MSI data processing, multimodal registra-
tion, and spectral index extraction, as shown in Figure 1
(please see Figure S1 for details).

Histological Image Processing. Our method was used to
successfully separate the tissue regions and backgrounds in
histological images during histological image processing. A
mask was first generated through edge and contour detection
to separate tissue regions and backgrounds in histological
images. In biomedical research, colored histological images are
usually used to highlight the specific tissue morphology and
cell structure. However, many edge detection methods have
been developed for grayscale images, and RGB-to-gray
conversion may cause information loss, including information
on edges and borders. Therefore, in our method, the edges
were detected directly from colored images through the large-
color-difference formula (please see the Methods and Materials
section for more details). Finally, the contours were detected
from the image after the morphological operation. Although a
small part of the structure in some results was lost (Figure 2a),
subsequent processing steps were not seriously affected. Nearly
complete tissue regions in histological images were segmented

Figure 1. Procedures in the MSIr.
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through our method successfully. Even tissue containing many
tiny empty spaces, such as adipose tissue, and most of the
tissue borders were successfully segmented (Figure 2b).

The downsampling strategy reduced the computational cost
and process time in edge and contour detection without
significantly affecting subsequent processing. A high-resolution
histological image often contains over one million pixels; thus,
image processing requires many computational resources and a
large amount of processing time. In the mask generation step,
edge detection and contouring were performed on a
downsampled histological image to reduce computational
cost and accelerate processing. After a mask was generated,
the mask was upsampled to the original size with nearest-
neighbor interpolation. Although some background regions
may be detected in tissue regions when using this strategy, the
background regions do not affect subsequent processing.
Compared to MSI data, histological images usually provide
more precise border information for separating tissue regions
and background, and background removal algorithms and
methods in histology have been developed and applied for a
while. Therefore, in the on-tissue spectra extraction step of
MSI data, the contour from a histological image is used as a
reference to determine which spectra belong to the tissue
region.
On-Tissue Spectra Extraction. In our evaluation, the

tissue region generated from MSI data on-tissue spectra
extraction would be highly similar to the tissue region in the
corresponding histological image (Figure 3) if there were no
significant chemical noise-like carry-over signals in MSI data.
The nontissue regions of MS images significantly affect
registration accuracy and success and should be removed
before image registration.13 Previously, Race et al. proposed a
method for removing nontissue regions using k-means
clustering (k = 3) with the cosine distance.16 Nevertheless,
this method may not be suitable for all MSI data because of the
variability of the MSI experiment. In this work, we optimized
the method of Race et al. and utilized tissue contour
information from histology as a reference to extract on-tissue
spectra through shape matching. In shape-matching tasks, the
use of Hu moments17 is one method to evaluate the similarity
between two shapes. Based on Hu invariants,17 Hu moments

have been proven invariant to translation, scale, and rotation
but variant to reflection. However, we found that reflection
would not significantly affect the result of shape matching.
Hyperspectral Visualization. Most image registration

algorithms are developed for one-to-one registration. However,
many features with different intensity patterns exist in single
MSI data. When representing the data, it is difficult to
manually select a single ion image of a specific m/z value.
Therefore, summarizing MSI data through multivariate
techniques is necessary to acquire a single representative
image. Many dimensionality reduction methods have been
applied to MSI data, including nonlinear or linear methods.18

Principal component analysis (PCA) is a common linear
dimensionality reduction method that provides useful help in
MSI data analysis. However, the linear relationship assump-
tions used in those methods may not be suitable for the
inherent nonlinearity of the biological model. They may lose
some underlying structure information in the MSI data.

