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Abstract: Electrically conductive plastics with a stable electric response within a wide temperature
range are promising substitutes of conventional inorganic conductive materials. This study examines
the preparation of thermoplastic polyketones (PK30) functionalized by the Paal–Knorr process with
phenyl (PEA), thiophene (TMA), and pyrene (PMA) pendent groups with the aim of optimizing the
non-covalent functionalization of multiwalled carbon nanotubes (MWCNTs) through π–π interactions.
Among all the aromatic functionalities grafted to the PK30 backbone, the extended aromatic nuclei of
PMA were found to be particularly effective in preparing well exfoliated and undamaged MWCNTs
dispersions with a well-defined conductive percolative network above the 2 wt % of loading and
in freshly prepared nanocomposites as well. The efficient and superior π–π interactions between
PK30PMA and MWCNTs consistently supported the formation of nanocomposites with a highly
stable electrical response after thermal solicitations such as temperature annealing at the softening
point, IR radiation exposure, as well as several heating/cooling cycles from room temperature to
75 ◦C.

Keywords: functionalized polyketones; MWCNTs nanocomposites; electrically conductive plastics

1. Introduction

Aliphatic polyketones (PKs) are terpolymers typically produced from carbon monoxide and
unsaturated hydrocarbon monomers. They have not found widespread application in industry and
everyday life yet, but their easy functionalization confer these materials with great potentiality [1–3].
For example, the scalable and mild Paal–Knorr functionalization reaction with N-functionalized
amines yields pyrrolic moieties with a pendent functional group as in a graft polymer, and, in turn,
tunable thermo-mechanical properties to desired values that are close to those of commodity
thermoplastic polymers [4]. Particularly noteworthy is the use of furan-grafted PK, which promotes
the preparation of a thermo-reversible crosslinked polymer network by means of Diels–Alder (DA)
and retro-DA sequences employing conventional heating procedures [5–10]. These features were
found remarkable for endowing functionalized PK with intrinsic self-healing characteristics and

Polymers 2018, 10, 618; doi:10.3390/polym10060618 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-5994-2989
https://orcid.org/0000-0002-8232-2083
https://orcid.org/0000-0003-0738-3393
https://orcid.org/0000-0003-1278-5004
http://www.mdpi.com/2073-4360/10/6/618?type=check_update&version=1
http://dx.doi.org/10.3390/polym10060618
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 618 2 of 16

the ability of being mended and recycled (according to a “cradle to cradle” approach) in order
to prolong their use after their first service life [3,11]. As far as smart materials are concerned,
we have recently demonstrated the potentiality offered by functionalized PK in achieving flexible
nanocomposites containing well-distributed, exfoliated, and undamaged multi-walled carbon
nanotubes (MWCNTs) [12]. MWCNTs are graphitic monodimensional materials with multiple
exceptional properties that have supported the virtues of their incorporation into polymeric matrices
to produce high-strength, lightweight, and high-performance nanocomposites for a multitude of
applications [13–17]. Thermoplastic polymers such as PK were found to be attractive supporting
materials for MWCNT since they can be easily processed and fabricated into several solid-state forms
required for different applications [18–20]. The percolative network was found to be poised enough
even at high temperatures thanks to the effective stabilization of MWCNTs provided by the PK polymer
matrix, but a resistivity–temperature profile with a negative temperature coefficient was found [12].
Although this property suggests the utilization of the nanocomposites as temperature sensors thanks to
the semiconducting properties of MWCNTs, plastic polymers with electrically conductive features often
require a stable electric response within a relatively wide range of temperatures [21–23]. Also, stability
towards other external solicitations such as mechanical and chemical stresses is often required [24–31].
This is generally achieved by using a high content of the graphitic filler (i.e., well above the percolation
threshold) or extensive annealing procedures in order to render the percolative pathways within
the polymer matrix fixed and unalterable by external solicitations such as thermal stress [32].
However, shortcomings in these approaches suggest that the optimization and the maximization
of the polymer/MWCNTs interactions at the interface is required, for example, by means of effective
secondary interactions provided by non-covalent functionalization approaches. These approaches
have proven to be highly effective and promising for the exfoliation and dispersion of MWCNTs in
several polymer matrices as a consequence of being easily scalable, reversible, and preserving the
structural integrity of the graphitic network [33]. The latter is a fundamental requisite to preserve the
electronic properties of CNTs [34–37]. The most promising candidates to perform this task are the
extended polycyclic aromatic groups as they, because of their structure, effectively interact with the
graphitic surface of MWCNTs. Once incorporated within the polymer matrix by grafting procedures,
they definitely exert their features, thus potentially providing a plastic nanocomposite with extremely
stable percolation pathways and an electric response that is unaffected by thermal stress [38,39].

