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Assessing the quality of 
supplementary sensory feedback 
using the crossmodal congruency 
task
Daniel Blustein   1, Adam Wilson2 & Jon Sensinger 1,2

Advanced neural interfaces show promise in making prosthetic limbs more biomimetic and ultimately 
more intuitive and useful for patients. However, approaches to assess these emerging technologies are 
limited in scope and the insight they provide. When outfitting a prosthesis with a feedback system, such 
as a peripheral nerve interface, it would be helpful to quantify its physiological correspondence, i.e. 
how well the prosthesis feedback mimics the perceived feedback in an intact limb. Here we present an 
approach to quantify this aspect of feedback quality using the crossmodal congruency effect (CCE) task. 
We show that CCE scores are sensitive to feedback modality, an important characteristic for assessment 
purposes, but are confounded by the spatial separation between the expected and perceived location of 
a stimulus. Using data collected from 60 able-bodied participants trained to control a bypass prosthesis, 
we present a model that results in adjusted-CCE scores that are unaffected by percept misalignment 
which may result from imprecise neural stimulation. The adjusted-CCE score serves as a proxy for a 
feedback modality’s physiological correspondence or ‘naturalness’. This quantification approach gives 
researchers a tool to assess an aspect of emerging augmented feedback systems that is not measurable 
with current motor assessments.

The performance of clinically-available upper-limb prostheses has been partly hindered by a lack of intuitive and 
useful feedback1,2. Direct neural or cortical stimulation to convey force or other feedback to a user controlling 
a prosthetic hand may lead to improved systems that better mimic the dynamics of the intact human hand. 
Peripheral nerve interfaces (PNIs) with bidirectional communication between device and body have been shown 
effective in controlled settings3–6. Advances in feedback applied via spinal or cortical stimulation also show prom-
ise to drive forward prosthetic technologies7–10. Efforts to improve long term viability, once a concern for such 
invasive interfaces with the nervous system, have also advanced using wireless signal transmission11, osseointe-
gration approaches12, and stable electrode designs13. While the promise of emerging prosthetic feedback systems 
is apparent, the development of feedback assessment tools has lagged these emerging technologies.

Traditional performance-based movement assessments may not capture the overall quality of a novel feedback 
modality. Standard clinical motor assessments such as the Box and Blocks Test14, the Nine Hole Peg Test15, the 
Southampton Hand Assessment Procedure16 and the Assessment of Capacity for Myoelectric Control17 focus 
on quantifying motor performance but do not provide insight into other potential factors of particular feedback 
systems. Emerging feedback systems may provide intrinsic value beyond motor performance gains. Evidence 
suggests that user-trusted feedback can lead to aspects of incorporation and embodiment18, that could improve 
prosthesis acceptance2, reduce phantom pain19,20 or provide other benefits that would not be detected by tradi-
tional motor assessments21.

Emerging prosthetic feedback studies have relied on qualitative subjective user descriptions of feedback qual-
ity4,22. Users report the location and sensation of the applied feedback and the quality of that feedback is inferred. 
For example, in one study participants described sensations in terms of pressure, tingle, vibration, or light moving 
touch4. As stimulation intensity was varied, one subject described the sensation as changing from “tingly” to “as 
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natural as can be”4. Some conclusions are clearly justifiable, for example, self-described “natural, non-tingling 
feedback” is presumably better than “uncomfortable, deep, dull vibration”4. But not all self-reported sensory 
descriptions are as easy to interpret. Recent focus has shifted to make these qualitative observations more reliable 
and quantifiable23. When a user perceives touch through a feedback system, how closely does that percept match 
the touch sensation experienced with intact anatomy? Unnatural feedback may be difficult to interpret, or even 
painful24. In this study we have sought to objectively quantify the physiological correspondence, or naturalness, 
of supplementary sensory feedback modalities.