Thus, many studies use nonlinear dimensionality reduction
methods such as t-SNE and uniform manifold approximation
and projection (UMAP) in biological analysis. Although all
features of high-dimensional data can be embedded into two or
three dimensions using t-SNE, providing more information in
the visualization of MSI data and calculating the pairwise
distance matrix between points requires a large computational
source. It is unsuitable for data sets with large data points. The
UMAP algorithm is scalable and suitable for hyperspectral data
with many pixels and has been evaluated and applied in
MSI.19,20 Therefore, we evaluated two dimensionality reduc-
tion methods, PCA and UMAP. With our evaluation data,
hyperspectral visualization images containing similar patterns
with histology could be generated through both PCA and
UMAP (Figure 4).
Multimodal Registration. In our evaluation, most

representative MS images were successfully registered to
correspond to histological images (Figure 5a,b). In MSIr,
there are two steps in the image registration. First, the
orientation and scale differences are processed, and second,
accurate registration is performed. In the first step, the initial
registration is used to determine the reflection and large-angle
rotation differences and the spatial resolution relationship
between the representative MS image and the histological
image. After the first step, the representative MS and

Figure 2. Successful histological image extractions with different
tissue conditions, original histological images (on the left), and the
corresponding mask images (on the right) after background removal.
(a) One colorectal adenocarcinoma tissue sample in data set 3. (b)
One breast cancer tissue sample in data set 2.

Figure 3. High similarity between tissue regions in histological mask
images (on the left) and the results from on-tissue extraction of MSI
data (on the right). (a) One colorectal adenocarcinoma tissue sample
in data set 3. (b) One breast cancer tissue sample in data set 2.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.2c04360
Anal. Chem. 2023, 95, 3317−3324

3319

https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?fig=fig3&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.2c04360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


histological images should have a close orientation and similar
size. In the second step, intensity-based registration is
implemented to accurately register the representative MS
image to the histological image through Elastix after the initial
registration. In our evaluation data, most of the data were
successfully registered to correspond to histological images.

Nevertheless, several data had obviously failed registration,
and the reasons for failed registration in those data occurred
during the initial registration step. During the initial
registration step, searches for possible orientation differences
are performed using the mutual information loss between the
MSI data and the histological image. The representative MS
image could highly affect registration. For example, in one
failed registration data set, MSI data were successfully
registered to histology after dimensionality reduction using
UMAP but unsuccessfully after dimensionality reduction using
PCA (Figure 5c). Thus, in addition to the quality of MSI data,
dimensionality reduction methods generating anatomical

structure information also influence the registration success.
The capability of visualizing the nonlinear method (e.g.,
UMAP) can usually result in more successful registrations than
other linear methods, including PCA, which is consistent with
the observations from the work of Smets et al.19

In the evaluation results of MSIr, the mean Dice coefficients
of the two-dimensionality reduction methods UMAP and PCA
were 0.83 and 0.83, respectively, and the mean Hausdorff
distances were 2.83 and 2.97 pixels, respectively. To evaluate
the registration accuracy, the standard answer regions in each
evaluation data set were generated based on the specific m/z
value from the previous report of each study. The regions in
histological images corresponding to standard answers in MSI
data were also manually selected. The detailed effects using
different dimensionality reduction methods are listed in Table
1.

It was challenging to generate precise ground truth regions
from MSI data because of the spatial resolution difference
between MSI data and histology. Additionally, the signal in
MSI data was probably suppressed or diffused, resulting from
smaller or larger ground truth regions than corresponding
regions in histological images. These would cause a lower Dice
coefficient and a larger Hausdorff distance.

Recently, the application of machine learning and deep
learning in microscopy has gained popularity, especially the
application of classification and segmentation in histology,
which is increasing significantly.21 Through these techniques,
the accuracies of different cancer type classifications are
improved. However, due to the low chemical specificity of
histology, classifications of some cancer subtypes based on only
histology information using deep learning-based methods are
challenging tasks.22 In the published work of Race et al.,16 the
annotation transfer between MSI and histology showed that
the histology to MSI annotation transfer assisted in the
extraction of related ion images and statistical analysis of an
region of interest (ROI) and that the MSI to histology
annotation transfer helped the discovery of tumor hetero-
geneity using molecular information. MSI can provide
information on the spatial distribution of molecules to
complement the low chemical specificity of histology and
make the performances of deep learning more powerful in
cancer subtype classifications. Image registration would be
necessary for data analysis between MSI and histology. The
combination of MSI and histology should be more popular.
Web Interface. The home page of MSIr is shown in Figure

