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Motor imagery is a popular technique employed as a motor rehabilitation tool, or

to control assistive devices to substitute lost motor function. In both said areas

of application, artificial somatosensory input helps to mirror the sensorimotor loop

by providing kinesthetic feedback or guidance in a more intuitive fashion than via

visual input. In this work, we study directional and movement-related information in

electroencephalographic signals acquired during a visually guided center-out motor

imagery task in two conditions, i.e., with and without additional somatosensory input

in the form of vibrotactile guidance. Imagined movements to the right and forward

could be discriminated in low-frequency electroencephalographic amplitudes with group

level peak accuracies of 70% with vibrotactile guidance, and 67% without vibrotactile

guidance. The peak accuracies with and without vibrotactile guidance were not

significantly different. Furthermore, themotor imagery could be classified against a resting

baseline with group level accuracies between 76 and 83%, using either low-frequency

amplitude features or µ and β power spectral features. On average, accuracies were

higher with vibrotactile guidance, while this difference was only significant in the latter

set of features. Our findings suggest that directional information in low-frequency

electroencephalographic amplitudes is retained in the presence of vibrotactile guidance.

Moreover, they hint at an enhancing effect on motor-related µ and β spectral features

when vibrotactile guidance is provided.

Keywords: vibrotactile guidance, kinesthetic guidance, motor imagery, electroencephalography, brain-computer

interface, directional decoding

1. INTRODUCTION

Injuries or diseases resulting in the loss or degradation of motor functions severely disrupt the
lives of those afflicted by them in many ways. Therefore, researchers across several disciplines
concern themselves with investigating methods to restore or replace lost functionality. On this
quest, it is vital to consider the entire sensorimotor control loop, which contains both afferent and
efferent processes. In natural movement processes, the feed-forward (i.e., execution of movement)
and feedback (i.e., haptic information, proprioception, visual information etc.) processes cannot
be viewed as decoupled. Rather, movement actions are adjusted and refined during the execution
according to sensory inputs.Moreover, combiningmotor imagery (MI), where participants imagine
performing movements without executing them, with afferent feedback has been shown to induce
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plasticity at the motor cortex level (Pichiorri et al., 2011,
2015; Mrachacz-Kersting et al., 2017b). In Mrachacz-Kersting
et al. (2017b), a tight correlation has been observed between
the afferent inflow caused by the electrical stimulation and
electroencephalographic (EEG) motor-related patterns in the
amplitude of low frequency bands, suggesting that both reach the
somatosensory areas at similar times. Removing somatosensory
feedback from natural movement decreases motor control, as
documented for grasping movements with artificially removed
haptic sensation (Johansson and Westling, 1984), and wrist
movements with artificially disrupted proprioception (Galán
et al., 2015). Furthermore, in the specific case of upper
limb prostheses for amputees, surveys have found that many
participants express a desire for tactile feedback (Biddiss and
Chau, 2007; Pylatiuk et al., 2007; Lewis et al., 2012; Cordella et al.,
2016), to make the interaction feel more natural.

The most common means to provide non-invasive
somatosensory input are vibrotactile (Chatterjee et al., 2007;
Cincotti et al., 2007; Antfolk et al., 2010; Leeb et al., 2013),
electrotactile (Bach-y Rita and Kercel, 2003; Cincotti et al., 2012;
Franceschi et al., 2016; Mrachacz-Kersting et al., 2017b; Corbet
et al., 2018), mechanotactile (Patterson and Katz, 1992; Antfolk
et al., 2013), or passive movement (Ramos-Murguialday et al.,
2012, 2013; Mrachacz-Kersting et al., 2017b; Randazzo et al.,
2017). These modalities are employed for different purposes,
including force feedback (Patterson and Katz, 1992; Antfolk
et al., 2010, 2013), transmission of kinesthetic information for
proprioceptive (Ramos-Murguialday et al., 2013; Randazzo et al.,
2017) or navigational purposes (Bach-y Rita and Kercel, 2003), or
encoded patterns with discrete (Chatterjee et al., 2007; Cincotti
et al., 2007), or continuous properties (Franceschi et al., 2016).