In keeping with this rationale, the present work focuses on the preparation of various
functionalized PK bearing aromatic pendent groups such as pyrene, thiophene, and benzene, plus a
non-aromatic alkyl group as a reference, by means of the Paal–Knorr process (Scheme 1). The polymers
were used as a supporting matrix to form nanocomposites containing different amounts of MWCNTs.
The structural features of the nanocomposites as well as their electrical conductivity were analyzed and
discussed in terms of the nature of the pendent aromatic moiety, filler content, and electric response
towards thermal stress.
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Scheme 1. Schematic representation of modified polyketones (PKs) with different amino-compounds
(nBuA: n-butylamine, TMA: 2-thiophenemethylamine, PEA: 1-phenylethylamine, PMA:
1-pyrenemethylamine).

2. Materials and Methods

The alternating aliphatic polyketone (PK30; CO, ethylene, propylene: 50, 30, and 20 mol %,
respectively, MW = 2687 g/mol) was synthesized according to a reported procedure [40].
2-thiophenemethylamine (TMA, pure), n-butylamine (nBuA, ≥99%), phenylethylamine (PEA, 99%),
and 1-pyrenemethylamine hydrochloride (PMA, 95%) were purchased from Sigma-Aldrich (Darmstadt,
Germany) and freshly distilled before use. Multi-walled carbon nanotubes (MWCNTs, Sigma-Aldrich,
as-produced cathode deposit, >7.5% MWCNT basis, O.D. × L 7–15 nm × 0.5–10 µm) were used as an
electrically conductive filler and used as received. Dimethylsulfoxide (DMSO, Acros, 99.7%), ammonia
(Sigma-Aldrich, ca. 25), toluene (anhydrous, 99.8%, Sigma-Aldrich,), tetrahydrofuran (THF ≥ 99.9,
Sigma-Aldrich), and methanol (Sigma-Aldrich, anhydrous, 99.8%) were used as received. Dimethyl
sulfoxide-d6 (DMSO-d6, anhydrous, 99.9 atom % D, Sigma-Aldrich) was used as a deuterated solvent
for 1H-NMR studies.

2.1. Functionalization of Alternating PK30 with Different Amino-Compounds

Typically, 20 g of PK30 was added in a sealed 250 mL round-bottomed glass reactor with a reflux
condenser, a U-type anchor impeller, and an oil bath for heating. An equimolar amount of the desired
amine (n-butylamine, phenylethylamine, 2-thiophenemethylamine) was added dropwise to the reactor
in the first 20 min. The reaction was performed at 110 ◦C under vigorous stirring for 4.5 h. After the
reaction, the mixture was dissolved in chloroform (around 230 mL) and washed several times with
deionized Milli-Q water to remove unreacted amine, and then it was dried in a vacuum oven at 70 ◦C
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for 24 h. The conversion of amine modification was determined by elemental analysis. The reaction
between PK30 and 1-pyrenemethylamine (in molar ratio between the 1,4-dicarbonyl groups of the
PK30 and the amino groups, aiming at a 40% carbonyl conversion) was carried out using toluene as a
solvent in a 100 mL round-bottomed flask equipped with a reflux condenser and using a microwave
apparatus at 100 ◦C, 100 watts, with vigorous stirring for 3 h. After the reaction, the mixture was
dried in a vacuum oven for 24 h. The samples in Table 1 were coded indicating the type of amine
(n-BuA for butylamine, TMA for 2-thiophenemethylamine, PEA for phenylethylamine and PMA for
1-pyrenemethylamine) and the desired carbonyl conversion (XCO). Carbonyl conversion (XCO in %) of
PK was calculated using Equation (1), based on the calculation reported in literature [6]:

XCO =
2 %N

MN
%C
MC

− %N
MN

·nc
y

nc
x

+ 2 %N
MN

·100 (1)

%N, %C: weight of nitrogen and carbon on 100 g of the final product, respectively;
MN: MC atomic weights of nitrogen and carbon;
nc

x: average number of carbons in the unmodified carbonyl repeating unit;
nc

y: average number of carbons in the pyrrolic repeating unit.

The amine conversion (Xamine in %) was calculated from the moles of amine (butylamine,
2-thiophenemethylamine, phenylethylamine, and 1-pyrenemethylamine) in the feed (molamine) using
Equation (2):

χamine =
%N
MN

molamine
× 100 (2)

%N: weight of nitrogen on final product;
MN: atomic weights of nitrogen, 14.01 g/mol;
molamine: moles of amine in the feed.

2.2. Mixing of TMA/PEA/PMA Modified PK30 with Conductive Fillers

In a common recipe, approximately 2.1 g of modified PK30 (PK30TMA, PK30PEA, or PK30PMA)
was dissolved in approximately 35 mL of toluene. The required wt % of MWCNTs (Table 1) was mixed
with the same solvent and sonicated in a bath for 30 min and then poured to the polymer solution
in a round-bottomed flask at 50 ◦C for 24 h under stirring. Then, the mixture was rotary evaporated
and finally transferred into a vacuum oven (70 ◦C for 48 h) to ensure the complete removal of the
solvent. Rectangular solid samples with different dimensions were prepared by compression-molding
at 150 ◦C for 30 min at 40 bar to ensure full homogeneity. Electrical measurements were carried out on
fresh samples or on annealed samples at 75 ◦C for 10 min.

Table 1. Experimental conditions of functionalized PKs mixed with different wt % of multiwalled
carbon nanotubes (MWCNTs).

Sample MWCNTs (%)

PK30TMA 2
PK30TMA 5
PK30TMA 8
PK30PEA 2
PK30PEA 5
PK30PEA 8
PK30PMA 2
PK30PMA 5
PK30PMA 8
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2.3. Characterization

All the synthesized products were analyzed by FT-IR with a PerkinElmer Spectrum 2000
instrument (Perkin-Elmer, San Francisco, CA, USA) provided with an attenuated total reflection
(ATR) system. FT-IR transmission measurements were recorded at the range of 4000 to 500 cm−1 at a
resolution of 4 cm−1 averaged over 64 scans. 1H-NMR spectra were recorded on a Varian Mercury
Plus 400 MHz (Agilent, Santa Clara, CA, USA) using DMSO-d6 as a solvent. The exact amount of
MWCNTs was determined for all mixtures by thermogravimetric analysis (TGA). TGA was carried out
in a nitrogenous environment with TA-Instruments Q50-1182 (Mettler Toledo, Columbus, OH, USA)
from 20 to 700 ◦C at a heating rate of 10 ◦C/min. Glass transition temperatures (Tg) were determined
for all samples using a TA-Instruments Q1000 DSC under N2 atmosphere. Tg was calculated as the
point of inflexion in the DSC curve baseline. Two cycles were performed, and heating and cooling
rates were set to 10 ◦C/min throughout the DSC measurements in the range of temperature of −70 ◦C
to 120 ◦C. The nanocomposite was characterized by high-resolution TEM imaging by an Inspect 50
FEI instrument (FEI, Hillsboro, OR, USA). Samples were analyzed in contrast mode by cryogenic
fracture in order to create a surface with exfoliated MWCNTs. Each sample resistance was measured
with a Gossen Metrawatt Metrahit 18S multimeter (GMC-Instruments Nederland B.V., NL-3449 JD
Woerden, The Netherlands). The ultraviolet-visible-infrared (UV-VIS-NIR) reflectance spectrum was
measured by a Cary5000 spectrometer (Agilent) equipped with the Cary Diffuse Reflectance Accessory
(DRA). A commercially available 100W IR lamp (Kerbl, Buchbach, Germany) was used for the heating
tests. The specimen temperature was measured for the duration of the test by a FLIR™ B50 infrared
thermo-camera (FLIR, Wilsonville, OR, USA).

