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Mapping the epithelial–immune cell interactome upon
infection in the gut and the upper airways
Martina Poletti1,2,14, Agatha Treveil 1,2,14, Luca Csabai1,3, Leila Gul1, Dezso Modos1,2, Matthew Madgwick1,2, Marton Olbei1,2,
Balazs Bohar1,3, Alberto Valdeolivas4,5, Denes Turei4,5, Bram Verstockt 6,7, Sergio Triana 8,9, Theodore Alexandrov 10,11,
Julio Saez-Rodriguez 4,5,11, Megan L. Stanifer 12, Steeve Boulant12 and Tamas Korcsmaros 1,2,13✉

Increasing evidence points towards the key role of the epithelium in the systemic and over-activated immune response to viral
infection, including SARS-CoV-2 infection. Yet, how viral infection alters epithelial–immune cell interactions regulating inflammatory
responses, is not well known. Available experimental approaches are insufficient to properly analyse this complex system, and
computational predictions and targeted data integration are needed as an alternative approach. In this work, we propose an
integrated computational biology framework that models how infection alters intracellular signalling of epithelial cells and how this
change impacts the systemic immune response through modified interactions between epithelial cells and local immune cell
populations. As a proof-of-concept, we focused on the role of intestinal and upper-airway epithelial infection. To characterise the
modified epithelial–immune interactome, we integrated intra- and intercellular networks with single-cell RNA-seq data from SARS-
CoV-2 infected human ileal and colonic organoids as well as from infected airway ciliated epithelial cells. This integrated
methodology has proven useful to point out specific epithelial–immune interactions driving inflammation during disease response,
and propose relevant molecular targets to guide focused experimental analysis.
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INTRODUCTION
Specialised epithelial cells lining the surface of the mammalian
gastrointestinal tract form the primary line of defense against
external stimuli, working in cohort with resident immune cells to
maintain homeostasis and defend the body from infections.
Although the role of both the epithelium and the immune system
during infection have been assessed in previous studies, these
components have often been investigated separately. While this
knowledge has been instrumental in advancing medical research,
the recent COVID-19 pandemic has pointed out the need for
large-scale, integrative models to address key questions that
cannot yet be solved with available experimental models. One
example is: what is the role of an infected cell in inducing systemic
inflammatory responses by communicating to resident immune
cells? To address this critical question, existing yet often
disconnected datasets and computational approaches can be
leveraged to develop a complex but easily interpretable map of
how viral molecules are able affect different cell populations in the
gut, and how infected cells can in turn modulate local and
systemic immune and inflammatory responses.
The recent COVID-19 pandemic is caused by infection with the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
While SARS-CoV-2 mainly targets the lung and upper airways1–3,
other organs can be infected too, including the heart, kidney,
brain, and the intestine4. In addition to directly infecting key
organs, the main hurdle of SARS-CoV-2 infection is the excessive

inflammatory response mediated by both the innate and adaptive
immune systems1,5. The overactivated inflammatory response,
also known as cytokine release syndrome (CRS) or cytokine storm,
is the result of high levels of circulating cytokines and chemokines,
and it is thought to be responsible for the severe COVID-19
symptoms some patients experience6. Yet, there is no clear
understanding of which particular inflammatory pathways and cell
types are responsible for driving this process, and whether some
organs are more important than others in the initiation and
maintenance of this syndrome7. The causal role of SARS-CoV-2 on
intestinal damage and the role of the small intestine in
contributing to CRS was recently highlighted8,9.
Human intestinal organoids have been used as a tool to study

SARS-CoV-2 infection in the gut and the inflammatory responses
of specific intestinal epithelial cell types10–13. These studies
provided evidence that SARS-CoV-2 is able to infect and actively
replicate in human intestinal cells, in particular in enterocytes10,13.
These studies also revealed that, contrary to the limited type I and
type III interferon (IFN) immune response observed in the
lungs14,15, the response to SARS-CoV-2 infection in the gut is
characterised by a cell-type specific inflammatory response that is
important in the development of systemic reactions11. Examina-
tion of human intestinal samples has also shown that infection of
gut epithelial cells results in the activation of local immune
populations16. Yet, the exact effects of viral infection in the gut
and the role of epithelial cell–immune cell interaction in

1Earlham Institute, Norwich Research Park, Norwich, UK. 2Quadram Institute Bioscience, Norwich Research Park, Norwich, UK. 3Department of Genetics, Eotvos Lorand
University, Budapest, Hungary. 4Faculty of Medicine, Heidelberg University, Heidelberg, Germany. 5Institute for Computational Biomedicine, Heidelberg University
Hospital, Heidelberg, Germany. 6Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium. 7Department of Chronic Diseases
and Metabolism, Translational Research in GI disorders, KU Leuven, Leuven, Belgium. 8Structural and Computational Biology Unit, European Molecular Biology
Laboratory, Heidelberg, Germany. 9Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany. 10Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA. 11Molecular Medicine Partnership Unit (MMPU), European Molecular
Biology Laboratory, Heidelberg, Germany. 12Department of Infectious Diseases, Heidelberg University Hospital Heidelberg, Heidelberg, Germany. 13Department of Metabolism,
Digestion and Reproduction, Imperial College London, London, UK. 14These authors contributed equally: Martina Poletti, Agatha Treveil. ✉email: t.korcsmaros@imperial.ac.uk

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-022-00224-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-022-00224-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-022-00224-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-022-00224-x&domain=pdf
http://orcid.org/0000-0002-5600-8189
http://orcid.org/0000-0002-5600-8189
http://orcid.org/0000-0002-5600-8189
http://orcid.org/0000-0002-5600-8189
http://orcid.org/0000-0002-5600-8189
http://orcid.org/0000-0003-3898-7093
http://orcid.org/0000-0003-3898-7093
http://orcid.org/0000-0003-3898-7093
http://orcid.org/0000-0003-3898-7093
http://orcid.org/0000-0003-3898-7093
http://orcid.org/0000-0003-0370-7821
http://orcid.org/0000-0003-0370-7821
http://orcid.org/0000-0003-0370-7821
http://orcid.org/0000-0003-0370-7821
http://orcid.org/0000-0003-0370-7821
http://orcid.org/0000-0001-9464-6125
http://orcid.org/0000-0001-9464-6125
http://orcid.org/0000-0001-9464-6125
http://orcid.org/0000-0001-9464-6125
http://orcid.org/0000-0001-9464-6125
http://orcid.org/0000-0002-8552-8976
http://orcid.org/0000-0002-8552-8976
http://orcid.org/0000-0002-8552-8976
http://orcid.org/0000-0002-8552-8976
http://orcid.org/0000-0002-8552-8976
http://orcid.org/0000-0002-5606-1297
http://orcid.org/0000-0002-5606-1297
http://orcid.org/0000-0002-5606-1297
http://orcid.org/0000-0002-5606-1297
http://orcid.org/0000-0002-5606-1297
http://orcid.org/0000-0003-1717-996X
http://orcid.org/0000-0003-1717-996X
http://orcid.org/0000-0003-1717-996X
http://orcid.org/0000-0003-1717-996X
http://orcid.org/0000-0003-1717-996X
https://doi.org/10.1038/s41540-022-00224-x
mailto:t.korcsmaros@imperial.ac.uk
www.nature.com/npjsba


mediating the inflammatory response of the body are not known.
This information could ultimately aid the development of
treatments and strategies to optimize the level and type of
immune response as we would understand better the viral
strategies that dysregulate our immune system. Due to the lack of
adequate and complex experimental systems, to the best of our
knowledge, no study has been carried out so far to analyse
epithelial–immune crosstalk in the gastrointestinal tract upon
SARS-CoV-2 infection.
Here, we introduce a computational framework to map

epithelial–immune interactions, improve our understanding in
the gut or in other organs by interpreting existing data better, and
importantly, provide a short list of key molecules for targeted
experimental validations. To achieve this, we integrated two
previously developed intracellular modelling tools (ViralLink and
CARNIVAL) with intercellular network approaches (from Omni-
Path)17–19. We present two proof of concept studies on intestinal
organoids and upper airways ciliated cells. We used available
SARS-CoV-2–human mRNA/protein–protein interaction predic-
tions to model the effect of viral infection on intracellular
signalling networks in host intestinal and ciliated cells, and
applied published single-cell datasets to create cell-type, organ
and context-specific epithelial–immune interaction maps. We
demonstrated the importance and usefulness of this map with
integrated analyses, which provided an improved understanding

of the effect of viral infection on ileal, colonic and airway epithelial
cells, and the role of epithelial–immune cell crosstalk during SARS-
CoV-2 infection. Ultimately, this framework may help to find key
intercellular inflammatory pathways involved in these crosstalks
that could pave the way for potential successful strategies against
the cytokine release syndrome associated-symptoms observed in
severe cases of COVID-19. Importantly, the presented integrated
framework will allow investigating other infections and conditions
for which our analytical toolkits can be repurposed.