Quantifying the quality of a feedback system is the goal of this work but the spatial alignment of the perceived 
feedback can be a confounding factor. When stimulating the nervous system via a PNI or other brain-machine 
interface, the perceived location of the feedback may differ from the intended feedback location. For example, 
a visually-observed contact on a prosthetic fingertip may be felt, as the result of neural stimulation, several cen-
timeters away at the base of the palm (see Fig. 1, top right panel)22. This spatial misalignment between actual and 
expected percept may greatly affect the feedback’s usability. Assessments of feedback quality must consider both 
the effect of misaligned percepts and the naturalness of the stimulation.

The crossmodal congruency effect (CCE) score provides an objective measure of incorporation of a feedback 
modality25–28. The degree of feedback incorporation, indicated by the CCE score, is affected by the two interacting 
factors affecting feedback quality: spatial alignment of percepts and physiological correspondence, or natural-
ness25,29,30 (Fig. 1). This metric has been used to quantify incorporation in the rubber hand illusion28,31 and shows 
promise for assessment of neuroprosthetics32. In this study we aim to remove the spatial bias from the CCE score 
to arrive at an adjusted CCE score that is a proxy for physiological correspondence.

The CCE task is an established psychophysics protocol that involves the speeded discrimination of target stim-
uli25. Participants are presented with a target stimulus in one of two locations. Concurrent distractor feedback in 
the form of an illuminated LED is presented in one of two alignments: 1. Congruent, the illuminated LED is on 
the same side as the target feedback (Fig. 1, top row); or 2. Incongruent, the illuminated LED is on the opposite 
side of the target feedback (Fig. 1, bottom row). The participant is asked to rapidly select the location of the tar-
get feedback with one of two foot pedals that each correspond to one “side” of the target feedback. In one of our 
implementations, the left and right foot pedals correspond to vibratory target feedback on the thumb and index 
finger, respectively (Fig. 1, left column).

The CCE score is calculated as the difference between the reaction time to incongruent stimuli and the reac-
tion time to congruent stimuli. An increase in the incongruent reaction time relative to the congruent reaction 
time is indicative of longer cognitive processing times required to ignore the distractor LED and select the target 
feedback with incongruent stimuli. Incongruent reaction time, and therefore CCE score, is maximized when the 
conditioned response to the target feedback is strongest, i.e. the feedback modality is highly incorporated into 
a person’s body schema33,34. As the target feedback becomes less natural feeling, it is more poorly incorporated, 
resulting in a weaker conditioned response and lower CCE scores28. CCE is a useful measure, however, its value 
as a direct measure of physiological correspondence is conflated by its dependency on spatial co-location25. Here 
we show that the spatial separation factor can be removed from the CCE score, enabling a measurement of phys-
iological correspondence that is independent of spatial co-location.

Figure 1.  Crossmodal congruency effect framework. Participants rapidly select the target feedback (e.g. 
vibration shown in red). The target feedback is presented concurrently with distractor visual feedback (green 
LED). Feedback can be presented congruently, i.e. visual and target feedback collocated in the top row, or 
incongruently with mismatched visual and target feedback. The crossmodal congruency effect (CCE) score is 
the difference between the response time to congruent and incongruent stimuli. The cross-modal effect can also 
manifest as an elevated error rate during incongruent trials25. Spatial separation, the physical distance between 
the two paired sensory percepts, can be varied, and is indicated with the rulers.
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Figure 2.  Experimental setup. Able-bodied participants donned a bypass prosthesis36 during a training phase 
that immediately proceeded the CCE score assessment. During the CCE protocol, participants were provided 
target feedback (e.g. vibration) coupled with visual feedback via the distractor LEDs. Participants were asked 
to respond as quickly as possible, with foot pedals, to select the location (left vs. right) of the target feedback. 
See Methods for more details on the protocol. During training, participants controlled the bypass prosthesis 
with electromyographic signals to move mechanical eggs over a barrier. The sensorized prosthesis could detect 
force applied to the thumb and the index finger via embedded strain gauge sensors and provide proportional 
feedback to the user conveyed as vibration, electrical stimulation or skin deformation. During training and 
testing the intact hand and harness are covered with black fabric.