3. Results and Discussion

3.1. Chemical Modification of Polyketone

All reactions between PKs and the different amino-compounds (Scheme 1) were successfully
carried out in the bulk according to the different molar ratios as reported in Table 2. The reaction
between PK and PMA was also carried out also under microwave irradiation to increase the reaction
rate. In this work, only the results gathered from the use of the microwave apparatus are reported.
The formation of the desired modified PKs was confirmed by 1H-NMR, FT-IR (Figures S1–S4 in
Supplementary Materials), and elemental analysis, and occurred with high conversion efficiency for all
different amines that were used. This result validates the robustness and versatility of the Paal–Knorr
reaction in providing PKs that are functionalized by primary amines with a different chemical nature.

Table 2. Ratio of amine/PK30 in alimentation, the carbonyl conversion (XCO), and the amine conversion
(Xamine) calculated according to Equations (1) and (2), respectively.

Sample Ratio Amine/PK30 XCO (%) Xamine (%)

PK30nBuA 0.40 35.00 95.00
PK30PEA 0.40 43.05 98.05
PK30TMA 0.60 58.78 98.78
PK30PMA 0.40 36.82 96.82

TMA was used in excess with respect to the other amines to check whether an effect of the
concentration of the aromatic pendent groups could be beneficial in the ultimate properties of
the nanocomposite.

The functionalized PKs were also analyzed by thermogravimetric analysis (TGA) aimed at
determining their thermal stability. All polymers remained stable up to ~300 ◦C (Figure 1),
are were therefore suitable for the successive processing for the formation of the nanocomposites.
The background noise recorded for the TGA curves just above 100 ◦C was attributed to the small
weight loss (1–2%) caused by moisture evaporation.
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It is worth noting that PK30PMA, i.e., the PK functionalized bearing pyrene pendent groups,
displayed the highest thermal stability, possibly due to the radical scavenging features of the pyrene
ring [41].
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Figure 1. Comparison of the first derivative thermogravimetric analysis (TGA) curves of the different
functionalized PKs.

3.2. Mixing of TMA/PEA/PMA Modified PK30 with MWCNTs

PK nanocomposites were designed to target a flexible, light, and electrically conductive system.
In this attempt, all PK30 functionalized polymers were used for the preparation of the MWCNTs
nanocomposites, excluding PK30nBuA in view of its relatively low Tg of −6.4 ◦C, which renders it
unsuitable for the formation of self-standing films. The functionalized PK/MWCNT nanocomposites
were prepared by mixing the polymer with different amounts of MWCNTs (Table 1) in toluene.
The TGA analysis yields the amount of MWCNTs dispersed in the polymer matrix from the difference
in weight between the residuals at 600 ◦C and confirmed the content introduced in the feed, thus
indicating the effectiveness of the blending process.