6. MSIr provides the services of automatic image registration
between histology, MSI, and spectral index extraction. In
automatic image registration, the user must upload centroided

Figure 4. Highly similar patterns within histological images (on the
left) and corresponding MS hyperspectral visualization images of
UMAP (in the center) as well as PCA (on the right). (a) One
colorectal adenocarcinoma tissue sample in data set 3. (b) One breast
cancer tissue sample in data set 2.

Figure 5. MS hyperspectral visualization images of UMAP (on the
center) and PCA (on the right) after valid (a,b) and failed (c)
registration and the corresponding histological images (on the left).
(a) One colorectal adenocarcinoma tissue sample in data set 3. (b)
One breast cancer tissue sample in data set 2. (c) Another colorectal
adenocarcinoma tissue sample in data set 3.

Table 1. Effects Using Different Dimensionality Reduction
Methods

dimensionality reduction method UMAP PCA

Dice Coefficient
all data (n = 27) [0.63,

0.97]
[0.54,
1.00]

exclude failed registrations (number of failed
registrations)

[0.76,
0.90]

[0.76,
0.90]

Hausdorff Distance
average in MSI pixels of all data (n = 27) [0.47,

6.07]
[0.64,
6.58]

average in MSI pixels excluding failed registrations
(number of failed registrations)

[1.49,
4.17]

[1.55,
4.39]
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MSI data in an imzML format file and corresponding
histological image (png, jpg, and jpeg formats are available,
brightness: 200 to 300, contrast: 40 to 70, see Figure S9) to
MSIr and set the required parameters. UMAP and PCA are
available for utilization in MSIr. Although the hyperspectral
visualization images using PCA and UMAP both contain
similar patterns to histology in our evaluation, we need to
indicate that hyperspectral visualization images from multi-
variate techniques highly depend on the quality and status of
MSI data. Users should select proper dimensionality reduction
techniques for their MSI data. Masks can be drawn manually or
automatically. In spectral index extraction, the user can select
ROIs from a histological image on the ROI selection page
(Figure 7). The spectral indices in the ROI based on
registration results are extracted and output in text format.

Limitations. To perform registration successfully, the
histological image should have a tissue border for initial
image registration. Additionally, large and clear components
should be able to be observed in both histological and MS
images. Otherwise, the registration may fail due to insufficient
information for initial registration and intensity-based registra-
tion. Although attempts are made to determine the orientation
and scale differences between MSI data and histological images
in the initial registration step by comparing the mutual
information loss, this method will fail when the mutual
information loss of eight orientation differences are close to
each other. This occurs when the shape of the tissue is very
close to being symmetrical. In the case of MSI results
containing leaked analyst or image artifacts, image registration
may be inaccurate due to the adjustment of the scale difference

of the larger histological image with the leaked parts in the
multimodal registration.

■ CONCLUSIONS
A web service, MSIr, was developed with functions of
automatic image registration between MSI and histology and
easy extraction of the corresponding spectrum from histo-
logical ROIs. Among 27 sample data from five studies, most
registrations were effective without excessive shifts. This
software can help users without image processing backgrounds
or coding skills solve image registration problems in an easy-to-
use manner. MSIr is freely available at https://msir.cmdm.tw,
and the source code is available at https://github.com/
CMDM-Lab/MSIr.