In studies or applications where there is no inherent
(somatosensory) feedback, it is commonly substituted by visual
input, since the visual modality offers a wide variety of
possibilities, and the visual sense is capable of processing a
large volume and variety of stimuli. In a context dealing
with motor rehabilitation or replacement of motor function,
many such works utilize motor imagery. Motor imagery
may be subdivided into different modalities including visual
MI (imagery of movement visualization) and kinesthetic MI
(imagery of movement sensation) (Jeannerod et al., 1994).
Neurophysiological comparison of kinesthetic MI and visual
MI shows that kinesthetic MI yields more activity in motor-
associated structures and inferior parietal lobule, while visual
MI activates predominantly the occipital regions and the
superior parietal lobules (Guillot et al., 2009; Chholak et al.,
2019). Furthermore, kinesthetic MI and visual MI have been
associated with event-related desynchronization (ERD) and
event-related synchronization (ERS) (Pfurtscheller and Da Silva,
1999; Pfurtscheller and Neuper, 2001; Müller-Putz et al., 2005;
Muller-Putz et al., 2006; Rohm et al., 2013), respectively, in said
areas of the brain (Chholak et al., 2019). ERD and ERS are event-
related phenomena that represent frequency-specific changes of
the ongoing EEG activity and consist of local decrease or increase,
respectively, of power in certain frequency bands (Pfurtscheller
and Da Silva, 1999). When comparing classification accuracies
of various movements, kinesthetic MI was proven to give better

classification accuracy results than visual MI, while movement
execution and observation of movement give better results
than both visual MI and kinesthetic MI (Neuper et al., 2005).
Furthermore, when inspecting classifier patterns, kinesthetic MI
and movement execution had very similar areas of the brain
with the most relevant electrode positions for the recognition of
the respective task, specifically, being located above the central
cortical area (Neuper et al., 2005).

Considering that movement processes suffer when
somatosensory feedback is impaired (Johansson and Westling,
1984; Galán et al., 2015), it is increasingly believed that the
performance of MI could benefit from artificial somatosensory
input. To more closely simulate the motor control loop, in
applications where MI has been employed as a control tool for
end-effectors, a variety of different approaches have been studied
to artificially provide somatosensory feedback. Somatosensory
feedback or guidance in conjunction with MI tasks has
principally been studied with respect to features derived from
ERD. Studies comparing classification performance in MI tasks
with either vibrotactile feedback or visual feedback (Cincotti
et al., 2007; Leeb et al., 2013) have found no significant effects
of the feedback modality. In Cincotti et al. (2007), most of the
participants expressed that subjectively, the vibrotactile modality
felt more natural. In a rehabilitation context, several works
claim beneficial interaction effects between passive movement
feedback, ERD elicited during MI, and motor scores. Specifically,
Ang et al. (2009), Ramos-Murguialday et al. (2013) have
documented improvements in Fugl-Meyer assessment motor
scores in stroke patients following MI training with feedback in
the form of passive joint movement. Ramos-Murguialday et al.
(2012, 2013) further found that BCI performance of participants
receiving passive movement feedback was higher compared
to control groups which received sham feedback. Similarly,
Randazzo et al. (2017) achieved a performance increase when
adding passive movement guidance to an MI task, and Corbet
et al. (2018) documented enhanced ERD during MI with
electrotactile guidance, compared to visual guidance. While,
Corbet et al. (2018) demonstrate that the electrotactile input does
not directly produce ERD unless it exceeds the motor threshold,
Hommelsen et al. (2017) found highly similar ERD patterns
in the mu frequency band when comparing a motor task with
sensory-threshold electrotactile feedback to sensory-threshold
electrotactile stimulation without movement. We are not aware
of any works documenting similar undesirable effects with
vibrotactile input in the absence of a motor task. In a previous
study by our group, we have found no ERD in a non-movement
condition with vibrotactile sham feedback (Hehenberger et al.,
2020). In this case, vibrotactile sham feedback was provided by
“replaying” a feedback sequence from a previous trial.