The TGA curves in Figure 2 showed the typical degradation of functionalized PKs with the loss
of the pending moieties at low temperatures (at T > 200 ◦C) followed by the decomposition of the
aminated nitrogen heterocycle at about 300 ◦C, and eventually the severe degradation of the polymeric
backbone beyond 350 ◦C [42].
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Another important result gathered from the TGA investigation was the thermal stabilization of
the nanocomposites based on PK30PMA. It was worth noting that the combination of the PK30PMA
matrix and the scavenging characteristics of MWCNTs postponed the thermal degradation of the
nanocomposite by approximately 80 ◦C. This enhancement in polymer stability was not observed in
the other PK30-based samples (Figure S5). The extra stability could be provided to the system by the
possible existence of strong and effective interactions between the pyrene moieties and the dispersed
MWCNTs, as analogously reported in literature for highly homogeneous polymer nanocomposites
based on graphitic fillers [34,35,43].

Another feature conferred to the PK30 matrix by the presence of the pyrene pendent moieties
was the enhanced polymer rigidity, as demonstrated by the increase in the Tg values of the pristine
functionalized polymers by up to 10 ◦C (Figure 3). The polymer rigidity was also augmented by
the addition of MWCNTs, and this behavior was particularly evident for the nanocomposites based
on PK30PEA and PK30PMA (Figure 3). Nevertheless, in the case of PK30TMA and PK30PMA,
a progressive increase in the Tg value was found with MWCNTs loading, thus suggesting that the
polymer matrix preserves its effective interactions with the graphitic filler even at high concentrations.
However, notwithstanding the higher concentration of TMA groups grafted to the PK30 backbone,
PK30TMA seemed less efficient than PK30PMA. According to the literature, the increase in Tg with
the MWCNTs content is attributed to the increment in the polymer viscosity [44] due to the interfacial
interaction between the polymer chains and the graphitic filler at the molecular level, and is triggered
by the presence of functional aromatic groups included in the backbone or as pendent moieties in the
polymer chains. This behavior hampers the mobility of the polymer chains and hence increases the
Tg [39,45,46]. As a result, the more powerful the polymer/filler interactions are, the higher the Tg of
the nanocomposite becomes.
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analyzed by SEM (Figure 4).
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Figure 4. SEM morphological study of PK30PEA (a), PK30TMA (b), and PK30PMA (c) nanocomposites
containing 8 wt % MWCNTs.

The micrographs neatly correspond with the results obtained by the DSC investigations.
In the PK30TMA and PK30PMA nanocomposites, the MWCNTs appeared more evenly distributed
(Figure 4b,c, respectively) without clustering in isolated islands as it had occurred in the PK30PEA
matrix (Figure 4a). Moreover, in the case of the PK30PMA nanocomposite, the SEM image clearly
displayed the single (unbundled) nanotubes as the dominant species, thus confirming the good
interactions between the MWCNTs and the pyrene-functionalized PK matrix.

3.3. Electrical Conductivity Analysis of PK-Based Nanocomposites

The percolation threshold was determined for all three kinds of modified polyketone
nanocomposites, in order to identify the optimal percentage of MWCNTs loading required to achieve
an interconnecting conductive network throughout the matrix. Annealed nanocomposites at 75 ◦C for
10 min were studied to observe a better electrical conductivity after melt processing the composite
pendent in the literature [24,47]. 75 ◦C was selected as the annealing temperature since all of the
nanocomposite sample became soft, thus potentially favoring MWCNTs reorganization into a more
percolative network. The modified polyketone with pyrene shows the lowest percolation threshold
(≈2 wt % of MWCNTs) with respect to thiophene and phenyl-modified PK (Figure 5a), possibly thanks
to the effective π–π interactions with the MWCNTs that were provided by the extended aromatic
pendent moieties [48,49]. This result was substantial considering the lower amount of the functional
aromatic pendent groups in the PM30PMA with respect to that in PK30TMA. It was worth noting
that PK30PMA nanocomposites containing the 5 wt % of MWCNTs reached the considerable electrical
conductivity of 65 S/m. Notably, the PK30PMA nanocomposite connected to an electrical circuit with
a 9V battery was able to turn on a red-emitting LED (Figure 5b). The low conductivity reached by
the PK30PEA nanocomposite even at the highest MWCNTs content confirmed the lesser ability of the
phenyl pendent groups in activating a powerful interaction with the filler, which caused the formation
of a loose MWCNTs network within the matrix.
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Figure 5. (a) Electrical conductivity of the PK30TMA, PK30PEA, and PK30PMA nanocomposites as a
function of the MWCNTs loading (wt %); (b) photograph of the PK30PMA nanocomposite containing
the 8 wt % of MWCNTs connected to an electrical circuit with a red-emitting LED.