■ METHODS AND MATERIALS
Experimental Data Sets. Public data sets from four

studies: (1) data set 1: colorectal adenocarcinoma study of
Oetjen et al.,23 (2) data set 2: breast cancer study of Guenther
et al.,24 (3) data set 3: colorectal adenocarcinoma study of
Veselkov et al.,12 and (4) data set 4: esophageal lymph node
metastasis study of Abbassi-Ghadi et al.25 Four data sets were
collected from the MetaboLights database.26 The public
studies’ experimental information about sample preparation
and data acquisition can be found in the MetaboLights
database. Data set 527 is the human breast cancer study
provided by Prof. Cheng-Chih Hsu Research Group (Depart-
ment of Chemistry, National Taiwan University). The
information on these studies from the public database is listed
in Table S1. All acquired data sets include MSI data and
histological images.
Histological Image Processing. Histological image

processing aims to remove the background and acquire tissue
information for subsequent procedures. Edges in the
histological image are detected through the algorithm based
on the large-color-difference formula28 to separate the tissue
region and background. The downsampled histological image
is used in edge detection to reduce the processing time. The
resulting edge detection image is processed with a morpho-
logical operation (closing with a circle-shaped structural
element) to remove tiny discontinuities between adjacent
edges. After the morphological operation, the contours are
detected from the resulting image, and the contour with the
maximum area is taken as a tissue contour. If the area of any
other contour is larger than half of the maximum contour area,
the contour is also taken as a tissue contour. Based on tissue
contours, a binary mask separating the tissue region and
background is generated and upsampled to the original size of
the histological image with nearest-neighbor interpolation. In
the last step of histological image processing, the background
in the histological image is processed to black based on a
binary mask. All image processing procedures are implemented
using the Python package “OpenCV-Python” (version
4.5.3.56).
MSI Data Processing. In the second procedure, mass

spectrometry data processing is applied to summarize MSI data
into a hyperspectral visualization image containing the
anatomical information and contour information for the next
procedure, multimodal registration. The imzML format file is
parsed through the Python package “pyimzML” (version
1.5.1), and spectral data are organized into a 2D pixel-m/z
format in a sparse matrix. Data are normalized by total ion

Figure 6. Home page of MSIr.

Figure 7. Mask drawing and ROI selection page.
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count normalization. The on-tissue spectra extraction
described below is applied to remove the background region
spectral effect. Peak picking using the Python package
“ms_peak_picker” (version 0.1.33) is performed on the
mean spectrum of on-tissue spectra to determine the locations
and intensities of peaks. Peak intensities are generated by
summing the intensity values of adjacent peaks whose m/z
difference from the m/z value of the main peak is lower than
the threshold value. In the last step of MSI data processing,
MSI data are subjected to nonlinear dimensionality reduction
for hyperspectral visualization.

On-tissue spectra extraction is implemented to determine
the spectra in the tissue region. The method of on-tissue
spectral extraction is modified from the method proposed by
Race et al.16 The spectra of all pixels are clustered by a k-means
algorithm with the cosine distance metric, and clustering of
different k values from two to four operate sequentially until
acquiring the appropriate tissue contour. The clustering result
of each round of clustering is reshaped to the 2D image form
first. The clustering labels of pixels in the image border are
counted, and the label with the maximum counts is seen as
belonging to the background region. A combination set of
those labels will be generated if a clustering label is not
classified as background. For this combination set, pixels with
any labels from the combination were temporarily taken as
tissue regions. The contours of this temporary tissue region are
detected. The dissimilarity between the detected contours of
histological images and tissue contours is calculated based on
Hu moments.17 Suppose the dissimilarity is lower than the
threshold (threshold = 0.13 − (k − 1) × 0.005, k: the k value
of the k-means algorithm). In this case, the spectra of pixels in
this temporary tissue region are taken as on-tissue spectra, and
the on-tissue spectra extraction is complete. If the dissim-
ilarities of all combinations from the combination set are
higher than the threshold, the next round of clustering will be
performed. If the dissimilarities of all combinations in every
clustering round are higher than the threshold, the result with
the smallest dissimilarity is used.