Figure 3.  Feedback modality affects CCE score. Means and standard error plotted for 20 participants in each 
feedback modality group. Statistical significance verified using three-way ANOVA with Bonferroni post-hoc 
comparison. *p < 0.05.
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We completed a comprehensive study of 60 able-bodied participants controlling a bypass prosthesis under 
different feedback conditions. We found that incorporation after training, as measured by CCE score, changes 
with feedback modality (i.e. physiological correspondence). After extended training, CCE score increased as the 
spatial separation between expected and perceived feedback decreased. The model we generated from these data 
provides an adjusted CCE score with the effect of spatial separation removed. This provides a bias-free quanti-
fication of physiological correspondence, or naturalness. Since the target feedback applied in the CCE task is 
analogous to the feedback applied via a PNI with a sensorized prosthesis, this adjusted CCE score assessment 
can be used to quantify an aspect of the naturalness of a prosthetic feedback system. The approach we present 
provides an important first step towards quantitatively measuring the degree to which feedback actually feels 
physiologically accurate.

Results
To determine if different modalities of feedback provided to a person could be incorporated, we measured the 
CCE score25,35 of 60 able-bodied individuals after training with a bypass prosthesis36 (Fig. 2). Participants trained 
using the bypass prosthesis to move mechanical eggs with one of three feedback modalities: vibration, electrical 
stimulation or skin deformation36. Training duration (short vs. extended) and spatial separation between the 
expected feedback on the fingertip contact point and the perceived feedback (matched on fingertip vs. >12 cm 
away) were also varied (see Supplementary Table S1 for all experimental conditions). We first show that CCE is 
a useful measure of physiological correspondence, i.e. it is sensitive to changes in feedback modality. We then 
demonstrate that the CCE is affected by changes in spatial separation. Then we generate a regression model that 
can remove the effect of spatial separation from the CCE score, resulting in an adjusted CCE score that captures 
an unbiased measure of physiological correspondence.

We observed a main effect of feedback modality on CCE score (Fig. 3). A three-way ANOVA with CCE score 
as the dependent variable and three categorical independent variables representing spatial separation, training 
level and the three feedback modalities resulted in a statistically significant effect of feedback (F(2,48) = 6.015, 
p = 0.0047, ω = 0.28). None of the interaction terms between independent variables were statistically significant 
(p > 0.05). Bonferroni post-hoc tests showed that the CCE score was significantly higher for vibration feedback 
[µ = 120 ms ± 53] compared to skin deformation feedback [µ = 71 ms ± 46] (p = 0.0048) and non-significantly 
higher than electrical stimulation [µ = 84 ms ± 36] (p = 0.052). A higher CCE score indicates a higher level of 
incorporation for that feedback modality25. The trends observed with data binned for each modality are also 
seen with the CCE scores of each of the 12 treatment groups (Supplementary Fig. S1). Feedback modalities differ 
in their level of physiological correspondence to intact biological feedback. Changes in the provided feedback 
modality thus represent a change in physiological correspondence, a manipulation that had a significant effect on 
the measured CCE score.

The spatial separation between perceived and expected feedback affects CCE score, but only after extended 
training (Fig. 4, Supplementary Fig. S1). To isolate the effect of spatial separation from the differences in CCE 
score observed across modalities (Fig. 3), we normalize CCE scores within each modality and combine nor-
malized scores into one group for comparison (Fig. 4). Within each modality the same trend is observed: after 
extended training, raw CCE scores are higher with low spatial separation than with high spatial separation 
(Supplementary Fig. S1). In participants with extended training periods, there was a significant effect of spatial 
separation on normalized CCE score (unpaired t-test, 2-tailed, p = 0.035) (Fig. 4a). CCE scores decreased as 