Measurements of electrical conductivity were also carried out on fresh samples aimed at
determining whether the pristine nanocomposites could be already conductive and to monitor its
variation under the annealing conditions (Figure 6). Only the PK30PEA nanocomposite with 5 wt % of
MWCNTs was found to be nonconductive in fresh samples. As a consequence, an apparent positive
variation of the electrical conductivity was found during the annealing for PK30PEA and for PK30TMA
nanocomposites too, i.e., those systems characterized by a higher percolation threshold and a lower
electrical conductivity (see Figure 5a). Conversely, the PK30PMA nanocomposites were found to be
already well conductive in pristine samples and showed the smallest variations in conductivity with
the annealing time. The increase in electrical conductivity was practically negligible for the sample
containing the 8 wt % of MWCNTs. At this content, the PK30TMA nanocomposite also showed limited
variations in the electric response as a confirmation that the more homogeneous MWCNTs phase
dispersion allowed the formation of a more effective and stable percolation network already after
nanocomposite processing.



Polymers 2018, 10, 618 11 of 16
Polymers 2018, 10, x FOR PEER REVIEW  11 of 16 

 

 

(a) 

 

(b) 

Figure 6. Comparison of the relative conductivity variation of PK30TMA, PK30PEA, and PK30PMA 

nanocomposites containing the (a) 5 wt % and (b) 8 wt % of MWCNTs as a function of the annealing 

time at 75 °C. 

On this basis, the PK30PMA nanocomposite proved to be the system with the highest stability 

in the electric response during annealing at the softening point. Therefore, it was selected for further 

investigations aimed at eventually exploring its electric response towards different heating–cooling 

cycles from 25 to 75 °C. The resistivity of the PK30PMA nanocomposite was plotted as a function of 

the heating and cooling time and compared to that measured of PK30TMA system (Figure 7). 

Notably, the resistivity was selected here as it was a more effective parameter than its reciprocal, the 

electrical conductivity, in providing a more reliable analysis. 

Figure 6. Comparison of the relative conductivity variation of PK30TMA, PK30PEA, and PK30PMA
nanocomposites containing the (a) 5 wt % and (b) 8 wt % of MWCNTs as a function of the annealing
time at 75 ◦C.

On this basis, the PK30PMA nanocomposite proved to be the system with the highest stability
in the electric response during annealing at the softening point. Therefore, it was selected for further
investigations aimed at eventually exploring its electric response towards different heating–cooling
cycles from 25 to 75 ◦C. The resistivity of the PK30PMA nanocomposite was plotted as a function of
the heating and cooling time and compared to that measured of PK30TMA system (Figure 7). Notably,
the resistivity was selected here as it was a more effective parameter than its reciprocal, the electrical
conductivity, in providing a more reliable analysis.