Motor execution andmotor imagery have been investigated by
means of low frequency EEG amplitude during cue-based (Ofner
et al., 2017; Schwarz et al., 2017) and self-paced tasks (Sburlea
et al., 2015; Pereira et al., 2017, 2018). Movement-related cortical
potentials (MRCPs) are neural specific patterns associated with
the self-paced initiation of movement (Deecke et al., 1976). The
pattern is characterized by a gradual negativity starting at ∼1.5
s before the movement onset and reaching peak negativity in
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the proximity of the movement onset. According to Mrachacz-
Kersting et al. (2017a), manual pressure stimulation produced
beneficial effects on the MRCP variability in stroke patients
performing a motor execution task. Furthermore, Mrachacz-
Kersting et al. (2017b) found an increase in cortical excitability
when healthy participants received either functional electrical
stimulation or passive movement stimulation in response to the
MRCP of imagined foot movements.

Several studies have shown thatMRCPs also encode properties
of the movement, such as speed, applied force (do Nascimento
and Farina, 2008; Jochumsen et al., 2016) or directional
information (Kobler et al., 2020a). Kobler et al. (2020a) has
demonstrated that directional information is encoded around the
low-frequency delta band. In their analyses of a pursuit tracking
task, they found that at the beginning of the trials, directions
were more discriminable when aligning the EEG to the time
point where the target starts moving, than when aligning to
the time point when subjects initiated the pursuit. Furthermore,
they achieved better accuracies decoding directional information
from parieto-occipital regions than from the sensorimotor areas.
To our knowledge, the potential influence of tactile input on
directional decoding from EEG has not been well-studied.

In a previous study by our group which involved executed
center-out movements with real-time kinesthetic vibrotactile
feedback (Hehenberger et al., 2020), we started to look into this
issue tentatively. However, it was designed around a focus on
movement-related correlates rather than directional decoding.
Consequently, the results pertaining to directional decoding were
largely inconclusive.

The present work focuses on directional decoding in a similar
center-out motor task, while removing natural proprioception
from the equation, in order to increase the salience of the
vibrotactile input. The motor task has been modified to guided
MI, and the vibrotactile input takes the form of vibrotactile
guidance rather than feedback. In the following, we present the
analysis of EEG signals recorded while participants performed
this guided center-out MI task. We compare visual guidance
against visual guidance supplemented by kinesthetic vibrotactile
guidance, surmising that the presence of vibrotactile guidance
maintains and potentially enhances performance for directional
decoding, as well as the detection of a motor state.

2. MATERIALS AND METHODS

2.1. Participants
The experiment was performed with 15 able-bodied participants
(7 male, 8 female; age 21–32). All participants were self-
reportedly right-handed. According to self-reports, 10
participants had prior experience with motor imagery, and
six had prior experience with vibrotactile stimulation. At the
beginning of the experiment, participants received both written
and verbal instructions, before providing written informed
consent. Participants received a monetary compensation of 7.50
e per hour for their efforts. The study protocol was approved by
the ethical committee of the Medical University of Graz.

2.2. Experimental Setup
Participants were seated in front of a monitor, and instructed to
perform guided motor imagery of a center-out arm movement
task, i.e., slowly sliding their right palm across a flat surface. The
imagery was guided by a visual moving cue displayed on the
monitor, as well as a simultaneous vibrotactile moving sensation
across the right shoulder blade (condition VtG: Vibrotactile
Guidance), or by a visual moving cue alone (condition noVtG).
The direction of the center-out movement was cued to one of two
orthogonal directions: to the right, or up/forward. In the second
case, the visual and vibrotactile guidance moved upwards, while
the imagined movement was to the front. In the following, it will
be referred to as “up.”

Several of the participants did not have prior experience with
vibrotactile stimulation or motor imagery. Hence, participants
were led through a familiarization procedure at the beginning of
the experiment. This practice has also been suggested in Roc et al.
(2020), in order to best prepare users to perform MI tasks. The
familiarization included practice runs for each condition, and the
option to practice executing the center-out movement on a table
surface, in order to help themmemorize the movement as vividly
as possible.

