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Universal quantum correlation 
close to quantum critical 
phenomena
Meng Qin1,2, Zhong-Zhou Ren1,3,4 & Xin Zhang1

We study the ground state quantum correlation of Ising model in a transverse field (ITF) by 
implementing the quantum renormalization group (QRG) theory. It is shown that various quantum 
correlation measures and the Clauser-Horne-Shimony-Holt inequality will highlight the critical point 
related with quantum phase transitions, and demonstrate nonanalytic phenomena and scaling behavior 
when the size of the systems becomes large. Our results also indicate a universal behavior of the critical 
exponent of ITF under QRG theory that the critical exponent of different measures is identical, even 
when the quantities vary from entanglement measures to quantum correlation measures. This means 
that the two kinds of quantum correlation criterion including the entanglement-separability paradigm 
and the information-theoretic paradigm have some connections between them. These remarkable 
behaviors may have important implications on condensed matter physics because the critical exponent 
directly associates with the correlation length exponent.

Quantum phase transitions (QPTs) signify that the ground state of the many-body system dramatically changes 
by varying a physical parameter—such as pressure or magnetic field. The one-dimensional Ising model in a trans-
verse field (ITF)1–6 can be used to explain the phenomena of ferromagnetic, ferroelectric, and order-disorder 
transformations. It has been obtained comprehensive study as the simplest exactly solvable model to demonstrate 
QPTs.

Traditionally, the way of studying the phase transitions is the mean field theory. But researchers have found 
that the mean field theory results are not in agreement with the experiments because the mean field theory 
ignores the effect of fluctuation. It is the quantum fluctuation that induces QPTs. One of the most important pro-
gresses happened in 1970 when Wilson introduced the concept of renormalization in the quantum field theory 
to quantum statistical physics7. He used the renormalization theory to investigate the Ising model and derived 
the universal law of the second order phase transitions. The result is the most revolutionary breakthrough to find 
the nature of QPTs8.

Besides the direct investigation on the relations between entanglement and QPTs in different systems9–11, 
combining the quantum renormalization group (QRG) method and the quantum entanglement theory to study 
quantum critical phenomena also has attracted great attention12–18. Many interesting and meaningful results have 
been got by studying the low dimensional spin system. M. Kargarian12,13 have found that the derivative of the con-
currence between two blocks each containing half of the system size diverges at the critical point. The behavior 
of the entanglement near the critical point is directly connected to the quantum critical properties. The divergent 
behavior of the first derivative of the concurrence was accompanied by the scaling behavior in the vicinity of the 
critical point14.

But things have changed dramatically as some new developments took place that the quantum entangle-
ment cannot be viewed as the whole quantum correlation and the only useful resource in quantum information 
processing19. One of the important concepts came up in 2001 when Henderson et al. and Ollivier et al. have 
concluded that entanglement does not account for all nonclassical correlations and even those separable states 
contain nonclassical correlations that can be demonstrated by quantum discord19–21. Inspired by the meaningful 
results about quantum discord, many similar quantum correlation measures based on information-theoretic have 
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been proposed, such as measurement-induced disturbance, geometric discord, measurement-induced nonlocal-
ity, quantum deficit and so on19,22–25. The investigations on these methods also have obtained much attention26–37. 
Among them one of the topics deserves more attention that is the relations between these quantum correlation 
measures and QPTs. Some of the questions still remain to be solved: are there some general and special properties 
when we use these quantum correlation measures to study the QPTs if the QRG theory is adopted? How does 
the scaling behavior or the critical phenomena change as we take different measures? If the answer can give some 
universal result, this will be very important and meaningful to know the relations between QPTs and quantum 
information theory because QPTs can be used to recover the qubit in quantum information processing. This 
paper is our attempt to solve these questions.