Figure 4.  Spatial separation affects CCE score after training. (a) CCE score decreased with increased spatial 
separation for extended-training participants. (b) There was no observed effect of spatial separation on CCE 
score after short periods of training. Statistical significance tested using unpaired two-sample equal variance 
t-tests: *p < 0.05. Reported results are normalized to the group mean within each feedback type to account for 
global differences across modalities.
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spatial separation increased, indicating that incorporation diminished as the perceived feedback did not align 
with the expected feedback location. Spatial separation appeared to have no effect on CCE score in participants 
with a short training period (unpaired t-test, 2-tailed, p = 0.88) (Fig. 4b). Short training involved 50 minutes of 
practice moving mechanical eggs and extended-training lasted 80 minutes. Since spatial separation only had a 
significant effect on the measured CCE score after extended training, we do not include the short training data 
in further analysis.

Figure 5.  Adjusted CCE score is not affected by spatial separation. Top panel. CCE score means and standard 
error for the extended-training participants. For each modality, the CCE score is lower for the high spatial 
separation group. Bottom panel. CCEA results for the extended-training participants. The effect of the spatial 
separation observed in the CCE score results is not present.

Figure 6.  Physiological correspondence benchmark scale. Benchmark data for different feedback modalities to 
allow for comparison and contextualization of results from the assessment of novel feedback systems. Maximum 
CCE scores using intact physiology and no spatial separation are indicated35.
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Given that CCE score is an indicator of physiological correspondence, but spatial separation has a biasing 
effect on the metric, we attempted to fit a model to calculate an adjusted CCE score. The adjusted CCE score, 
the CCEA, would be unbiased by the confound of spatial separation and solely represent the physiological corre-
spondence of the provided feedback. To approximate the baseline adjusted CCE score (CCEA) for each feedback 
modality, we used the average CCE score for all treatment groups within that modality. This allowed for the con-
version of the categorical feedback modalities to a continuous scale. Since we established that CCE score is biased 
by spatial separation, we used a corrective model to remove this influence. We first fit a multiple linear regression 
to the data from the 30 extended-training participants (F(2,27) = 4.93, p = 0.015, R2 = 0.27). The model can be 
expressed as

= + +CCE B CCEadjusted B SpatialSeparation B( ) ( ) (1)0 1 2

where B0 = 0.98 (p = 0.028), B1 = −37.6 (p = 0.043) and B2 = 22.85 (p = 0.58). The spatial separation term was 
defined as zero for spatial separations of 3.0 cm or less, and one for spatial separations greater than 12.0 cm. Note 
that the intercept coefficient B2 is not statistically different from zero but was included so that the linear model 
could be used with low CCE scores under high spatial separation conditions. Given measured values for CCE 
score and spatial separation, the CCEA of a feedback system can be estimated by rearranging Equation 1 as

=
+ . ∗ − .

.
CCEadjusted CCE SpatialSeparation37 6 22 8

22 8 (2)

This equation was used to calculate the CCEA for all extended-training participants (Supplementary Fig. S2). 
The spatial separation bias on CCE score (Fig. 4a) was observed as trends within the extended-training results 
for each modality (Fig. 5, top panel). This bias was not present when observing CCEA results of the same partic-
ipants calculated using Equation 2 (Fig. 5, bottom panel), supporting the model’s ability to account for the effect 
of spatial separation.

We further analyzed the data to investigate possible explanations for the low CCE score observed with skin 
deformation feedback. The low CCE score could not be attributed to the latency of the skin deformation feedback 
application (Supplementary Data S1). Additionally, we observed no significant trend between motor performance 
(movement success rate during training) and CCE score (Supplementary Fig. S3).

Discussion
We have demonstrated that CCE scores can be used to assess feedback quality. We collected CCE scores from 60 
able-bodied participants using a bypass prosthesis with different feedback systems. From the results we developed 
a corrective model to output adjusted CCE scores, unaffected by spatial separation biases, that are a proxy for 
physiological correspondence. The adjusted CCE score can be used to assess other novel sensory feedback sys-
tems, such as patients with peripheral nerve interfaces or cortical stimulators. The psychophysics-based technique 
we have presented fills a need for more informative assessment of advanced feedback systems.