Following the familiarization, each participant completed
three runs per condition, in a block design. The order of
conditions was switched between participants, such that eight
participants started with condition VtG and seven with condition
noVtG, respectively. Runs consisted of 40 regular trials each,
whereas in condition VtG, each run comprised four additional
trials where the movement direction of the vibrotactile guidance
and the visual guidance were incongruent. In condition VtG,
participants were prompted to rate after every trial whether the
two guidance modalities were congruent or not. Incongruent
trials were used to help keep the participant engaged and were
not used in the future classification and analysis. Each trial was
7.5 s long, where the MI task was performed for a period of 2 s, as
shown in Figure 1.

After the main runs, two runs of continuous rest were
recorded, with a duration of one minute each. Finally,
participants were led through two runs of controlled eye artifacts,
i.e., saccades and blinks (Kobler et al., 2020b).

The experimental paradigms were implemented on the
simulation and neuroscience application (SNAP) platform
(http://github.com/sccn/SNAP). SNAP builds on Python 2.7 and
Panda 3D (https://www.panda3d.org).

After participating in the experiment, participants were asked
to fill out a questionnaire which consisted of seven questions for
condition VtG and five questions for condition noVtG. Questions
were answered by selecting values from 1 to 5 on a Likert scale (1:
Strongly disagree, 2: Disagree, 3: Neither agree nor disagree, 4:
Agree, 5: Strongly agree). The questionnaire can be found in the
Supplementary Material.

2.3. Vibrotactile Stimulation
Three specialized tactile actuators, i.e., C-2 tactors (Engineering
Acoustics Inc., Casselberry, USA) were attached to the inside of
an elastic shirt to stimulate the right shoulder blade. The tactors
were controlled by a custom device containing an ARM Cortex
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FIGURE 1 | Trial structure according to the experimental paradigm, and tactor layout. The time intervals are indicated at the bottom. The middle row illustrates the

visual cues, which were identical in both conditions, and the top row (highlighted in green and blue to identify the conditions VtG and noVtG, respectively) the

vibrotactile guidance, respectively. The circles represent the tactors, as illustrated in the sketch of the tactor layout on the right. Active tactors are marked in purple,

and idle tactors are presented in white. The purple arrows represent movement in both representations (visual and vibrotactile), in the presented example a movement

to the right. The participant was visually alerted to the beginning of each trial, 1.5 s before the appearance of the fixation cross. The fixation cross was on screen for 2

s, the latter 1.5 s of which were later used as a baseline period. During this period, participants were instructed to fixate their gaze on the fixation cross, and relax.

Afterwards, the visual cue, a right hand with a fixation point, appeared on the monitor. It remained stationary for the pre-MI period of 2 s, and then moved either to the

right or up at a constant speed. Participants were instructed to perform the MI in accordance with the movement of the cue. In condition VtG, participants were

subsequently asked to judge whether the vibrotactile guidance was congruent to the visual guidance in this trial, and to respond with a key press.

M4micro-controller (STMicroelectronics, Geneva, Switzerland).
The carrier frequency of the signal driving the tactors was 250Hz.
The intensities of the C-2 tactors were manipulated in Python 2.7
via a serial interface. To control for individual sensitivity profiles,
the tactor amplitudes were calibrated such that the perceived
intensities were equalized. The vibrotactile guidance consisted of
a moving virtual stimulus, which simulated a movement from the
central tactor to one of the outer tactors. The tactor amplitudes
to evoke the moving sensation were modulated according to the
following mapping (Israr and Poupyrev, 2011; Luzhnica et al.,
2017; Hehenberger et al., 2019, 2020),

xv =
A2
2

A2
1 + A2

2

(1)

with xv the location of the moving stimulus between the start
tactor T1 (xv = 0) and the end tactor T2 (xv = 1), and A1,A2

the amplitudes of T1,T2, respectively.