RESULTS
Reconstructing the intestinal epithelial–immune interactome
In our previous work, we identified a subpopulation of enterocytes
as the prime target of SARS-CoV-2 (BavPat1/2020 strain), with
directly infected cells showing a high pro-inflammatory response
and little to no interferon-mediated response as the result of a
SARS-CoV-2-mediated inhibition of interferon signalling13. These
findings highlighted the key role of the gut as a pro-inflammatory
reservoir, which primes for further investigation to be able to fully
understand SARS-CoV-2 pathogenesis. Building on this study, we
created an integrated bioinformatics framework that enables the
investigation of the infected epithelial cell–immune cell crosstalk
in a cell-type specific manner (Fig. 1). To do so, we exploited

Fig. 1 Integrated workflow to analyse the intracellular and intercellular effect of SARS-CoV-2 in the gut. Schematic workflow illustrating
the different analytical steps used to construct the intracellular and intercellular signalling networks between epithelial cells in SARS-CoV-2
infected intestinal organoids (ileal and colonic organoids, 24 h infection) or moderate COVID-19 upper airway ciliated epithelial and immune
cell types.
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a priori knowledge on ligand–receptor interactions [18] to
construct intercellular networks connecting epithelial cells and
resident immune cells using our previously generated single cell
RNA-seq epithelial cell dataset of ileal and colonic organoids
infected with SARS-CoV-2 (BavPat1/2020 variant)13 and a separate
lamina propria immune cell one20,21.
First, we looked at the epithelial cell population with the highest

number of ligands among the differentially expressed genes upon
infection to assess which epithelial cell type could drive the
response to SARS-CoV-2 infection. Our previous findings13 had
highlighted immature enterocytes (originally known as “immature
enterocytes 2”, an enterocyte subpopulation characterised by
MMP7+, MUC1+, CXCL1+) as the epithelial population charac-
terised by the highest number of differentially expressed genes
upon infection (Supplementary Fig. 1). In accordance with this, we
found that this population was also characterised by the highest
number of differentially expressed ligands. Hence, differentially
expressed ligands of colonic and ileal immature enterocytes were
used to build epithelial–immune intercellular networks by
connecting ligands to their binding receptors on immune cells
(Fig. 1 and Methods).
To identify the main epithelial and immune cell types involved

in intercellular crosstalk, the putative number of ligand–receptor
interactions between each epithelial–immune cell type pair was
computed. Specifically, all possible interactions between each set
of up or downregulated epithelial ligands and each of the
receptors expressed by the specific immune cell type (from20

and21) were identified (Fig. 1 and Methods). While both bystander
and infected cell populations were affected by viral infection,
directly infected intestinal cell populations had a higher number
of predicted interactions with immune cells compared to
bystander cell populations in both colon and ileum, supporting
a role for direct viral infection in altering intercellular signalling in
the gut (Fig. 2a). In the colon, the higher number of
epithelial–immune interactions was identified between down-
regulated ligands of infected immature enterocytes and plasma
cells, as well as CD4+/CD8+ T cells, macrophages and dendritic
cells (DCs) to a lesser extent (Fig. 2a). Conversely, in the ileum, the
highest number of interactions was identified between upregu-
lated ligands of infected immature enterocytes and IgA plasma
cells, T resident memory (Trm) cells, dendritic cells and resident
macrophages (Fig. 2a). Notably, the higher number of interactions
in the ileum was not a result of a higher number of upregulated
ligands (20), as this was similar to the number of downregulated
ones (24) (Fig. 2a, b). Instead, the higher number of interactions
was driven by upregulated ligands binding to multiple receptors
on each immune cell targeted. A more detailed explanation can
be found in the Supplementary Results.
With this integrated network reconstruction, we have shown

the value of our framework in enabling the study of mechanistic
details of the effect of SARS-CoV-2, or other viruses, on the human
immune system.

The infected epithelial signalling network drives the
epithelial–immune interactome
To further understand how SARS-CoV-2 infection drives altered
ligand expression in infected intestinal epithelial cells, we used our
integrated network model to reconstruct the altered intracellular
signalling in directly infected immature enterocytes population
driven by SARS-CoV-2. Within our framework, two separate
bioinformatics tools, ViralLink and CARNIVAL, were used to
construct an intracellular causal network linking perturbed human
proteins interacting with SARS-CoV-2 viral proteins or miRNAs to
activated transcription factors (TFs) regulating the differentially
expressed ligands upon infection, through altered intracellular
protein-protein signalling cascades (Fig. 1). By integrating tissue-
specific epithelial data, we have constructed two separate causal

networks for infected immature enterocytes of the ileum and
colon, thus enabling us to distinguish tissue specific differences in
infection response (Fig. 1). Detailed analysis of the colon and ileal
intracellular network features can be found in the Supplementary
Results. Furthermore, using multiple complementary methods of
network analysis, we have highlighted the most likely signalling
pathways affected upon infection. Finally, by integrating a priori
information on SARS-CoV-2 miRNAs/proteins - human protein
interactions, we have built separate sublayers of the networks
representing altered signalling stemming from upstream pertur-
bations caused by SARS-CoV-2 miRNAs, proteins or both. These
networks allowed us to assess the contribution of each of these
viral factors in altering the intracellular signalling cascade (Fig. 1
and Methods).
Functional analysis of the tissue-specific intracellular networks is

useful to understand how SARS-CoV-2 infection in immature
enterocytes affects their function through the modulation of
intracellular signalling, and whether any differences in response
exist between colon and ileum. Here, a functional overrepresenta-
tion analysis (Gene Ontology (GO) and Reactome) of the protein-
protein interaction (“PPI”) layer22–25 of each intracellular causal
sub-network (stemming from viral proteins, miRNAs, or both) was
integrated in our framework to assess the contributions of SARS-
CoV-2 miRNAs or proteins to the changes observed22–25 (Fig. 1
and Methods). Functional analysis of the PPI layer of the
intracellular networks built with ViralLink revealed an over-
representation of pathways related to inflammation and chemo-
taxis (Nuclear Factor kappa-light-chain-enhancer of activated B
cells (NF-kB) signalling, interleukin signalling, chemokine signal-
ling) in both ileum and colon (Fig. 3). Additionally, we found the
overrepresentation of functions related to interferon (IFN) signal-
ling and Mitogen-Activated Protein Kinase (MAPK) signalling
being overrepresented uniquely in the ileum in both viral protein
and miRNA intracellular networks (Fig. 3b). An overrepresentation
of laminin-driven interaction pathways, which we observed
uniquely for viral miRNA intracellular network in both ileum and
colon, could be indicative of an increased recruitment and
adhesion of immune cells following infection (Fig. 3). Furthermore,
an overrepresentation of pathways related to negative regulation
of apoptosis, cell cycle, cell proliferation and growth was found in
both ileal and colonic networks, suggesting an effect of SARS-CoV-
2 on epithelial cell tissue renewal (Fig. 3). Interestingly, an
overrepresentation of WNT signalling pathway, which is key for
stem cell renewal, was found uniquely in the viral protein sub-
network, in both tissues, while pathways related to the establish-
ment of cell and tissue polarity were found uniquely in the colon,
indicating an attempt for tissue healing following viral infection
(Fig. 3).
Functional overrepresentation analysis of the PPI layer of the

intracellular networks built with CARNIVAL confirmed similar
affected functions upon infection as those found in the ViralLink
networks, suggesting functional overlap between networks
obtained using these two methods such as senescence or
inflammation (Fig. 3 and Supplementary Figs. 3 and 4). Within
the outlined framework, the choice of which tool (ViralLink or
CARNIVAL) to be used to build the intracellular network for a
particular study should be driven by the specific study aims and
biological questions. Further information about similarities and
differences between the two tools is available in the Methods and
Supplementary Results.
Further analysis of these networks can help predict key

transcription factors responsible for the upstream regulation of
altered ligands upon infection. Here, we found that both colonic
and ileal networks generated with CARNIVAL shared similar
transcription factors, including ATF2/3, FOS, JUN, STAT1, and
NFKB1, which were all upregulated in both tissues upon infection
(Supplementary Figs. 3 and 4). These transcription factors play a
role in interferon response (STAT126), and inflammation (NFKB127),
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anti-apoptosis and cell growth (ATF2/328), cell proliferation and
differentiation (JUN, FOS29), suggesting an increase in these
functions upon SARS-CoV-2 infection in both colon and ileum.
Interestingly, viral miRNAs were predicted to target different
intracellular signalling processes between colon and ileum
(miR_10,11,16,18 in the colon and miR_4,5,6,18 in the ileum).
Additionally, by analysing these networks, we observed that
NOTCH1 and SMAD4, seem to be central to the intracellular
signalling cascade in the colon, by receiving several signals driven
by viral miRNAs and viral proteins, respectively (Supplementary
Fig. 3). Interestingly, both the Notch and TGF-β SMAD-dependant
signalling pathways are involved in intestinal epithelial cell
homeostasis, including stem cell maintenance, progenitor cell
proliferation30 and maintenance of cell differentiation31, suggest-
ing a modulation of these pathways upon infection. In the ileal
network, JAK2 and CREB1, as well as SMAD2, SMAD3 and ERK2
(MAPK1) seem to play a central role in the intracellular PPI
signalling driven by viral miRNAs and viral proteins, respectively,
and JAK2 and both SMAD2 and SMAD3 were also upregulated
upon infection (Supplementary Fig. 4). These transcription factors
play a key role in the regulation of immunity (JAK2, CREB1;32,33,
cell proliferation and differentiation (MAPK1) and plasticity
(SMAD2/3)34,35, suggesting a positive regulation of these functions
uniquely in the ileum upon infection.

Reconstruction and analysis of perturbed intracellular signalling
in infected enterocytes using two complementary methods
highlighted key pathways through which SARS-CoV-2 affects the
infected cells, and pointed out transcription factors playing a
major role during SARS-CoV-2 infection response.