Results
Renormalization of the Hamiltonian. The Hamiltonian of ITF on a periodic chain of N qubits can be 
written as12
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where J is the exchange interaction, σ τ =τ x z( , )i  are Pauli operators at site i, and g is the transverse field strength. 
In order to implement QRG, one needs to divide the Hamiltonian into two-site blocks. The Hamiltonian then can 
be resolved into the block Hamiltonian σ σ σ= − ∑ +=H J g( )B
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2, 1, 1 2, , here σαj I,  are the Pauli matrices at site j of the block labelled by I.
The two lowest eigenstates of the corresponding Ith block Hamiltonian σ σ σ− +J g( )I
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where α = +s s/ 12 , β = +s1/ 12 , and = + +s g g12 . Now we can establish the relations between the 
original Hamiltonian and the renormalized one that is = +H P H H P( )eff B BB

0 0. The projection operator 
ψ ψ= +P II II0 0 1  can be constructed by using the two lowest eigenstates |ψ0〉  and |ψ1〉 , where 

I
 and 

I
 are renamed states of each block to represent the effective site degrees of freedom12. The effective Hamiltonian 

of the renormalized chain is again an ITF model which is similar to the original Hamiltonian H
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Accordingly, the density matrix of the ground state is given by
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In the following, after briefly introducing the definitions of different measures, we will investigate the charac-
teristic of them.

Negativity. Firstly, we use the negativity to calculate the entanglement in this model. According to the 
Peres-Horodecki criterion, a non-entangled state has necessarily a positive partial transpose (PPT)38. The 
Peres-Horodecki criterion gives a qualitative way to judge whether the state is entangled or not. Negativity, firstly 
introduced by Vidal and Werner, is defined by39

ρ
ρ
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Ne ( )
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where ρT
1

A  denotes the trace norm of the partial transpose ρT A,

ρ ρ ρ= .†tr ( ) (7)
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It is easy to compute the negativity of eq. (5)
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The properties of entanglement Ne, the first derivative of Ne, and the scaling behavior of dNe dg/ min
 have been 

plotted in Fig. 1. It is shown that the negativity develops two different saturated values with the increasing of the 
size of the system in Fig. 1(a). The saturated value of negativity is zero corresponding to the paramagnetic phase 
when the magnetic field parameter is in 1 <  g ≤  2.5, while the saturated value of negativity is 0.5 corresponding to 
the long-ranged ordered Ising phase for 0 ≤  g <  1. Therefore, the two phases are separated by critical point gc =  1. 
The nonanalytic feature of the first derivative of negativity at the critical point is given in Fig. 1(b). The system 
exhibits singular property as the number of QRG iterations increases. In order to give a more detailed analysis, the 
values of the minimum dNe dg/ min

 as a function of the system size are depicted in Fig. 1(c) after enough times of 
iteration. It can be seen that the dNe dgln / min

 shows a linear characteristic with ln (N) and gmin gradually 
approaches to the critical point gc. The relation is | | ~dNe dg N/ min

. So the critical exponent θ is 1. Referenc 12 have 
demonstrated that the exponent θ is directly related to the correlation length exponent v close to the critical point. 
So we can easily compute the correlation length through QRG theory.

Quantum discord and measurement-induced disturbance. Quantum discord (QD)21,29 is defined by 
the following expression

ρ ρ ρ= − .QD I CC( ) ( ) ( ) (9)AB AB AB

For an arbitrary bipartite state ρAB, the total correlations are expressed by quantum mutual information

∑ρ ρ ρ= −
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where the mutual information measures the total correlation, including both classical and quantum, for a bipar-
tite state ρAB. Here ρ ρ ρ= −S tr( ) ( log )2  denotes the von Neumann entropy, with ρA and ρB being the reduced 
density matrix of ρAB obtained by tracing out A and B, respectively. The classical correlation CC(ρAB) is defined as
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k k k  is quantum conditional entropy. The maximum is achieved from a complete 
set of projective measurements ∏ = =B B k( , 1, 2)k

B
k k  on subsystem B locally.