The as-prepared PK30PMA nanocomposite demonstrated to be already conductive with a
resistivity of about 0.14 Ω·m. This feature confirms the results gathered from SEM and DSC
investigations that evidenced the ability of the PK30PMA in activating effective interactions with
the graphitic filler, which in turn allowed their homogeneous and percolative distribution within the
polymer matrix. During the first cycle of annealing, the resistivity progressively decreased according
to the electric conductivity variation as reported in Figure 6b, and levelled off to a constant value of
about 0.02 Ω·m. No further variations in resistivity were recorded after cooling and, notably, after
successive heating–cooling cycles. Conversely, the nanocomposite based on PK30TMA and containing
the same 8 wt % of MWCNTs (Figure 7b) but a higher content of aromatic pendent groups also showed
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a temperature-dependent resistivity for the second and the third heating–cooling cycle, thus suggesting
the presence of a percolative network strongly affected by external solicitations such as thermal stress.
Moreover, the poor reversibility of the resistivity values between each cycle possibly indicates the
flawed phase dispersion of MWCNTs, thus confirming the results from microscopies.Polymers 2018, 10, x FOR PEER REVIEW  12 of 16 
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Figure 7. Resistivity changes of (a) PK30PMA and (b) PK30TMA nanocomposites containing the
8 wt % of MWCNTs as a function of heating–cooling cycles from 25 to 75 ◦C.

Since the nanocomposite was able to absorb heat energy once exposed to IR light due to the
presence of MWCNTs [50], the resistivity of the PK30PMA 8 wt % nanocomposite was also monitored
during the IR illumination. After 30 min of exposure, the temperature of the sample raised by
approximately 30 ◦C due to the absorption of more than 85% of the NIR radiation (Figure 8).
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Figure 8. Diffuse reflectance of PK30PMA 8 wt % nanocomposite and thermal images before and after
exposure to IR light for 30 min.

Notwithstanding the heating up of the sample, a negligible variation of the nanocomposite
resistivity was detected, i.e., from 0.14 Ω·m at 24 ◦C to 0.12 Ω·m at 52 ◦C.

Overall, all the experiments collected evidenced the capability of the pyrene-functionalized PK in
supporting the most effective interactions with MWCNTs, their homogeneous phase dispersion, and a
stable percolative network useful in providing a constant electric response even to successive cycles of
thermal stress.

4. Conclusions

Novel thermoplastic PKs were prepared via the Paal–Knorr modification of an alternating
aliphatic PK and labelled by aromatic pendent groups to promote the non-covalent functionalization
of MWCNTs through effective π–π interactions. The chemical reaction converted the waxy PK into a
flexible polymer with tunable Tg values depending on the nature of the aromatic functionalities.
Notably, the highest Tg and degradation temperature was detected for the pyrene-containing
PK30PMA due to the enhanced polymer rigidity and scavenging activity endowed by the extended
aromatic nuclei.

Among the investigated systems, PK30PMA was also found to be the most effective polymer
in promoting strong interactions with MWCNTs, as revealed by the progressive enhancement
of the polymer rigidity with filler loading and the well-exfoliated and undamaged nanotubes
network. This feature allowed the pyrene-modified PK to display the lowest percolation threshold of
approximately 2 wt % of MWCNTs and a maximum electrical conductivity of 65 S/m that was well
above those of the other modified PKs. The PK30PMA nanocomposite was already well-conductive
in freshly prepared samples, and its percolative network was proved to be the most stable during
thermal and infrared annealing and after different heating–cooling cycles from room temperature
to the softening point at 75 ◦C. Overall, all these data consistently support the use of pyrene as a
functionalizing agent for PKs in providing a plastic-conductive network with a moderate concentration
of MWCNTs and a very stable electrical response even after external solicitations such as thermal stress.
Future approaches will be aimed at better rationalizing the combination of the polymer matrix and its
molecular weight, extending the study to conductive fillers of a different nature and aspect ratio.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/6/618/s1,
Figure S1: (a) 1H-NMR and (b) FT-IR spectra of modified pristine PK30 and PK30nBuA, Figure S2: (a) 1H-NMR
and (b) FT-IR spectra of modified pristine PK30 and PK30TMA, Figure S3: (a) 1H-NMR and (b) FT-IR spectra of
modified pristine PK30 and PK30PEA, Figure S4: (a) 1H-NMR and (b) FT-IR spectra of modified pristine PK30
and PK30PMA, Figure S5: TGA curves of (a) PK30PEA and (b) PK30TMA with 2, 5 and 8 wt. % of MWCNTs.
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