Hyperspectral visualization is used to summarize complex
MSI data to generate a summary image with anatomical
information. MSI data, including on-tissue and background
spectra, are embedded into three dimensions through
dimensionality reduction methods. The background spectrum
is represented by the mean spectrum of the spectra in the
background region. The embedding results of dimensionality
reduction are finally converted to the RGB color space. The
selectable dimensionality reduction methods include UMAP29

and PCA. UMAP is implemented using the Python package
“umap-learn” (version 0.5.1), and PCA is applied using the
Python package “scikit-learn” (version 0.24.2).
Multimodal Registration. The third procedure, multi-

modal registration, is implemented to acquire the optimal
transformation matrices for registering MSI data into the
corresponding histological image. The MS hyperspectral
visualization image and the processed histological image are
first converted from a 3D RGB image into a 1D grayscale
image using RGB-to-gray conversion.

In the initial image registration step, the orientation and
scale differences between the histological and MSI hyper-
spectral visualization images are processed. Eight orientation
difference situations are generated and evaluated to determine
the orientation differences. The eight situations are large-angle
rotation differences (0, 90, 180, and 270°) with and without

reflection. Mutual information loss between two modality
images is used as a matching image metric to determine the
possible difference. To solve the spatial resolution difference
between the two images, the scale factor is calculated based on
the circumcircle radius of the tissue contours in the two
images. The temporary histological image is scaled with the
reciprocal of the scale factor. The eight situations are separately
generated through rotation and mirror flip operations. To
minimize the deviation from relative displacement under any
situation, the centers of mass of tissue regions in two images
are overlapped through translation. The image matching
metrics of all situations are compared, and the situation with
minimal mutual information loss is taken as the possible
orientation difference between the two images. The MS
hyperspectral visualization image is transformed with mirror
flip, rotation, and scaling operations based on a possible
orientation difference.

The small difference between the hyperspectral visualization
image after initial image registration and the histological image
is eliminated in intensity-based image registration. Intensity-
based image registration is performed using the Python
package “itk-elastix” (version 0.13.0), an ITK Python interface
to Elastix.30 Grayscale and corresponding mask images from
MSI data and histology are input. An adaptive stochastic
gradient descent optimizer is used to optimize the optimal
transform parameters between moving and fixed images to
minimize the mutual information loss function. Histological
images are used as the fixed images, and MS images are the
moving images.

In the last step of multimodal registration, a series of
transformation parameters are integrated into three trans-
formation matrices, including the matrix for processing the
situations of reflection relationship and large-angle rotation
difference, the scale matrix, and the similarity transformation
matrix converted from transformation parameters in Elastix.
The three transformation matrices are output in a single text
format file.
Spectral Index Extraction. In the spectral index

extraction, MSI data spectral indices in the ROI of the
corresponding histological image are extracted and output to
users for subsequent analysis. ROIs are used to extract the
corresponding spectral indices in MSI data based on the
transformation matrices from automatic registration. To
determine the corresponding ROI spectra, the index table in
2D form is transformed sequentially with nearest-neighbor
interpolation by three transformation matrices from multi-
modal registration. To verify whether the spectrum was in the
ROI, the area of each spectrum at the ROI and the total area of
each spectrum at the histological image scale are calculated. If
the ROI and total area percentage at the histological image
scale are larger than the threshold (50%), the spectrum is
identified as one of the ROI spectra. Finally, the spectrum
indices at the ROI are output in a text format.
Registration Evaluation. A total of 27 sample data points