Given the adjusted CCE quantification model (equation (2)) and the extended-training data we collected, we 
provide a scale to contextualize CCEA scores (Fig. 6). Researchers who measure the CCE score and spatial separation 
of a feedback system can calculate the CCEA using Equation 2. When assessing the physiological correspondence of 
novel feedback modalities, researchers can use the scale in Fig. 6 as a benchmark for the analysis of results. For exam-
ple, if a feedback modality’s assessed CCEA is 130, then the feedback would have a similar level of correspondence 
to vibration feedback. This example feedback modality would have a high level of physiological correspondence.

Our results support previous findings25,35 showing that CCE score is influenced by feedback modality and spa-
tial separation, i.e. the offset between the target feedback and the distractor visual feedback. Although advanced 
feedback systems strive to minimize spatial separation, the imprecision of neural stimulation makes the gener-
ation of perfectly-aligned percepts quite difficult. A high spatial separation will affect the incorporation of the 
feedback, resulting in a lower CCE score25. Additionally, the dynamics and timing of feedback can affect a user’s 
subjective assessment of its “naturalness”4. Researchers often strive to elicit natural feeling percepts with exper-
imental feedback systems. But to our knowledge we have not seen any attempts at objectively quantifying this 
“naturalness” sensation. We use the CCEA score to capture the degree of physiological correspondence, i.e. how 
well a feedback modality mimics the feedback experienced with intact anatomy, as a proxy for “naturalness”. Since 
CCE score and spatial separation are easily measurable, we can use the relationship between these three variables 
to quantify the CCEA of supplementary sensory feedback.

One potential limitation of the model we developed is that CCE scores may be affected by additional fac-
tors besides physiological correspondence, spatial separation and training. We did not factor in the effect of 
fatigue, time of day, baseline reaction time, and feedback characteristics such as latency, consistency and dynam-
ics. Variability in feedback characteristics were limited by our use of a real-time embedded system to provide 
feedback with correspondingly low latency (<30 ms for vibration and skin deformation). However, the method 
used to calibrate the skin deformation feedback may have led to variable levels of incorporation. For example, the 
haptic tactor starting position was not clearly visible in the experimental setup and for some participants it may 
have been in contact with the skin or arm hair at zero-force levels. Although we could not eliminate the effects of 
all potential factors affecting CCE score, the most significant factors seem to be physiological correspondence, 
spatial separation and training as evidenced by their effects on our CCE results and by previous observations25,37.

CCE scores were affected by training duration: spatial separation only affected CCE score in the extended-training 
participants (Fig. 4). It seems that the short-training participants did not have enough exposure to the feedback to 
reach a maximum level of incorporation, a qualitative finding observed elsewhere although on different timescales38. 
Therefore, to generate the CCE adjustment model we used only extended-training data. The extended-training group 
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had 80 minutes of practice with the feedback system, which is less training than would be typical for patients using this 
assessment. A patient with a novel feedback system will often complete a take-home trial, wearing a device for days to 
weeks, before running this assessment. Therefore, we consider only extended-training data and define the 80-minute 
duration as the minimum exposure necessary for this assessment to be effective. We expect the effect of training to 
plateau and that the model should be applicable to longer training times; nevertheless, this should be verified with an 
additional study.