Altered epithelial-derived ligands drive differential
epithelial–immune crosstalk upon infection
To understand the functional impact of epithelial infection on the
epithelial–immune interactome, we created intercellular networks
by connecting upregulated and downregulated epithelial ligands
of colonic and ileal infected immature enterocytes upon infection
to their binding receptors on immune cells (Fig. 1 and Methods).
Next, for each set of up and downregulated intercellular
interactions, we looked at which ligands, receptors and immune
cell types were involved in these intercellular interactions,
assessing any potential similarities or differences between the
colon and ileum (Fig. 1 and Methods). Here, we present the
analysis relative to infected immature enterocytes–immune cell
interaction, while the analysis relative to bystander immature
enterocytes is available as Supplementary Results.
Upregulated ligands of infected immature enterocytes upon

infection as well as binding receptors on immune cells were

Fig. 2 Differentially expressed ligands driving upregulated and downregulated intercellular interactions between colonic and ileal
infected immature enterocytes and resident immune cells upon infection in the colon and ileum. a Heatmap showing the number of
interactions between immature enterocytes and resident immune cells. Interactions driven by upregulated and downregulated ligands
(ligand direction) are shown separately for infected and bystander cells (status), and for ileum and colonic organoids. The intensity of the
colour indicates the number of interactions with the immune cell types whose receptor is targeted by the epithelial cells ligands. The numbers
on the ligand direction row refer to the number of upregulated or downregulated ligands driving the indicated interactions with immune
cells for the different groups/conditions. Abbreviations: Ileum: inf_macrophage infected macrophage, mast mast cell, CD8_Trm_cyto Resident
memory cytotoxic T cell, DC2 dendritic cell 2, Trm Tissue-resident memory T cell, gd_Tcell Gamma delta (γδ) T cells, ILC Innate lymphoid cell,
mem_Bcell memory B cell, naive_Bcell naive B cell, TFH_like T follicular helper cells, Trm_Th17 Tissue-resident memory Th17 cells, Treg
Regulatory T cell, Tcyto Cytotoxic T cell, Tmem Memory T cells. Colon: ILC Innate lymphoid cell, CD8_IL17 IL-17+ CD8+ T cells, DC dendritic
cells, GC_Bcell Germinal center B cells, CD4_PD1 mast mast cell, Treg Regulatory T cell, NK Natural Killer cell, CD4_MThi high mitochondrial
CD4+ T cell, CD4_memory CD4+ Memory T cell, CD4_activ_fos_high activated CD4+ T cells (high/low c-fos), CD8_LP CD8+ lymphocyte-
predominant cells, CD8_IEL CD8+ intraepithelial lymphocytes. b Venn diagrams showing the number of ligands of the infected immature
enterocytes–immune cells intercellular network that are unique or shared between the ileum and colon. Upregulated and downregulated
ligands are shown separately. The full list of ligands is available as Table 1.
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mainly shared among colon and ileum, resulting in most
epithelial–immune interactions driven by upregulated ligands
being similar in both tissues (one unique to colon, 219 unique to
ileum, 66 shared) (Figs. 2b, 4a, b). A full list and detailed
description of differences and similarities in ligands, receptors

and upregulated intercellular interactions between colon and
ileum can be found as Tables 1–3 and as Supplementary Results.
To understand which epithelial ligands and immune cell

receptors were driving most epithelial–immune cell interactions,
we scored ligands and receptors based on the number of
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interactions they were involved in (Fig. 1 and Methods). In both
tissues, chemokines (CXCLs) and tumour necrosis factor alpha
(TNF-α) were among epithelial ligands (Fig. 5a, b), and chemokine
receptors (CXCR 3,4,5,6 and CCR 1,2,5,7,9,10) among the receptors
on immune cells driving the highest numbers of upregulated
interactions (Fig. 6), overall pointing towards an increased
immune cell recruitment upon infection36. The high number of
upregulated interactions driven by chemokines could be attribu-
table to the widespread presence of several different chemokine
receptors on immune cells (Supplementary Fig. 8).
To decipher which specific epithelial ligands and immune

receptors were driving the strongest epithelial–immune cell
interactions, ligands and receptors participating in
epithelial–immune interactions can be scored based on the
“sum of receptor expression” value, which takes into account
the number of interacting receptors and the level of receptor
expression in each immune cell type (Fig. 1 and Methods). In the
colon, the strongest upregulated interactions involved the
epithelial TNF-α binding to B cells, T cells (CD4/CD8+), NK cells,
macrophages and DCs, as well as epithelial chemokines (CXCL2,3,
10) binding to T cells (CD4/CD8+) and NK cells (Fig. 7a). Similarly,
in the ileum the strongest upregulated interactions involved
epithelial chemokines binding to T cells (Treg, Tcyto, Tmem, CD8
Trm cyto) as well as TNF-α and colony stimulating factor 1 (CSF1)
binding to macrophages and DCs (Fig. 7b). Receptors driving the
strongest upregulated interactions were mainly chemokine
receptors (CXCRs, CCRs) in both colon and ileum, and Receptor
Interacting Serine/Threonine Kinase 1 (RIPK1) in the colon only
(Fig. 8).
Finally, functional overrepresentation analysis of the participat-

ing upregulated epithelial ligands and receiving receptors on
immune cells can help to understand the role of each of these
epithelial–immune interactions driven by infection (Fig. 1). In line
with the extensive overlap in upregulated intercellular interactions
(Fig. 4a and Supplementary Fig. 8), most functions were shared
between colon and ileum, and included chemotaxis (GPCR
signalling, chemokine signalling), immunity (interleukin signal-
ling), apoptosis (caspase activation) and angiogenesis (VEGFA-
VEGFR2 pathway) (Supplementary Fig. 9). One colonic-specific
function was related to pro-inflammatory responses (TNF signal-
ling) (Supplementary Fig. 9a) and one ileal-specific function was
related to stem cell renewal (BMP signalling) (Supplementary Fig.
9b).
Downregulated ligands in infected immature enterocytes upon

infection as well as targeted receptors on immune cells were
tissue-specific to a large extent, resulting in a large proportion of
downregulated interactions being tissue-specific (73 unique to
ileum, 125 to colon) (Figs. 2b, 4a, b). A detailed description of
differences and similarities in ligands, receptors and down-
regulated intercellular interactions between colon and ileum can
be found as Supplementary Results.

In both tissues, a high number of downregulated interactions
was driven by the epithelial ligands human leukocyte antigens
(HLA-A/B/C), beta-2-microglobulin (B2M) and calmodulin
(CALM1/2) (Fig. 5a, b), and integrins (ITGs), KLRCs and LDL
Receptor Related Protein 1 (LRP1) in both colon and ileum (Figs. 4a
and 6). Additionally, uniquely in the colon, the highest number of
downregulated interactions was driven by two epithelial-derived
laminins (LAMC2, LAMB3) (Fig. 2c), and by AKT1 (Protein kinase B,
PKB) present on immune cell types (Figs. 4a and 6).
When investigating the strength of these intercellular interac-

tions, we found that HLA-s (HLA-A, B, C) and B2M targeting T cells
(colon: CD4/CD8+, Tregs; ileum: Trm, Tregs, cytotoxic T cells), NK
cells (colon only), ILCs and macrophages (ileum only) represented
the strongest downregulated interactions in both colon and ileum
(Fig. 7). Additionally, uniquely in the colon, laminins (LAMB3,
LAMC2) targeting T cells and macrophages represented the
strongest downregulated interactions (Fig. 7). Receptors driving
the strongest downregulated interactions were AKT1 uniquely in
the colon (Fig. 8a) as well as integrins, KLRCs and LRP1 in both
colon and ileum (Fig. 8a, b)
Functional overrepresentation analysis of the participating

downregulated epithelial ligands and receiving receptors on
immune cells (Fig. 1 and Methods) revealed shared functions
related to antigen processing and cross-presentation (MHC class
I–mediated), phagocytosis (endoplasmic reticulum (ER) phago-
some pathway, signalling by RHO GTPases) and cell–cell commu-
nication (immunoregulatory interactions between a lymphoid and
non-lymphoid cell) in both tissues, possibly suggesting decreased
epithelial–immune cell crosstalk functions related to the activation
of the innate and adaptive immune response37 (Supplementary
Fig. 9). Furthermore, several colon-specific functions were related
to the extracellular matrix (ECM) organisation and integrin cell
surface interactions, which play an important role in processes
critical to inflammation, infection, and angiogenesis, thereby
suggesting a negative regulation of these vital interactions
uniquely in the colon38 (Supplementary Fig. 9a). The only function
uniquely overrepresented in the ileum was transcriptional
regulation by MECP2 (Supplementary Fig. 9b), whose expression
has been shown to play a role in intestinal morphology and
function39.
In conclusion, using our framework, we pinpointed tissue-

specific and shared epithelial ligands and immune cell receptors
participating in the intercellular signalling through which SARS-
CoV-2 infected epithelial cells can affect the inflammatory
responses of various immune cell types during infection (Fig. 9).