2.4. Signal Acquisition
EEG and EOG was recorded from 64 actiCap electrodes using
two BrainAmp amplifiers (Brain Products GmbH, Gilching,
Germany), at a sampling rate of 1 kHz. Electrodes were arranged
according to the international 10/10 EEG system (Chatrian et al.,
1985), where 61 channels were used for EEG and three channels
were used for EOG.

2.5. Signal Processing
We investigated two sets of features, i.e., low-frequency
amplitude features around the δ range (0.2–5 Hz), and spectral
power features, with a focus on the µ (8–12 Hz) and β (15–
32 Hz) frequency bands. For both sets of features, we present
neurophysiological characteristics, and classification results.

2.5.1. Preprocessing
Figure 2 provides an overview of the common preprocessing
procedure. First, the raw EEG signals of the main runs were
subjected to a feature-specific band-pass filter (4th order
Butterworth, zero-phase), i.e., 0.2–5 Hz for low-frequency
amplitude features, and 1–40 Hz for spectral features,
respectively. The band-passed signals were downsampled to 200
Hz for neurophysiology analyses, as well as for classification
based on spectral features, and to 10 Hz for classification
based on low-frequency amplitude features. Subsequently, the
signals were epoched into trials of 6 s, containing the baseline,
pre-MI, and MI periods. In order to identify trials contaminated
by artifacts, the raw signals were separately band-pass filtered
between 1 and 60 Hz, and examined for their maximal amplitude,
kurtosis, and joint probability. Trials with amplitudes over 200
µ V, or either the kurtosis or the joint probability exceeding five
times the standard deviation were marked for rejection with the
built in functions from EEGLAB toolbox (Delorme and Makeig,
2004; Delorme et al., 2007). On average, 20 trials per subject were
rejected. Additionally, we employed the sparse generalized eye
artifact subspace subtraction (SGEYESUB) algorithm (Kobler
et al., 2020b) in order to attenuate eye movements correlated
with the task. The SGEYESUBmodel was trained on the two runs
of controlled eye artifacts. Finally, we performed an Independent
Component Analysis (ICA) with the functionality provided by
the EEGLAB toolbox. We used the Infomax algorithm (Bell and
Sejnowski, 1995; Makeig et al., 1996) for the decomposition, and
identified artifactual components based on SASICA (Chaumon
et al., 2015), as well as on visual inspection of components.
The ICA decomposition was performed on the signals filtered
between 1 and 60 Hz, after the removal of contaminated trials,
and the correction for eye movement artifacts, as described
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FIGURE 2 | Common preprocessing of EEG signals. The top branch (highlighted in green) shows the main preprocessing applied to the trials, whereas the lower

branches show the procedures used to correct for eye artifacts (bottom, orange), and general artifacts (middle, yellow).

above. The ICA weights and rejected components were saved,
and applied to the signals during the main preprocessing.

Afterwards, the signals were further subjected to specific
processing depending on the type of analysis.

2.5.2. Neurophysiology
In order to evaluate the low-frequency amplitude features,
the preprocessed signals were re-referenced to the common
average. For the spectral features, we performed a time-frequency
decomposition using Morlet wavelets (Morlet et al., 1982)
(FWHM = 3s @ 1 Hz), in 1 Hz steps from 1 to 40 Hz.

2.5.3. Classification
We performed classification of three distinct aspects. First, we
classified the two directions, separately for each condition, in
order to assess how the vibrotactile guidance influences the
directional discriminability. In this case, we considered the whole
trial, producing a classification sample each 100 ms, where for
each sample, the features were computed from the preceding
1 s of data. Second, we classified the MI period against the
baseline, separately for each condition, to assess the impact of the
vibrotactile guidance on the detection of a movement (MI) state.
This classification was based on a fixed time window, i.e., 0.5–1.5
s after the cue movement onset for the MI, and 3.5–2.5 s before
the cue movement onset for the baseline. Finally, we classified
the two conditions against each other, considering the whole trial,
as described above. For all classifications, we used a subset of 31
channels, covering frontocentral to parietal areas. We used linear
discriminant analysis with shrinkage regularization (sLDA) for
all classifications. All classifications were conducted two-fold,
once using low-frequency amplitude features, and once using
spectral features. Low-frequency amplitude features contained
previous samples with a window size of 1 s (10 samples at 10 Hz).
For classification based on spectral features, the preprocessed
data were further filtered (4th order zero-phase Butterworth
filter) in the two bands of interest, specifically µ (8–12 Hz) and
β (15–32 Hz) frequency bands. To increase the separability of
classes, common spatial patterns (CSP) (Ramoser et al., 2000;
Blankertz et al., 2007; Ang et al., 2012) were calculated for each
participant. CSP filters maximize the variance of the spatially
projected signals for one class, while minimizing it for the other