Although the model’s goodness-of-fit seems low (R2 = 0.27), this is a consequence of the noisiness of human 
psychophysical data and it can still be used to assess supplementary feedback quality. However, the variability of 
CCE scores across individuals may make one-to-one comparison between individuals difficult. We based our 
model development on a population level analysis that, while statistically valid, could lead to misinterpretation of 
a single CCE result. Therefore, we recommend comparisons of CCE scores from the same individual across dif-
ferent feedback modalities or with different training periods. Alternatively, when data from several individuals are 
available, a population-level comparison can be made. A power analysis should be run to determine the number 
of individuals necessary to detect a certain level of improvement supplied by a novel feedback system39. To detect 
the maximum intergroup difference observed in our study (93 ms), and assuming the observed overall variability 
across all 60 participants (SD = 46 ms, normalized to the mean within each group), three individuals would be 
needed to achieve a statistical power of 0.8 at a confidence level of 95%. Increasing the number of individuals 
tested would allow for smaller CCE score differences to be detected. For example, to detect half of the maximum 
difference observed (δ = 47 ms), eight individuals should be tested. The exact number of individuals required 
depends on the CCE score variability that will vary depending on the feedback system and patient population. In 
either the repeat-individual testing approach or the small-group population analysis, a CCE task learning effect 
must be considered when scheduling test sessions35.

The low CCE score observed for skin deformation feedback (Fig. 3) was an unexpected result. Originally we 
hypothesized that using skin deformation feedback to represent the grasp force of the training movements would 
result in the highest level of incorporation. Skin deformation more closely resembles the physical activation of a 
grasping force compared to vibration and electrical stimulation. However, skin deformation feedback resulted in 
the lowest CCE score compared to electrical stimulation and vibration, a statistically significant result that does not 
appear to be the result of noise or random fluctuation. We confirmed that the poor incorporation of skin deforma-
tion was not due to mediocre actuation as latency results were consistent across feedback modalities. In some par-
ticipants the tactor may have been in contact with the skin at a zero-force level. Variable skin contact would result in 
variable perception across participants as the discrete initial skin contact has been shown to be important in improv-
ing feedback effectiveness40. The low incorporation of skin deformation feedback could alternatively be explained 
by long-term depression of afferents due to repeated stimulation or slipping actuators; both explanations would 
be supported by an observed change in detection threshold over the course of the experiment (see Supplementary 
Data S1). A future study is planned to combine the CCE score assessment with an outcome metric that assesses feed-
back uncertainty to more carefully characterize the utility of the skin deformation feedback41.

Participants performed well using skin deformation feedback (Supplementary Fig. S3), but we still observed poor 
incorporation. There did not seem to be a trend between motor performance, measured as the percentage of mechan-
ical eggs moved during the training phase, and CCE score, implying that performance and incorporation are distinct 
concepts. An individual’s quantifiable motor performance may be inflated through the adoption of alternative strategies 
and compensatory movements42,43. Further, motor performance does not necessarily correspond to other important 
aspects of prosthesis use such as device acceptance18, phantom pain reduction19,20 or cognitive burdens21. Therefore, 
clinical movement assessments relying only on motor performance may not be suitable to analyze the performance of 
advanced feedback systems. These assessments also suffer from other limitations such as a reliance on movement tim-
ing and variability introduced by rater subjectivity44. Available motor assessments may be sufficient to monitor clinical 
progress but no single outcome metric captures all relevant performance information45. The CCE-based assessment 
and supporting model we have presented could augment the battery of performance-based assessments currently in 
use to provide more detailed insight into supplementary feedback system performance.

We have presented a data-driven model approach that can remove the spatial separation bias from the CCE 
score to provide an indicator of the physiological correspondence of a feedback modality. This approach repre-
sents a way to provide more informative assessment of prosthetic feedback systems. Further steps will require the 
clinical validation of this assessment tool in patient populations, such as amputees outfitted with peripheral nerve 
feedback systems. Novel feedback systems for amputees require novel assessment tools; this work provides an 
advanced outcome metric to fill that need.

Methods
Participant recruitment.  Participants were recruited by word-of-mouth and provided informed consent 
under the guidelines and approval of University of New Brunswick’s Research Ethics Board. All methods were 
performed in accordance with relevant ethics guidelines and regulations. Sixty volunteer participants completed 
the study [mean age = 31.9 yrs, range = 18–76 yrs, 22 female, 5 left-handed]. Participants were randomly assigned 
to a treatment condition which specified feedback modality [vibration, electrical stimulation or skin deforma-
tion], training duration [short or extended], and spatial separation between visual and target feedback [low or 
high]. There were ten treatment groups and each participant completed training and CCE assessment for one 
modality at a given spatial separation and for a particular training duration.