Implication of epithelial ligands in the inflammatory process
The analysis of our integrated framework of intracellular and
intercellular signalling networks in intestinal epithelial cells upon
infection has helped point out several differentially expressed
ligands participating in epithelial–immune interactions potentially

Fig. 3 Overview of intracellular and intercellular signalling of colonic and ileal infected immature enterocytes upon SARS-CoV-2
infection. a, b Overview of intracellular and intercellular signalling upon SARS-CoV-2 infection in colonic (a) and ileal (b) infected immature
enterocytes and immune cell populations. From left to right: signalling cascade going from SARS-CoV-2 molecules (proteins or miRNAs) to
differentially expressed ligands on immature enterocytes and binding receptor groups on immune cells. Intracellular network: SARS-COV-2
molecules are grouped separately if they are viral proteins (bottom) or miRNAs (top). Differentially expressed ligands for which no upstream
signalling was identified, but downstream intercellular connections were predicted are excluded from this figure. Differentially expressed
ligands are grouped based on the direction of regulation, which is indicated with blue when downregulated (bottom) and red when
upregulated (top) when comparing SARS-CoV-2 infected vs uninfected conditions. Colours of the nodes and of the functional analysis indicate
if the original network was a miRNA only (yellow), viral protein only (black) or both viral protein and miRNA (grey). Functional
overrepresentation analysis was carried out for the “PPI layer” of the intracellular network which includes human binding proteins,
intermediary signalling proteins and TFs (adj p value < 0.05, n > 3). Intercellular network: Size of the receptor node represents the sum of
receptors within the group targeted by each incoming ligand. Functional analysis is indicated for ligand–receptor groups. Receptor groups
layout is based on whether they contributed to the functional analysis of upregulated interactions (red) or downregulated interactions (blue).
Receptor groups not contributing to any functions are indicated in light grey.
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playing a role in driving the inflammatory process upon SARS-CoV-
2 infection. To validate their importance during immune reactions,
we integrated these predictions with independent data from three
previously published studies (Fig. 1).
First, by comparing the differentially expressed ligands upon

SARS-CoV-2 infection to DEGs in human colonic organoids
exposed to inflammatory cytokines40, we identified 24 ligands
whose expression change is regulated by cytokines during
intestinal inflammation (Table 4). These ligands are likely to
contribute to the inflammatory responses upon infection. Next, by
comparing ileal and colonic ligands to data from ImmunoGlobe, a
manually curated intercellular immune interaction network41 and
ImmunoeXpresso, a collection of cell–cytokine interactions
generated through text mining42, we identified 12 ligands
previously known to influence immune cell populations (Table
4). The full list of affected immune cell types for each epithelial
ligand is available in Table 4. Finally, to understand which ileal and
colonic ligands could explain blood cytokine level changes of
COVID-19 patients via direct immune cell regulation, we used data
from5, and identified six ligands capable to create the detected
blood cytokine levels during infection (Table 4).
Using this assessment, we were able to rank the differentially

expressed ligands for their importance in the inflammatory

process, and subsequently listed the 18 highest ranked ligands,
for which there is strong evidence of their role in
epithelial–immune cell interactions during the inflammatory
SARS-CoV-2 disease response (Table 4). These ligands included
CSF1, various chemokines (CXCL10, CXCL11, CXCL2, CXCL3, CCL5,
CX3CL1, CXCL8), TNFa and TNFSF13b, and ICAM1 among the
upregulated ones; and various laminins (LAMC2, LAMB3), AREG,
B2M), human leukocyte antigens (HLAs) (HLA-A, HLA-B) and IL32
among the downregulated ones.

The intracellular and intercellular signalling are also altered in
the upper airways in patients with moderate COVID-19
The presented integrated framework can also be applied to
infected epithelial cell data from other organs to reveal the effects
of viral infection on that specific organ’s function. To show the
ease of applicability of our framework to other infected tissues, we
have employed it to analyse the effect of SARS-CoV-2 on the
intracellular and intercellular signalling of upper airway ciliated
epithelial cells during moderate COVID-19 cases (Methods and Fig.
1). Functional analysis of the PPI layer of the intracellular signalling
network of infected ciliated cells upon moderate COVID-19
revealed an alteration of pathways related to cell motility and
migration, cell adhesion mediated by the ECM (laminin, non-

Fig. 4 Overview of upregulated and downregulated ligand–receptor interactions and participating receptors between infected
immature enterocytes and resident immune cells upon infection in the colon and ileum. a Venn diagrams showing the number of
ligand–receptor interactions in the infected immature enterocytes–immune cells intercellular networks that are unique or shared between the
ileum and colon. Intercellular interactions driven by upregulated and downregulated ligands are shown separately. The full list of
ligand–receptor interactions is available as Table 3. b Venn diagrams showing the number of receptors in the infected immature
enterocytes–immune cells intercellular networks that are unique or shared between the ileal and colonic networks. Receptors targeted by
upregulated ligands and downregulated ligands are shown separately. The full list of receptors is available as Table 2.
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integrins interactions), pro-inflammatory signalling pathways
(Interleukin, MAPK, PI3K, NF-kB signalling), cell cycle arrest and
intestinal homeostasis (Supplementary Fig. 12).
Intercellular interactions between upper airways ciliated epithe-

lial cells and resident immune cells were mainly driven by
upregulated ligands, particularly chemokines (CXCL1/3/6) and
HLAs (HLA-A/B/C) binding to chemokine receptors (CCRs, CX(3)
CRs) and CD3D/G, KLRs and KIRs (expressed on T-cells and NK
cells), respectively (Supplementary Fig. 12 and Supplementary Fig.
13a, b). Interestingly, the strongest upregulated interactions were
driven by chemokines and HLAs targeting T-cells (cytotoxic and
regulatory), macrophages (resident and non-resident) and B cells,
with a second cluster of slightly weaker interactions including NK,
dendritic and mast cells (Supplementary Fig. 13c). Together, these
results point towards increased recruitment and antigen pre-
sentation to these immune cell types. Functional overrepresenta-
tion analysis showed that upregulated interactions were related to
chemokines/cytokines signalling, antigen processing and presen-
tation, activation of the innate and adaptive immune system and
general defense response (Supplementary Fig. 12).
Conversely, downregulated interactions were driven by epider-

mal growth factor receptor (EGFR) binding to several different
receptors, and the ECM protein Tenascin C (TNC) binding to
integrins (ITGs) on immune cells (Supplementary Fig. 12 and
Supplementary Fig. 13a, b). Downregulated interactions involved
most immune cells, with the strongest interactions targeting

non-resident macrophages and regulatory T cells (Supplementary
Fig. 13c). Functional overrepresentation analysis showed that
downregulated interactions were involved in haemostasis and cell
adhesion processes mediated by the ECM components (integrin,
laminin, syndecan) (Supplementary Fig. 12).

DISCUSSION
In this work, we have developed an integrated framework to
model how altered intracellular signalling in epithelial cells drives
a different epithelial–immune interactome upon infection. As a
proof of concept study, we first applied this model to highlight the
putative role of the gut during the immune response following
SARS-CoV-2 infection, showing how several intracellular and
intercellular mechanisms are affected, with key differences
between colon and ileum. A visual schematic of our key findings
can be found in Fig. 9. Additionally, we proved the applicability of
this framework to other tissues of interest by analysing intra and
intercellular interactions of the upper airway epithelium in
moderate COVID-19 patients, confirming many of the findings
highlighted in the literature, and pointing out key cell–cell
interactions of interest.
SARS-CoV-2 has been shown to actively infect and reproduce in

the human gut and in human gastrointestinal organoids10,11,13.
However, the exact effect of intestinal inflammation and the role
of epithelial–immune interactions in the hyperinflammatory

Table 1. Ligands in ligand–receptor interactions in the colon and ileum.

Tissue Direction Number Ligands

Colon only Upregulated 1 FAS

Colon only Downregulated 13 CALM3, APP, AREG, LAMB3, LRPAP1, IL32, CD47, HSP90AA1, CD55, LAMC2, HLA-E, LGALS3BP, PLAUR

Ileum only Upregulated 15 EDN2, CXCL8, CX3CL1, CFLAR, CSF1, EDN1, TNFSF13B, TNFSF10, EFNA1, PLAU, CCL5, CXCL11, BMP2,
BST2, IFNL1

Ileum only Downregulated 8 MDK, SPTAN1, ARPC5, FAM3C, GRN, DSC2, CALR, LYZ

Colon and ileum Upregulated 5 CXCL2, CXCL10, ICAM1, CXCL3, TNF

Colon and ileum Downregulated 16 PI3, SLPI, HLA-A, CDH1, CALM2, S100A6, HSP90B1, TIMP2, RTN4, ADAM9, HLA-B, HLA-C, ANXA1, CALM1,
PSAP, B2M

Table listing the number of ligands of infected immature enterocytes–immune cells intercellular network that are unique or shared between the ileum
and colon.

Table 2. Receptors in ligand–receptor interactions in the colon and ileum.