are selected from five data sets to evaluate the performance of
MSIr. The sample data for evaluation are selected based on
obvious visual inspection and feasible separation from the
neighborhood in both the MSI data and histological images.
The region as a standard answer in MSI data is generated
based on intensity data of specific m/z values. For each specific
m/z value, the intensity data are rescaled into a range of 0−255
with a low quantile threshold of 0% and a high quantile
threshold of 99%. Then, each m/z value ion image is merged
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with the average weight, and this merged image is binarized
through the Otsu threshold. Depending on the status of binary
images, morphological operations (closing with a 3 × 3 square
structural element) are applied to remove small holes. The
specific m/z values of each study are listed in Table S2, and the
specific m/z values are selected based on significant findings of
metabolites in each of the previous publications (data sets 1−
3) or manually selected based on the features from histological
images for data set 4 and data set 5. The regions in histological
images corresponding to the standard answer region in MSI
data are labeled manually. These regions include intact tissue
regions, some tissue regions with abnormal tissue types, and
holes in tissue regions.

In the evaluation of registration results, the regions in the
registration result corresponding to the labeled regions in the
histological image are extracted. Both the Dice coefficient and
Hausdorff distance are used to evaluate the MSI space because
these two coefficients have been used for registration
evaluation between MSI data and histology.13,16
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(13) Abdelmoula, W. M.; Škrásǩová, K.; Balluff, B.; Carreira, R. J.;

Tolner, E. A.; Lelieveldt, B. P. F.; van der Maaten, L.; Morreau, H.;

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.2c04360
Anal. Chem. 2023, 95, 3317−3324

3323

https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.2c04360/suppl_file/ac2c04360_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.2c04360/suppl_file/ac2c04360_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yufeng+Jane+Tseng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8461-6181
https://orcid.org/0000-0002-8461-6181
mailto:yjtseng@csie.ntu.edu.tw
mailto:yjtseng@csie.ntu.edu.tw
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bo-Jhang+Lin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tien-Chueh+Kuo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4794-0134
https://orcid.org/0000-0002-4794-0134
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hsin-Hsiang+Chung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6476-3814
https://orcid.org/0000-0001-6476-3814
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ying-Chen+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ming-Yang+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cheng-Chih+Hsu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2892-5326
https://orcid.org/0000-0002-2892-5326
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Po-Yang+Yao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c04360?ref=pdf
https://doi.org/10.1021/acs.analchem.7b04733?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b04733?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cbpa.2018.10.023
https://doi.org/10.1016/j.cbpa.2018.10.023
https://doi.org/10.1016/j.ijms.2018.02.007
https://doi.org/10.1016/j.ijms.2018.02.007
https://doi.org/10.1002/rcm.8145
https://doi.org/10.1039/d0ay01113d
https://doi.org/10.1055/s-0044-100188
https://doi.org/10.1055/s-0044-100188
https://doi.org/10.1021/acs.analchem.0c04595?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s11307-018-1267-y
https://doi.org/10.1021/acs.analchem.0c04986?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/bs.acr.2016.11.002
https://doi.org/10.1016/bs.acr.2016.11.002
https://doi.org/10.1021/acs.analchem.8b02884?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1310524111
https://doi.org/10.1073/pnas.1310524111
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.2c04360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


van den Maagdenberg, A. M. J. M.; Heeren, R. M. A.; McDonnell, L.
A.; Dijkstra, J. Anal. Chem. 2014, 86, 9204−9211.
(14) Patterson, N. H.; Yang, E.; Kranjec, E. A.; Chaurand, P.
Bioinformatics 2019, 35, 1261−1262.
(15) Bemis, K. D.; Harry, A.; Eberlin, L. S.; Ferreira, C.; van de Ven,

S. M.; Mallick, P.; Stolowitz, M.; Vitek, O. Bioinformatics 2015, 31,
2418−2420.
(16) Race, A. M.; Sutton, D.; Hamm, G.; Maglennon, G.; Morton, J.