Bypass prosthesis.  Participants first trained using a bypass prosthesis with myoelectric control and 
embedded force sensors in the thumb and index finger that proportionally drove feedback intensity. The bypass 
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hardware is described in detail elsewhere36. Each participant only received the assigned feedback modality at the 
assigned spatial separation condition.

Feedback implementation.  Skin deformation feedback was applied using linear mechanotactile haptic 
tactors attached to the subject (design courtesy of the University of Alberta46). Each tactor used a rack and pinion 
gear system to convert rotational motion generated by a servo motor (HiTec, HS-35HD) to linear motion that 
was applied to the subject’s skin via an 8 mm diameter domed head. Measured force from the sensorized pros-
thetic hand (custom retrofitting of Ottobock MyoHand VariPlus Speed by HDT Global) was mapped to servo 
displacement. Zero force was mapped to a displacement that was a step below the minimum detectable level. The 
maximum displacement was based on the current draw of the servos and limited to approximately 100 mA. This 
level was selected to keep the actuation at a level below which the plastic rack and pinion system would not slip. 
During the training phase, the tactor displacements were proportionally controlled to match the measured forces 
on the thumb and index finger of the instrumented prosthetic hand. During the CCE score assessment, the tactors 
were displaced to approximately 20–25% of the maximum experienced during the training phase.

Vibration feedback was provided by two 10 mm linear resonant actuators (LRAs: Precision Microdrives, 
C10–100) taped to the skin with medical tape (3 M, Micropore). During the training phase, the LRAs were pro-
portionally controlled to correspond to the measured forces on the thumb and index finger of the instrumented 
prosthetic hand. During the CCE score assessment, the stimuli were set to approximately 20–25% of the maxi-
mum intensity experienced during the training phase.

Electrical stimulation was provided by a 2-channel TENS electro-stimulator (Proactive, Pulse). The device 
was modified such that the electrical stimulation intensity could be controlled with isolated analog outputs from 
a myRIO embedded hardware system (National Instruments). During the training phase, the stimulator outputs 
were proportionally controlled to produce paresthetic sensations that corresponded to the measured forces on 
the thumb and index finger of the instrumented prosthetic hand. During CCE score assessment, the stimuli were 
set to the maximum intensity experienced during the training phase. The protocol for electrical stimulation was 
modified compared to the other modalities to limit participant discomfort and avoid painful percepts.

Figure 7.  Variable weight mechanical eggs were moved during training periods. Load cells on eggs detected 
grasp force and simulated an egg breakage with a light cue when a threshold was exceeded.
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Feedback thresholds.  Feedback detection thresholds were measured for each subject to calibrate the stim-
ulation before the training phase. The stimulus intensity was slowly increased until the subject indicated that the 
stimulation was felt. This was repeated three times and the lowest reported stimulus level was used to set the range 
of stimulus. A proportional mapping was used to convert the hand’s force detection range to the subject’s stimulus 
detection range. The low end of the force detection range was set slightly below the reported detection threshold 
(~1% PWM duty cycle decrease for vibration and skin deformation feedback; ~10 mV decrease for electrical 
stimulation). The maximum feedback was set to correspond to 1.2× the breaking threshold of the heaviest egg 
(19.4 N). The maximum stimulus level was set based on the type of feedback. The LRAs were set to their maxi-
mum achievable intensity for the maximum stimulus level. The electrical stimulus maximum level was set based 
on the subject’s comfort and to avoid muscle twitch. The feedback detection threshold was measured again after 
the training phase, immediately preceding CCE score assessment.