Tissue Direction Number Receptors

Colon only Upregulated 0 –

Colon only Downregulated 63 ITGA1,2,7,8,910, ITGB4,6,8, NOD2, LRP8, CD151, CD74, CD97, TGFBR1,2, SLC45A3, SLC16A, SORL1,
VANGL1, FCGR2B, SIRPG, PRNP, LILRA3, PDE1A, GPC1, CFTR, PTGER1, CR1, NCSTN, AHR, COL17A1

Ileum only Upregulated 88 MCAM, CYSLTR1/2, ACVR1/2B/L1/2 A, SLC5A11, SLC7A1, ENG, TNFRSF13B/13 C/10 C/17/10B/10D,
LILRA4, CELSR3, ADGRL4, ADCY9, ACKR2/3/4, EDNRA, CCR3/6/8, CXCR1/2, EPHA10, KEL, CSF3R/2RA,
EDNRB, BMPR2/R1A/R1B, SMO, AMHR2, GPR75, LPAR2, NPR3, ACKR1, IFNLR1, ST14, MRC2, CD79A,
IGF2R, PTPRU, MSR1

Ileum only Downregulated 38 TSPAN1, SCTR, KIR2DL4, KIR3DL1, GRM3, ADRB2, PTH2R, BDKRB2, GRIN2A, KLRC3, PLPP6, CRHR1,
CLEC2D, GPR37, GPR37L1, ITGA2B, SCN4A, CDH2, PTPRB, AQP6, DSG2, KIR2DL1, KIR3DL3, MIP, KCNQ3,
TRPC3, GRM4, SCARF1, RTN4RL1, GPC2, OPRM1

Colon and ileum Upregulated 38 F2RL1, ITGAM/X, F3, CXCR3/4/5/6, CCR1/2/4/7/9, CX3CR1, XCR1, PTPRS, PIGR, GPR160, CELSR2, PPARG,
CDH5, CD83, CDH11, SPHK1, TRADD

Colon and ileum Downregulated 66 TLR1/2/4/7, VIPR1, TNFRSF19, PLD2, PLSCR1/4, SORT1, HFE, GP6, KLRC1/2/4, KLRG1, PDE1B/1 C, PDIA3,
CD1A/B, CD3D/G, CD247, ITGAE, ITGA4/6, ITGB7, LILRB2, NGFR, GJB2, LRP5/6, FPR3, LDLR, RYR1, APLP2,
CELSR1, KCNN4, KCNQ1/5, GLP2R, ESR1/2, CANX, IL2RB, ASGR1, KIR2DL2/3, PTPRA, DYSF, TRPC1

Table listing number of receptors involved ligand–receptor interactions in the infected immature enterocytes–immune cells intercellular network that are
unique or shared between the ileum and colon. The direction column indicates the direction of the expression change of the epithelial ligand driving each
intercellular interaction.
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Table 3. Ligand–receptors in intercellular interactions in the colon and ileum.

Tissue Direction Number Ligand–receptor interactions

Colon only Upregulated 1 FAS _ RIPK1

Colon only Downregulated 125 APP _ TNFRSF21, CD74, CCR5, SLC45A3, CAV1, NCSTN, FCGR2B, GPC1, LRP1, NGFR, ADRA2A

AREG _ LTK, CSF1R, MERTK, INSR, NTRK1/2/3, ROR1/2, PDGFRB, LMTK2, FLT3, PTK7, MET, TIE1, AATK,
DDR2, MST1R, AXL, TYRO3, MUSK, RET, PDGFRA, RYK

CALM1 _ PDE1A

CALM2 _ PDE1A

CALM3 _ MYLK, GP6, KCNQ1/5, PDE1A/B/C, INSR, ESR1/2, AKT1

CD47 _ SIRPG

CD55 _ CD97, AKT1, CR1

HLA-C _ LILRA3

HLA-E _ KLRC1/2/4, SLC16A4, KIR2DL3/3DL2

HSP90AA1 _ NR3C1, CFTR, TGFBR1/2, AKT1, ITGB3, AHR, NOD2, RIPK1

IL32 _ PTGER1, MET

LAMB3 _ CD151, COL17A1, ITGA1/2/3/4/5/6/7/8/9/10/11/V, ITGB1/3/4/5/6/7/8, AKT1, PRNP

LAMC2 _ AKT1, ITGA1/2/3/4/5/6/7/8/9/10/11/V, ITGB1/3/4/5/6/7/8, COL17A1, PRNP, CD151

LGALS3BP _ VANGL1, ITGB1

LRPAP1 _ LDLR, VLDLR, SORL1, SORT1, LRP1/8

PLAUR _ ITGB3

Ileum only Upregulated 219 BMP2 _ AMHR2, SMO, ACVR2A/R2B/R1/RL1, BMPR1A/1B/2, ENG, CDH11

BST2 _ LILRA4

CFLAR _ RIPK1

CSF1 _ PDGFRB, DDR2, LMTK2, TYRO3, RYK, MUSK, MET, CELSR3, SLC7A1, RET, ITGB3/AV, INSR, ALK,
CSF1R/2RA/3R, ROR1, MSR1/T1R, NTRK1/2/3, MERTK, TIE1, AATK, AXL, ROR2, PTK7, LTK, PDGFRA, FLT3

CCL5 _CX3CR1, CCR1/2/3/4/5/6/7/8/9, CXCR1/2/3/4/5/6/10, ACKR1/2/4, GPR75, SDC1, ADRA2A, CD4,
GRM7, XCR1

CX3CL1_CXCR1/2/3/4/5/6, CCR1/2/3/4/5/6/7/8/9/10, CX3CR1, XCR1

CXCL10_CXCR1/2, GRM7, CCR3/6/8

CXCL11_XCR1, CCR1/2/3/4/6/5/7/8/9/10, ACKR1, CX3CR1, CXCR1/2/3/4/5/6, ADRA2A, ACKR3

CXCL2 _ CCR3/6/8, ACKR1, CXCR1, CXCR2, GRM7

CXCL3 _ CCR3/6/8, CXCR1, CXCR2, GRM7

CXCL8 _ CCR1/2/3/4/5/6/7/8/9/10, SDC1/3, CX3CR1, ITGAM, CXCR1/2/3/4/5/6, XCR1, ACKR1, CDH5/79A,
LPAR2, GRM7, ADRA2A,

EDN1 _ EDNRA/B, ADGRL4, AR, MCAM, NPR3, CYSLTR1/2, AKT1, ADCY9, KEL

EDN2_EDNRA/B, KEL

EFNA1 _ RET, INSR, ROR1, NTRK1/2, PDGFRB, TYRO3, MERTK, EPHA10, MST1R, ALK, RYK, AATK, AXL,
DDR2, PTK7, LMTK2, CSF1R, FLT3, PDGFRA, NTRK3, LTK, TIE1, MUSK, ROR2, MET

IFNL1 _ IFNLR1

PLAU _ ITGA3/A5/AV/AM/B1/B5, VLDLR, MRC2, LRP1, IGF2R, ST14

TNF _ SLC5A11, TRPV1, PTPRU

TNFSF10 _ TNFRSF10B/C/D, RIPK1

TNFSF13B _ TNFRSF17/13B/13C

Ileum only Downregulated 73 ANXA1 _ GRM7, GRIN2A

ARPC5 _ ADRB2, LDLR

B2M _ KIR2DL1/3DL1, AR

CALM1 _ CRHR1, SCN4A, TRPC3, GRM3/4/7, SCTR, PTH2R, KCNQ3, AQP6, MIP, GRIN2A, PLPP6, OPRM1;
CALM2_PLPP6, TRPC3/V1, SCN4A, GRM7, AQP6, GRIN2A, KCNQ3

CALR _ ITGA2B/3/V, LRP1, SCARF1, PDIA3, AR, BDKRB2

CDH1 _ CDH2,

DSC2 _ DSG2

FAM3C _ CLEC2D

GRN _ SORT1

HLA-A _ KIR2DL1/2DL4/3DL3/3DL1, KLRC3

HLA-B _ KIR3DL3, KIR3DL1, KIR2DL1, KLRC3, KIR2DL4

HLA-C _ KIR2DL4/2DL1/3DL1/3DL3, KLRC3
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immune response (“cytokine storm”) characterising many COVID-
19 patients are not known5,6. Accurately modelling these
interactions could help identify potential targets that are key to
selectively disrupt such cell–cell interactions underlying extreme
inflammatory conditions during SARS-CoV-2 infection. This would
be extremely important given the failure of most randomised
control trials associated with pro-inflammatory drug candidates
for COVID-1943.
The altered epithelial–immune cell crosstalk during SARS-CoV-2

infection has been explored within the nasopharynx and lungs
using scRNA seq data44. This study found stronger
epithelial–immune cell interactions in critically ill patients based
on ligand–receptor expression profiles, highlighting the impor-
tance of the crosstalk between infected cells and local immune
cells in the disease course. However, to our knowledge, no prior
study has been carried out so far to investigate the effect of viral
infection in host intestinal cells, and the role and contribution of
intestinal epithelial cell–immune cell crosstalk during SARS-CoV-2
infection.
In this work, we developed an integrated pipeline to model the

effect of intracellular signalling perturbation in epithelial cells on
the epithelial–immune interactome in the gut. As a proof-of-
concept, we exploited our previously published data on SARS-
CoV-2 (BavPat1/2020) infection in intestinal organoids13 to

investigate the effect of SARS-CoV-2 proteins and potential
miRNAs on ileal and colonic epithelial cell intracellular signalling
and function. We added in a distinguishable way the analysis of
these potential miRNAs encoded by SARS-CoV-2, as previous
studies highlighted the regulatory role of similar miRNAs
produced by RNA viruses and their ability to downregulate host
genes and affecting host functions45–47. Furthermore, we mod-
elled how specific epithelial ligands, whose expression was altered
upon infection, were driving specific epithelial–immune interac-
tions via their altered binding to receptors expressed on resident
immune cell populations20,21.
While our previous data pointed towards immature enterocytes

as the prime target of SARS-CoV-2 infection, the application of our
integrated pipeline allowed us to model how this epithelial
population, when directly infected, also drives the majority of
interactions with gut resident immune cells stemming from their
differentially regulated ligands by SARS-CoV-2 (Fig. 2a). Upon
infection of immature enterocytes, intracellular signalling path-
ways were altered, with a direct effect on pathways of
inflammation, apoptosis, cell survival and cell death (Fig. 3).
Pathways related to cell cycle (negative regulation of G2/M
transition) and cell proliferation were also altered upon infection
(Fig. 3), in line with a previous phosphoproteomics study finding a
correlation with cell cycle arrest upon SARS-CoV-2 infection48.