Measurement-induced disturbance (MID) is defined as the difference of two quantum mutual information 
respectively of a given state ρAB shared by two parties (A and B) and the corresponding post-measurement state 
Π(ρAB)25,29

ρ ρ Π ρ= −MID I I( ) ( ) ( ( )), (12)AB AB AB

where the mutual information is the same as defined in eq. (10). I(Π(ρ)) quantifies the classical correlation in ρAB 
with Π ρ Π Π ρ Π Π= ∑ ⊗ ⊗( ) ( ) ( )i j i
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AB , AB , where the measurement is induced by the spectral resolutions 
of the reduced states ρ Π= ∑ pA i i
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A and ρ Π= ∑ pB i i

B
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After some standard algebra, we can get QD and MID as

ρ β α β α= + − − + + .QD h p h h p( ) ( ) (( ) ) (1 ) ( )/2 (13)1
2 2 2 2 2

2

Figure 1. The negativity (a) and the first derivative of negativity (b) of the model versus g at different quantum 
renormalization group steps. The logarithm of the absolute value of minimum dNe dg/ min

 (c) in terms of system 
size ln (N).
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Since the eq. (2) is a pure state, and the quantum discord reduces to entanglement entropy (E) in such case. So 
eq. (13) can also be expressed as ρ ρ α α β β= = − −QD E( ) ( ) log log2

2
2 2

2
2. We find that eq. (13) is identical 

with eq. (14), therefore QD, MID and entanglement entropy are equal in this case. The characteristic of QD & 
MID, the first derivative of QD & MID, and the scaling behavior of dQD MID dgln & / min

 have been displayed in 
Fig. 2. The QD & MID also can be used to discover the critical point gc correlated with QPTs through enough steps 
of QRG. The difference is that the saturated value of QD & MID is 1 for 0 ≤  g <  1. In addition, the singular behav-
ior of QD & MID is more pronounced than negativity at the thermodynamic limit from Fig. 2(b). The scaling 
behavior between the minimum value of dQD&MID/dg and the size of the system also can be found in Fig. 2(c). 
The critical exponent θ of QD & MID are equal to negativity, i.e. ~dQD MID dg N& / min

 with θ =  1.

Measurement-induced nonlocality and geometric discord. Luo et al. introduced the measurement- 
induced nonlocality (MIN) in 2011 to quantify the quantum correlation24,29
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Dakie et al. introduced the geometric measure of quantum discord as22,23,29
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where Ω means the set of zero-discord states and ρ χ ρ χ− = −tr ( )2 2 is the square of the Hilbert-Schmidt 
norm.

Applying these formulas to the eq. (5), one gets
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Figure 2. The QD & MID (a) and the first derivative of QD & MID (b) versus g at different quantum 
renormalization group steps. The logarithm of the absolute value of minimum dQD MID dgln & / min

 (c) in 
terms of system size ln (N).
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The results of MIN&GQD, the first derivative of MIN&GQD, and the scaling behavior of dMIN GQD dgln & / min
 

are given in Fig. 3. The MIN&GQD also can detect the critical point. The singular behavior at the vicinity of the 
critical point can be seen in the Fig. 3(b) and the scaling behavior of dMIN GQD dgln & / min

 exist too. The critical 
exponent θ of θ~dMIN GQD dg N& / min

 is 1 and have no change.

Quantum deficit. For any bipartite state, the quantum deficit (QDe) is defined as the relative entropy of the 
state ρAB with respect to its classically decohered counterpart ρAB

d  as below28

ρ ρ ρ ρ ρ ρ= = − .QDe S Tr Tr( ) ( ln ) ( ln ) (19)AB AB AB
d

AB AB AB AB
d

The quantum deficit QDeAB determines the quantum excess of correlations in the state ρAB, with reference to 
its classical counterpart ρAB

d . The classical state ρAB
d  has the same marginal states ρA, ρB as that of ρAB. It is diagonal 

in the eigenbasis{|a〉 , |b〉 }of ρA, ρB and the expression is

∑ρ = ⊗P a a b b , (20)AB
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where ρ=P a b a b, ,ab AB  stands for the diagonal terms of ρAB and ∑ =P 1a b ab, .
So, it is easy to see that ρ ρ = ∑Tr P P( ln ) lnAB AB
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where λi signify the eigenvalues of the state ρAB. After some algebra, we can get QDe