Spatial separation.  For feedback with low spatial separation, the target feedback was applied at the fingertip 
to match the visually-observed contact point on the prosthetic hand. For feedback with high spatial separation, 
the actuators were attached to the wrist for skin deformation and vibration. For the electrical stimulation low 
spatial separation group, the self-adhesive electrical stimulation pads were wrapped around the index finger or 
thumb. Electrical stimulation on the wrist interfered with EMG control signals so for the high spatial separation 
group the pads were placed on the back of the hand near the major knuckles of the index finger and thumb.

Electromyographic control.  During training, the one-degree-of-freedom prosthetic hand of the bypass 
was controlled with a Complete Control (Coapt) pattern recognition system. Participants trained hand open and 
close control using isometric wrist flexor and wrist extensor muscle contractions using the commercial software 
provided by Coapt.

Training protocol.  Participants in the short-training group completed five training sessions, each last-
ing ≤10 minutes with 10-minute intervening breaks, for 50 minutes of total training. Extended-training partic-
ipants completed eight sessions for 80 minutes of total training. In each training session participants attempted 
to move instrumented mechanical eggs of three different weights and “breaking” thresholds over a 5 cm high 
barrier (Fig. 7). The lightest egg weighed 2.78 N with a breaking threshold of 6.84 N. The medium-weight egg 
weighed 5.45 N with a breaking threshold of 10.52 N. The heaviest egg weighed 9.55 N with a breaking threshold 
of 16.19 N. Each session ended after 100 movement attempts or ten minutes, whichever occurred first. Successful 
and unsuccessful movements were recorded manually by the experimenter. When too much force was applied 
to the mechanical egg, an on-egg LED would illuminate to indicate a broken egg. After breaking a mechani-
cal egg, the subject had to release the egg and restart the movement. Participants wore earplugs and over-ear 
noise-canceling headphones playing Brownian noise to mask actuator and background noise.

CCE assessment.  Following the bypass training, the participant’s CCE score was assessed25 using a modified pro-
tocol35. Participants were asked to make speeded responses to select the location of target feedback presented randomly 
to one of two locations (see Fig. 1) using foot pedals. Left and right foot pedals corresponded to thumb and finger 
feedback locations, or the spatially separated corollaries of those locations. Participants focused on a centrally-located 
fixation LED that illuminated at the start of each trial. After 1000 ms, the left or right distractor LED attached to the 
prosthesis would illuminate concurrent with target feedback applied to the participant’s hand or arm at the left or right 
location (see Fig. 2). Four conditions were possible, congruent and incongruent stimuli for left or right target feedback, 
and were presented in a random order over sequential trials. Visual and target feedback was provided for 250 ms and 
participants were asked to respond as quickly as possible to select the target feedback location.

Participants first completed three familiarization sessions of ten trials each and then four assessment blocks 
of 64 trials each. Participants were seated beside a height adjustable table that was set to a comfortable height. A 
pillow was placed under each subject’s arm to ensure forces and vibrations were not transmitted through the table 
surface. CCE score for each block was computed as mean incongruent time minus mean congruent time. The 
overall CCE score was calculated as the mean of the scores from the four blocks.

Statistical analysis.  Statistical analysis was run using IBM’s SPSS Statistics and MATLAB software. A 
multi-way ANOVA was run with dummy categorical variables used to represent feedback modality, spatial sepa-
ration and training level. Effect size was calculated as ω2 and reported as the square root, ω47. For the linear regres-
sion analysis (see equation (1)), only extended-training data were used. CCE score was the dependent variable 
and Feedback Location and baseline CCE score were the independent variables. The Feedback Location variable 
was set to either zero (distances of 0 to 3 cm, at or near the fingertips) or one (distances of more than 12 cm from 
finger tips, on the wrist or back of hand). Baseline CCE score for each modality was set as the mean CCE score for 
a particular feedback type (71 for skin deformation feedback, 120.5 for vibration, 84.1 for electrical stimulation).

Data availability.  All data are available in the Dataset 1 file that accompanies this manuscript.
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