P.; Strittmatter, N.; Campbell, A.; Sansom, O. J.; Wang, Y.; Barry, S.
T.; Takáts, Z.; Goodwin, R. J. A.; Bunch, J. Anal. Chem. 2021, 93,
3061−3071.
(17) Hu, M. K. IRE Trans. Inf. Theory 1962, 8, 179−187.
(18) Verbeeck, N.; Caprioli, R. M.; Van de Plas, R. Mass Spectrom.
Rev. 2020, 39, 245−291.
(19) Smets, T.; Verbeeck, N.; Claesen, M.; Asperger, A.; Griffioen,

G.; Tousseyn, T.; Waelput, W.; Waelkens, E.; De Moor, B. Anal.
Chem. 2019, 91, 5706−5714.
(20) Smets, T.; Waelkens, E.; De Moor, B. Anal. Chem. 2020, 92,

5240−5248.
(21) Kobayashi, S.; Saltz, J. H.; Yang, V. W. World J. Gastroenterol.
2021, 27, 2545−2575.
(22) Tran, K. A.; Kondrashova, O.; Bradley, A.; Williams, E. D.;

Pearson, J. V.; Waddell, N. Genome Med. 2021, 13, 152.
(23) Oetjen, J.; et al. Gigascience 2015, 4, 20.
(24) Guenther, S.; Muirhead, L. J.; Speller, A. V. M.; Golf, O.;

Strittmatter, N.; Ramakrishnan, R.; Goldin, R. D.; Jones, E.; Veselkov,
K.; Nicholson, J.; Darzi, A.; Takats, Z. Cancer Res. 2015, 75, 1828−
1837.
(25) Abbassi-Ghadi, N.; Veselkov, K.; Kumar, S.; Huang, J.;

Strittmatter, N.; Guenther, S.; Kudo, H.; Goldin, R.; Takats, Z.;
Hanna, G. B. Chem. Commun. 2014, 50, 3661.
(26) Haug, K.; Cochrane, K.; Nainala, V. C.; Williams, M.; Chang, J.

K.; Jayaseelan, K. V.; O’Donovan, C. Nucleic Acids Res. 2020, 48,
D440−D444.
(27) Lin, L.-E.; Chen, C.-L.; Huang, Y.-C.; Chung, H.-H.; Lin, C.-

W.; Chen, K.-C.; Peng, Y.-J.; Ding, S.-T.; Wang, M.-Y.; Shen, T.-L.;
Hsu, C.-C. Anal. Chim. Acta 2020, 1100, 75−87.
(28) Abasi, S.; A. Tehran, M. A.; Fairchild, M. D. Color Res. Appl.
2020, 45, 632−643.
(29) McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold

approximation and projection for dimension reduction. 2018,
arXiv:1802.03426. arXiv preprint.
(30) Klein, S.; Staring, M.; Murphy, K.; Viergever, M. A.; Pluim, J. P.

W. IEEE Trans. Med. Imag. 2010, 29, 196−205.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.2c04360
Anal. Chem. 2023, 95, 3317−3324

3324

https://doi.org/10.1021/ac502170f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/bty780
https://doi.org/10.1093/bioinformatics/btv146
https://doi.org/10.1093/bioinformatics/btv146
https://doi.org/10.1021/acs.analchem.0c02726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.0c02726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/Tit.1962.1057692
https://doi.org/10.1002/mas.21602
https://doi.org/10.1002/mas.21602
https://doi.org/10.1021/acs.analchem.8b05827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.8b05827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b05764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.9b05764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3748/wjg.v27.i20.2545
https://doi.org/10.3748/wjg.v27.i20.2545
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1186/s13742-015-0059-4
https://doi.org/10.1158/0008-5472.Can-14-2258
https://doi.org/10.1158/0008-5472.Can-14-2258
https://doi.org/10.1039/C3CC48927B
https://doi.org/10.1093/nar/gkz1019
https://doi.org/10.1093/nar/gkz1019
https://doi.org/10.1016/j.aca.2019.11.014
https://doi.org/10.1002/col.22494
https://doi.org/10.1002/col.22494
https://doi.org/10.1109/TMI.2009.2035616
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.2c04360?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