Table 3 continued

Tissue Direction Number Ligand–receptor interactions

HSP90B1 _ AR
LYZ _ ITGAL

MDK _ TSPAN1, SDC1/3, GPC2, ITGA4/6, PTPRB, ITGB1, LRP1, ALK

PSAP _ AR, GPR37/37L1

RTN4 _ RTN4RL1

SPTAN1 _ PTPRA

Colon and ileum Upregulated 66 TNF_CD83/H11, F2RL1/F3, TNFRSF21, SPHK1, NR3C1, AKT1, TRADD, RIPK1, MYLK, INSR, PPARG, PIGR,
GPR160, PTPRS, CELSR2

CXCL3 _ CXCR3/4/5/R1, CCR1/2/4/5/7/9/10, XCR1, ADRA2A

CXCL10 _ CX3CR1, CCR1/2/4/5/7/9/10, CXCR3/4/5/6, ADRA2A, XCR1

CXCL2_CXCR6 / CCR9 / CCR1 / CXCR5 / XCR1 CXCR3 / CXCR4 / CCR2 / CCR5 / CX3CR1 / ADRA2A / CCR4 /
CCR7 / CCR10

ICAM1 _ ITGAX/L/M, IL2RG/RA, CDH5, CAV1

Colon and ileum Downregulated 104 ADAM9 _ ITGA3/6/V, ITGB1/5

ANXA1 _ LMTK2, ADRA2A, FPR3, CCR10, DYSF

B2M _ PDIA3, KLRC1/2, KIR2DL3, LILRB2, HFE, CD247, IL2RA/RB/RG, CD1A/B, CD3G/D

CALM1 _ KCNQ1/5, PDE1B/C, MYLK, RYR1, INSR, VIPR1, GP6, PTPRA, GLP2R, KCNN4, ESR1/2

CALM2 _ KCNQ1/5, ESR1/2, TRPC1, MYLK, RYR1, PDE1B/C, INSR, GP6

CDH1 _ ITGAE/B7, LRP5/6, MET, KLRG1

HLA-A _ IL2RA, KIR2DL3/3DL2, KLRC1/2/4, LILRB2, IL2RB/RG, CD3G/D, APLP2

HLA-B _ KLRC1/2/4, CD3G/D, LILRB2, CANX, KIR2DL3/3DL2

HLA-C _ CD3G, KIR2DL3/3DL2, CD3D, KLRC1/2/4, LILRB2

HSP90B1 _ ASGR1, TLR1/2/4/7, LRP1

PI3 _ PLD2

PSAP _ CELSR1, LRP1, CD1B, SORT1

RTN4 _ NGFR, TNFRSF19, GJB2

S100A6 _ ESR1

SLPI _ CD4, PLSCR1/4

TIMP2 _ ITGA3, ITGB1

Table listing the number of ligand–receptor interactions in infected immature enterocytes–immune cells intercellular network that are unique or shared
between the ileal and colonic networks. The direction column indicates the direction of the expression change epithelial ligand driving each intercellular
interaction. Interactions are indicated as follows: ligand_receptor1, receptor2, receptor3. Receptors belonging to the same class (e.g. calmodulins) are
indicated as follows: CALM1/2/3.
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Finally, pathways involved in cell differentiation, cell migration and
epithelial polarisation were also modulated upon infection (Fig. 3),
which to our knowledge no other study had highlighted before.
By using available ligand–receptor interaction data, we aimed

to understand how infected gut epithelial cells recruit resident
immune cell populations to find key interactions driving the
immune response during infection. Our analysis revealed that IgA
plasma cells were the immune cell population with the highest
number of cell–cell interactions upon infection, with the highest
number of epithelial–immune interactions driven by downregu-
lated epithelial ligands (29) in the colon, and upregulated
epithelial ligands (20) in the ileum (Fig. 2a). A possible explanation
for these observed tissue-specific differences and on the role of
IgA plasma cells can be found in the Supplementary Discussion
section.
By further analysing the specific ligand–receptor interactions

driving epithelial–immune crosstalk upon SARS-CoV-2 infection,
we could observe that strong upregulated interactions upon

infection were mostly shared by both colon and ileum, and were
represented by chemokine and TNF-α driven interactions, possibly
reflecting a general effect of the inflammation process (Figs. 6
and 7). Functional analysis highlighted a relation to proinflamma-
tory signalling pathways, including TNF-α signalling, interleukin
signalling and chemotaxis via GPCR signalling, overall suggesting
an increasing recruitment and cell adhesion of these immune cell
populations upon infection (Supplementary Fig. 9). Notably, four
chemokine receptors identified by our study (CXCR6 in the ileum,
CCR1/2 and CCR9 in both ileum and colon) are coded in a
genomic region found to be a COVID-19 risk locus on chromo-
some 3, further validating our predictions49.
Conversely, we could observe that strong downregulated

interactions were driven by epithelial HLAs (HLA-A, B, C) and
B2M, a subcomponent of the major histocompatibility complex I
(MHC I) in both tissues (Fig. 6). According to our analysis, these
ligands were mainly binding to KLR receptors, which are mainly
presented on NK cells (Fig. 6, Supplementary Fig. 8).

Fig. 5 Overview of upregulated and downregulated ligands and ligand–receptor interactions between infected immature enterocytes
and resident immune cells upon infection in the colon and ileum. a, b Bar plot showing the upregulated and downregulated ligands in the
colonic (a) and ileal (b) infected immature enterocytes–immune cell network scored by number of interactions (height of the bar plot) and
number of immune cells targeted (black dots). Upregulated ligands are shown in red and downregulated ligands in blue.
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Downregulation of HLA-KLR interactions may represent an
immune evasion mechanism50 that a recent study proposed as
a way SARS-CoV-2 protein ORF8 uses to escape host immune
surveillance51.
Uniquely in the colon, strong downregulated interactions were

driven by epithelial laminins (LAMB3 and LAMC2) and integrins,
with T cells and macrophages as the main immune cell types
targeted upon infection (Figs. 6 and 7). Laminin–integrin binding
contributes to focal adhesion of immune cells to the inflamed
tissue52, and downregulation of laminins could represent an
additional strategy for immune evasion following viral infection
uniquely in the colon. Furthermore, laminins are known to play a
role in shaping the architecture of intestinal mucosa, and an
altered expression has been observed in Crohn’s disease, a type of
IBD, driven by pro-inflammatory cytokines TNF-α and IFN-γ53–55.
Finally, an additional mechanism that SARS-CoV-2 may use to
evade the immune response via the downregulation of

calmodulin-phosphodiesterases interactions is further discussed
in the Supplementary Discussion section.
With our integrated framework, we provided a key tool to study

the effect of intracellular signalling perturbation in gut epithelial
cells driving differential epithelial–immune interactions. By apply-
ing this workflow on SARS-CoV-2 infected organoids scRNA seq
data, we confirmed many of the previous findings about SARS-
CoV-2 infection, including the induced pro-inflammatory
responses driven by chemokines and the role played by T cells
(Fig. 9). Additionally, we uncovered mechanisms by which SARS-
CoV-2 may evade the immune responses by interfering with
epithelial–immune cell connections. Such mechanisms include
downregulation of antigen presentation mediated by HLAs-KLR
interactions and of focal adhesion pathways mediated by
laminin–integrins interactions (Fig. 9).
In this work, we highlighted a set of intestinal epithelial ligands

and immune cell populations implicated in altered
epithelial–immune interactions during SARS-CoV-2 infection,

Fig. 6 Receptors involved in intercellular interactions between colonic and ileal infected immature enterocytes and resident immune
cells. a, b Bar plot showing the immune receptors targeted by upregulated (top graph) and downregulated (bottom graph) ligands in colonic
(a) and ileal (b) infected immature enterocytes, scored by number of interactions (height of the bar plot) and number of immune cells
targeted (black dots). The colour of the bar plots indicates the number of ligands targeting each of the receptors indicated. This plot only
shows the top 25 receptors by number of interactions, and the full plot is available as Supplementary Fig. 6.
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which could potentially drive the excessive inflammatory pro-
cesses seen in severe COVID-19 patients (Table 4). Further
experimental validation of bioinformatics predictions is key to
validate these processes and the main molecules and cell types
involved. To this end, intestinal organoids represent an excellent
in vitro model to enable such validations56. Currently, introduction
of immune cells to an organoid system is a challenging task. Yet, a
recent study where human intestinal CD4+ T cells have been co-
cultured with human intestinal organoids57, may represent a
promising set-up for future studies to investigate
epithelial–immune cell interactions during SARS-CoV-2 induced
inflammation in the gut. As reviewed recently by58,59, such co-
culture systems could be excellent to study intestinal host-
microbe interactions, including the detailed experimental analysis
of SARS-CoV-2 infection.
Nonetheless, our integrated workflow presents some limita-

tions. When constructing the intracellular causal network, the
effect of SARS-CoV-2 proteins towards human binding partners
was always considered as inhibitory. However, this is not always
the case. In the future, with increasingly available data, a more
refined model could be generated. Furthermore, two different

single cell transcriptomics datasets were used for colonic and ileal
immune cell populations, due to the unavailability of both
datasets from the same experiment. Similarly, IBD uninflamed
data and healthy data were used for the ileum and colon
respectively, as healthy control scRNAseq immune cell data for
both tissues was not available at the time of the analysis. Finally,
the a priori resources used to infer the intracellular and
intercellular interaction networks may have some intrinsic
limitations associated with them60. Specific tools such as LIANA
(LIgand–receptor ANalysis frAmework; https://github.com/saezlab/
liana) could be used in the future to compare across several
resources available, helping to choose the one(s) providing the
best overall prediction.
With our integrated workflow, we established a computational

method to evaluate the effect of viral infection on host intestinal
epithelial cell functions and how this consequently modulates the
epithelial–immune crosstalk and immune activation. To demon-
strate its applicability to other tissues, we analysed the intracellular
and intercellular signalling of upper airway epithelial data of
moderate COVID-19 cases. Although no specific information about
the infecting SARS-CoV-2 strain was available, we were able to