ρ α β α β α α β β= + + − − .QDe ( ) ( ) ln ( ) ln ( ) ln ( ) (22)2 2 2 2 2 2 2 2

The performances of QDe, the first derivative of QDe, and the scaling behavior of dQD dgln e/ min
 are plotted 

in Fig. 4. Just like before, all curves in Fig. 4(a) cross each other at the critical point gc =  1. The saturated values 
QDe =  0.6931 for 0 ≤  g <  1and 0 for g >  1 after enough steps of renormalization. The singular behavior at the 
critical point and the scaling behavior of dQDe dgln / min

 also can be observed if we use QDe to quantify the quan-
tum correlation. The exponent θ of θ~dQDe dg Nln / min

 still is 1. It is found that the critical exponent θ does not 
change with the variation of different measures.

Bell violation. The Bell violation can be adopted to prove the existence of quantum nonlocality. The following 
expression is the Bell operator corresponding to Clauser-Horne-Shimony-Holt (CHSH) inequality29,40–43

σ ′ σ ′ σ ′ σ= ⋅ ⊗ + ⋅ + ⋅ ⊗ − ⋅B a b b a b b( ) ( ) , (23)CHSH

where a, a′ , b, b′  are the unit vectors in 3, and σ =  (σx, σy, σz). The CHSH inequality can be expressed as

ρ= | | = ≤ .
ρ

B B Tr B( ) 2 (24)CHSH CHSH

The maximum violation of CHSH inequality is defined by
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CHSH
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Figure 3. The MIN&GQD (a) and the first derivative of MIN&GQD (b) of the model versus g at different 
quantum renormalization group steps. The logarithm of the absolute value of minimum dMIN GQD dgln & / min

 
(c) in terms of system size ln (N).
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So, we can get the analytical result for this model as

κ= + + − =
+

B t t t
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2 ( ) 2 2

1
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(26)
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2

2
2

3
2

min 2

where the parameters are exactly the same as eq. (17).
The features of BCHSH, the first derivative of BCHSH, and the scaling behavior of dB dgln /CHSH min

 are shown in 
Fig. 5. In Fig. 5(a), it is found that the block-block correlations will violate the CHSH inequality and also exhibit 
QPTs at the critical point. The saturated values are different from before: one is BCHSH =  2.828 for 0 ≤  g <  1 and the 
other is 2 for g >  1. The scaling behaviors of dB dgln /CHSH min

 convince us that the Bell violation also catches the 
critical behavior of the ITF due to the nonanalytic behavior of the Bell nonlocality44. The exponents relation of 
this property is ~dB dg N/CHSH min

. The values of the critical exponents are identical with before.

Discussions
In this study, we have combined the methods of quantum correlation and QRG theory to analyze the critical 
behavior of ITF model. Our results indicate that the critical behavior of the system can be described by quantum 
correlation or Bell violation. These quantum-information theoretic measures share the same singularity and the 
same finite-size scaling. The critical exponent which relates with the correlation length exponent will remain the 
value 1 even with the variation of different quantum correlation measures. Based on numerical computation, we 

Figure 4. The QDe (a) and the first derivative of QDe (b) of the model versus g at different quantum 
renormalization group steps. The logarithm of the absolute value of minimum dQDe dgln / min

 (c) in terms of 
system size ln (N).

Figure 5. The BCHSH (a) and the first derivative of BCHSH (b) of the model versus g at different quantum 
renormalization group steps. The logarithm of the absolute value of minimum dB dgln /CHSH min

 (c) in terms of 
system size ln (N).
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have conjectured that the correlation length can be easily gotten by applying the QRG theory. The similarities and 
differences between each quantum correlation measures also are given. Furthermore, by applying QRG method 
the block-block correlations in ITF will violate the CHSH inequality.
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