Fig. 7 Ligands of infected immature enterocytes involved in the strongest up and downregulated interactions upon SARS-CoV-2
infection in the colon and ileum. a, b Heatmap showing the upregulated and downregulated interactions in the colon (a) and ileum (b)
between intestinal epithelial ligands and resident immune cells upon infection of immature enterocytes with SARS-CoV-2. The strength of the
interaction is expressed by accounting for the number of interactions between epithelial ligands and immune receptors and the level of
receptor expression of immune cells. The strength of the interaction, named “sum of expression values”, is visualised using a colour gradient
from white (weakeast interactions) to purple (strongest interactions). Abbreviations: Ileum: inf_macrophage infected macrophage, mast mast
cell, CD8_Trm_cyto Resident memory cytotoxic T cell, DC2 dendritic cell 2, Trm Tissue-resident memory T cell, gd_Tcell Gamma delta (γδ) T cells,
ILC Innate lymphoid cell, mem_Bcell memory B cell, naive_Bcell naive B cell, TFH_like T follicular helper cells, Trm_Th17 Tissue-resident memory
Th17 cells, Treg Regulatory T cell, Tcyto Cytotoxic T cell, Tmem Memory T cells. Colon: ILC Innate lymphoid cell, CD8_IL17 IL-17+ CD8+ T cells,
DC dendritic cells, GC_Bcell Germinal center B cells, CD4_PD1 mast mast cell, Treg Regulatory T cell, NK Natural Killer cell, CD4_MThi high
mitochondrial CD4+ T cell, CD4_memory CD4+ Memory T cell, CD4_activ_fos_high activated CD4+ T cells (high/low c-fos), CD8_LP CD8+
lymphocyte-predominant cells, CD8_IEL CD8+ intraepithelial lymphocytes.
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confirm several general findings related to COVID-19 infection
previously highlighted in the literature. Following infection of
ciliated cells, pro-inflammatory signalling pathways (interleukin,
MAPK and NF-kB signalling) were altered, indicating an activated
immune status, as previously reported48,61–63. Upregulated inter-
actions were driven by chemokines binding to T cells (cytotoxic
and regulatory) and macrophages, in line with the known role of
chemokines in driving inflammation and immune cell recruit-
ment14,64 and the role played by T cells macrophages in the innate
and adaptive immune response to SARS-CoV-265,66. Additionally,
upregulated interactions were also driven by HLAs, which are part
of the MHC I complex, whose association with symptom severity
has been previously highlighted67. Interestingly, the upregulation
of intercellular interactions driven by HLAs is the opposite of the
effect found in the intestine, which may represent a key difference
in the response to SARS-CoV-2 between these two tissues. Finally,
we found strong downregulated interactions between Tenascin C
(TNC) and integrins, which were related to cell adhesion processes
mediated by the ECM components. This is in line with a study
finding that proteins associated with focal adhesion and the ECM
receptors were decreased in COVID-19 lung tissue, which could
indicate a dysregulation of the extracellular microenvironment in

this tissue, revealing a possible mechanism of SARS-CoV-2-related
lung damage68.
To conclude, we demonstrated that this workflow is not limited

to the gut, but it can be easily applied to other organs and cell
types (e.g. lung, kidney, heart), provided the right input data is
available. The workflow is translatable and both the epithelial and
the immune component are replaceable. Furthermore, the
presented workflow is transferable to understand any past or
future infectious disease, when transcriptomic data of infected
and control tissue and viral interactors are available. In this way,
our workflow could potentially and efficiently be used in any other
infection studies to shed light on the potential intervention points
between immune cells and infected cells.

METHODS
Intercellular analysis
Input data

Intestinal epithelial cells: Single cell transcriptomics data of colonoids
and enteroids infected with SARS-CoV-2 (BavPat1/2020 strain) was
obtained from69. Single cell transcriptomics data of upper airway epithelial
cells from moderate COVID-19 patients were obtained from44. Strain-level
information about the infecting SARS-CoV-2 variant was not available in
this study. The R packages ‘Mast’ and ‘Seurat’ were used to identify

Fig. 8 Receptors on immune cell types involved in the strongest up and downregulated interactions upon SARS-CoV-2 infection in the
colon and ileum. a, b Heatmap showing the upregulated and downregulated interactions in the colon (a) and ileum (b) between receptors
and resident immune cell types upon infection of immature enterocytes with SARS-CoV-2. The number of interactions in which each receiving
receptor on immune cell types is involved is visualised using a colour gradient from blue (weakest interactions) to red (strongest interactions).
Abbreviations: Ileum: inf_macrophage infected macrophage, mast mast cell, CD8_Trm_cyto Resident memory cytotoxic T cell, DC2 dendritic
cell 2, Trm Tissue-resident memory T cell, gd_Tcell Gamma delta (γδ) T cells, ILC Innate lymphoid cell, mem_Bcell memory B cell, naive_Bcell
naive B cell, TFH_like T follicular helper cells, Trm_Th17 Tissue-resident memory Th17 cells, Treg Regulatory T cell, Tcyto Cytotoxic T cell, Tmem
Memory T cells. Colon: ILC Innate lymphoid cell, CD8_IL17 IL-17+ CD8+ T cells, DC dendritic cells, GC_Bcell Germinal center B cells, CD4_PD1
mast mast cell, Treg Regulatory T cell, NK Natural Killer cell, CD4_MThi high mitochondrial CD4+ T cell, CD4_memory CD4+ Memory T cell,
CD4_activ_fos_high activated CD4+ T cells (high/low c-fos), CD8_LP CD8+ lymphocyte-predominant cells, CD8_IEL CD8+ intraepithelial
lymphocytes.
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differentially expressed genes upon infection with SARS-CoV-2 for each
epithelial cell type70,71. Specifically, directly infected or bystander cells from
intestinal organoids treated with SARS-CoV-2 for 24 h were compared with
the equivalent cell type from uninfected organoids. For the airway analysis,
ciliated airway epithelial cells from moderate COVID-19 patients were
compared with the equivalent cell type in control patients. This cell type
was chosen as it is the most prevalent and most affected by SARS-CoV-2
infection together with secretory cell types44. Any genes with adjusted p
value ≤0.05 and |log2 fold change (FC)| ≥ 0.5 were considered significantly
differentially expressed. Differential expression could only be calculated for
cell types within a condition where data was available from ≥3
individual cells.

Intestinal resident immune cells: Single cell expression data from ileal
and colonic resident immune cells was obtained from20 and21, respectively.
For the analyses, data from healthy samples and uninflamed Crohn’s
disease samples was used for colonic and ileal immune cell populations,
respectively. Single cell expression data of upper airway immune cells from
moderate COVID-19 patients was obtained from44.
Immune cell populations were identified through annotated clustering

from20,21,44. Cell type labels were maintained as originally published.
Following removal of all genes with count= 0, normalised log2 counts
across all samples (separately for each cell type) were fitted to a gaussian
kernel72. All genes with expression values above mean minus three
standard deviations were considered as expressed genes for the given cell
type in the given intestinal location. For the intercellular ligand–receptor
predictions in the colon and ileum, a representative collection of immune
cells relevant in gut inflammation and SARS-CoV-2 infection based on
previous literature was selected, which included all macrophages, T cells, B
cells, plasma cells, Innate Lymphoid Cells (ILCs), mast cells and a
representative group of dendritic cells (DCs)20,21,49,66,73. For the
ligand–receptor predictions of the upper respiratory tract, all immune cell
types for which information was available were used in the analysis.

Defining ligand–receptor interactions between cell types. A list of
ligand–receptor interactions was obtained from OmniPath on 23
September 2020 using the ‘OmnipathR’ R package18. Source databases
used to retrieve the ligand–receptor interactions through OmnipathR
included six independent resources (CellPhoneDB, HPMR, Ramilowski 2015,
Guide2Pharma, Kirouac 2010, Gene Ontology)25,74–78. No weighing was
performed on ligand–receptor interactions, and protein complexes were
dealt with by including each of their individual proteins in the list.
Ligand–receptor interactions (intercellular interactions; full list available

at https://github.com/korcsmarosgroup/gut-COVID) were predicted
between epithelial cells types and resident immune cells according to
the following conditions:

1. The ligand is differentially expressed in the epithelial cell (upon
SARS-CoV-2 infection—in directly infected or bystander cells of the
colon and ileum).

2. The receptor is expressed in the immune cell in the relevant dataset
(ie, ileal or colonic immune cells).

3. The ligand–receptor interaction is present in OmniPath.

For the gut analysis, intercellular interactions were defined separately for
directly infected epithelial cells and bystander epithelial cell populations in
the ileum and in the colon. Enteroid epithelial data was paired with ileal
immune cell data20, while colonoid epithelial data was paired with colonic
immune cell data21. For the upper airway analysis, ciliated cell data of
moderate COVID-19 samples was paired with the same cell type of control
samples44. Intercellular interactions were defined between every possible
pair of epithelial cells and immune cells for each condition. Interactions
derived from upregulated ligands (“upregulated interactions”) were
evaluated separately from interactions derived from downregulated
ligands (“downregulated interactions”).

Scoring of ligands, receptors and immune cell types involved in
ligand–receptor interactions. To assess the importance of specific ligands,

Fig. 9 Overview of intracellular and intercellular signalling upon SARS-CoV-2 infection of colonic and ileal immature enterocytes and
resident immune cells. SARS-CoV-2 directly infects colonic and ileal immature enterocytes. Upon infection, transcription factors ATF2/3, JUN,
FOS, STAT1 and NFKB1 are modulated, resulting in altered intracellular signalling pathways and altered ligands expression, including
upregulation of chemokines (CXCLs) and human leukocyte antigens (HLAs), and downregulation of laminins (LAMB/Cs). Altered ligands
expression drives differential intercellular interactions between epithelial ligands and immune cell receptors (chemokine receptors (CXCRs),
killer cell lectin-like receptors (KLRs) and integrins (ITGs)) expressed on immune cells.
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receptors and immune cell types, additional parameters were computed
using the ligand–receptor network. First, the number of interactions
between each epithelial and immune cell type was computed by summing
up all the possible interactions between each differentially expressed
epithelial ligand and each of the receptors expressed by the specific
immune cell type. Second, the number of immune cell types involved in
each ligand–receptor pair was computed by counting the number of
different immune cell types which were expressing the receiving receptor.
Third, for each ligand, a “sum of receptor expression value” was computed
for each interacting immune cell type, based on the number of interacting
receptors and the mean expression level of the interacting receptors.

Data visualisation. Venn diagrams were generated using the ‘gplots’ R
package. Heatmaps were generated using the ‘ggplot2’ and ‘pheatmap’
packages79,80. Barplots were generated with the ‘ggplot2’ package.
Network visualisations were done using Cytoscape (version 3.8.2) (Shannon
et al. 2003; Su et al. 2014). All scripts used to generate these plots are
available on the Github repository of the project (https://github.com/
korcsmarosgroup/gut-COVID).

Intracellular analysis
Two previously established tools were employed to predict the effect of
SARS-CoV-2 infection on epithelial cells: ViralLink and CARNIVAL17,19. Both
tools, using related but distinct methods, infer causal molecular interaction
networks. These networks link perturbed human proteins predicted to
interact with SARS-CoV-2 viral proteins or miRNAs, to transcription factors
known to regulate the observed differentially expressed ligands in infected
epithelial cells.

Input data. To reconstruct the intracellular causal networks, three
different a priori interactions datasets were used. Information on viral
proteins and their interacting human binding partners was obtained from
the SARS-CoV-2 collection of the IntAct database on 1st October 202081,82.
Predicted SARS-CoV-2 miRNAs and their putative human binding partners
were obtained from45. Intermediary signalling protein interactions known
to occur in humans were obtained from the core protein-protein
interaction (PPI) layer of the OmniPath collection using the ‘OmnipathR’
R package on 7th October 202083. Only directed and signed interactions
were included. Interactions between human transcription factors (TFs) and
their target genes (TG) were obtained from the DoRothEA collection using
the DoRothEA R package on 7th October 202084. Only signed interactions
of the top three confidence levels (A, B, C) were included.
Normalised transcript counts and differentially expressed ligands were

obtained from single cell transcriptomics data of (i) colonoids and
enteroids infected with SARS-CoV-2 obtained from13, or (ii) upper airways
samples of moderate COVID-19 patients from44, as previously described.

ViralLink pipeline. Intracellular causal networks were inferred using the
ViralLink pipeline, as described in17. Briefly, a list of expressed genes in
infected immature enterocytes (originally known as “immature enterocytes
2” (MMP7+, MUC1+, CXCL1+)) from SARS-CoV-2-infected ileal and colonic
organoids13 or ciliated epithelial cells from moderate COVID-19 samples44

was generated from a normalised count table by fitting a gaussian
kernel72. The list of expressed genes in the infected immature enterocytes
population or COVID-19 ciliated epithelial cells was subsequently used to
filter the a priori molecular interactions from OmniPath and DoRothEA, to
obtain PPI and TF-TG sub-networks where both interacting molecules are
expressed (described as “contextualised” networks). Transcription factors
regulating the differentially expressed ligands were predicted using the
contextualised DoRothEA TF—TG interactions and scored as described
in17. Human binding proteins of viral proteins and viral miRNAs obtained
from the IntAct database81,82 and45, respectively, were connected to the
listed TFs through the contextualised PPIs using a network diffusion
approach called Tied Diffusion Through Interacting Events (TieDIE)85. In
this model, all viral protein—human binding protein interactions were
assumed to be inhibitory in action, based on likely biological function, and
given a lack of clear literature evidence of proven action. All viral miRNA—
human binding protein interactions were set as inhibitory based on
biological action of miRNAs86. The final reconstructed network contains
“nodes”, which refers to the interacting partners, and “edges”, which refers
to the interaction between nodes. Nodes include viral proteins and
miRNAs, human binding proteins, intermediary signalling proteins, TFs and
differentially expressed ligands. Edges include activatory or inhibitory
interactions.

For ileal, colonic and upper airways data, separate networks were
generated using the viral miRNA and viral protein as perturbations, and
subsequently joined using the “Merge” function within Cytoscape to
generate the final intracellular network. Nodes and edges were annotated
according to their involvement in networks downstream of viral miRNAs or
proteins. Further analyses were performed separately on the different
layers of the network: miRNA specific, protein specific or shared nodes.

CARNIVAL pipeline. Intracellular causal networks were inferred using
CARNIVAL and associated tools for analyses of expression data as
described in19. For simplicity, we refer to the pipeline as described in19

as the CARNIVAL pipeline. Briefly, PROGENy is used to infer pathway
activity from the log2 FC of the infected immature enterocytes 2 gene
expression data87. Next, using the TF-TGs interactions (from DoRothEA)
and the differential expression data from infected organoids, VIPER was
used to score TF activity based on enriched regulon analysis88. Here, only
the top 25 TFs regulating at least 15 target genes were taken forward, and
a correction for pleiotropic regulation was included. Finally, CARNIVAL
applied an integer linear programming approach to identify the most likely
paths between human interaction partners of viral proteins or miRNAs and
the selected TFs, through PPIs from OmniPath, considering the activity
scores from PROGENy and VIPER. Viral protein—human binding protein
interactions signs were specified to CARNIVAL as ‘inhibitory’, based on
likely biological function, and given a lack of clear literature evidence of
proven action. All viral miRNA—human binding protein interactions were
also set as inhibitory based on biological action of miRNAs86.

Network functional analysis
Functional overrepresentation analysis was performed on the networks
constructed as above-mentioned using the R packages ‘ClusterProfiler’ and
‘ReactomePA’, for Gene Ontology (GO)25) and for Reactome22–24 annota-
tions, respectively. For the intercellular network, the analysis was carried
out separately for ligand–receptor intercellular interactions driven by
either upregulated or downregulated ligands. A complete list of
ligand–receptor interactions is available in the GitHub repository of the
project (https://github.com/korcsmarosgroup/gut-COVID). For the upregu-
lated interactions, a list of upregulated ligands and their connecting
immune receptors was used as the test. For the downregulated
interactions, a list of downregulated ligands and their connecting immune
receptors was used. Where a list of ligands plus receptors contained <5
genes, it was excluded from the analysis. All ligands and receptors from the
original ligand–receptor network used as prior knowledge input for the
intercellular analysis was used as the statistical background.
For the intracellular network, the analysis has been done separately for

each of the sub-networks (viral protein specific, viral miRNA specific, or
shared). For each sub-network, a set of genes that were human binding
proteins, intermediary proteins and TFs in the network (“PPI layer”) was
used as a test list, and a set of all nodes from the original OmniPath PPI
interaction network used as prior knowledge input for the intracellular
analysis was used as the statistical background. For the Reactome pathway
enrichment analysis the IDs were converted to Entrez Gene ID within the
‘ReactomePA’ package. Functional categories with adjusted p value ≤ 0.05
and with gene count >3 were considered significantly overrepresented.

Selection of ligands involved in the inflammatory process
To show how our approach could help point out specific epithelial-derived
ligands driving the inflammatory process upon SARS-CoV-2 infection, the
list of differentially expressed ligands in infected immature enterocytes in
both colon and ileum was validated using independent data from three
previously published studies. To identify ligands whose expression was
induced by cytokines, ligands were compared to DEGs in human colonic
organoids exposed to cytokines from40. To identify ligands already known
to influence immune cell population, ligands were compared to two
databases: ImmunoGlobe, a manually curated intercellular immune
interaction network41, and ImmunoeXpresso, a collection of cell–cytokine
interactions generated through text mining42. Finally, to identify ligands
that could directly explain blood cytokine level changes in COVID-19
patients via direct immune cell regulation, ligands were compared to the
data from a large dataset we recently manually compiled using COVID-19
patient publications5.
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DATA AVAILABILITY
The necessary input data for the workflow and the full ligand–receptor interaction
tables are available in the GitHub repository of the project (https://github.com/
korcsmarosgroup/gut-COVID). All other relevant data is in the main text and in
Supplementary files.

CODE AVAILABILITY
The code of the entire workflow is available in the GitHub repository of the project
(https://github.com/korcsmarosgroup/gut-COVID).
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