class. The CSP filters were calculated from a time window during
the MI period, i.e., 0.5–1.5 s after the cue movement onset. The
five most separating filters for each class were applied back on the
data, giving 10 features. For each feature, the logarithmic power
of each trial, relative to the baseline period, was calculated. This
was done for µ and β frequency bands separately, and then the
features from the two bands were combined. Finally, to obtain
the classification features, a moving-average filter with a window
size of 1 s was applied.

2.5.4. Classification Feature Patterns
In order to identify spatial areas which most strongly contributed
to the classification results, we used projections of the
classification features into channel space.

For the amplitude features, we computed activation patterns,
as suggested in Haufe et al. (2014):

a = 6x(6x + λI)−1(µ1 − µ2) · Var{s} (2)

with 6x the pooled covariance of the measurement signals x, λ
the shrinkage parameter, µ1, µ2 the classwise means, and s the
source estimate. The source estimate results from the backward
model, i.e., the sLDA weightsW applied to the measurements x:

s = WTx (3)

Since the spectral features were transformed via CSP, they cannot
directly be shown in topographic plots. For this reason, instead
of the classifier patterns, we present the CSP features projected to
the channel space. In order to obtain CSP features, we computed
the CSP model M (where each row is a CSP filter) and applied it
on our data x:

F = Mx (4)

After this, we calculated the pseudo-inverse of the CSP modelM
and applied it to the CSP features F, in order to project the data
back to the channel space:

Fch = M+F (5)

From there, the logarithmic power of the Fch (relative to the
baseline period) was calculated for both classes. The difference
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of the powers between two classes was then calculated and later
shown in topographic plots as power feature CSPs P:

P = P1 − P2 (6)

2.5.5. Statistics
We evaluated the performance of the classifications by
computing a threshold of significantly better-than-chance
accuracies, according to Müller-Putz et al. (2008). Furthermore,
we conducted Wilcoxon signed-rank tests on the peak accuracies
of the direction classification, as well as on the accuracies
resulting from the classification between baseline and the MI
period, to evaluate potential effects in performance between the
two conditions.

3. RESULTS

3.1. Neurophysiology
3.1.1. Potentials
Figure 3 illustrates the potentials between 0.2 and 5 Hz during
an average trial. The potentials are presented separately for each
condition, and direction, as 95% confidence intervals of the
amplitudes at channels Cz, CPz, and Pz, and as topographic plots
at selected time points.

There are prominent evoked responses to the stimuli provided
by the paradigm, as shown in Figure 3. Visual evoked potentials
(VEPs) are present in both conditions, following the appearance
of the fixation cross, the appearance of the visual cue, as well as
the start of the cue movement, whereas the VEP evoked by the
fixation cross is smaller than the other two. In condition VtG,
the second VEP overlaps with a somatosensory evoked potential
(SEP) elicited by the onset of the vibrotactile stimulation. During
the MI period, we can observe an MRCP presenting as a central
negativity peaking within a second after the cue movement onset,
which partially overlaps with the VEP. The peak amplitudes,
slopes, and spatial profiles of the VEP and the MRCP slightly
vary with the movement direction, and the condition. TheMRCP
negativity is stronger in condition noVtG (peak mean ± std at t
= 0.77 s: −0.60 ± 1.71 µV in VtG, −1.83 ± 1.79 µV in noVtG),
yet spatially broader in condition VtG. In both conditions, it is
initially located precentrally, and later more centrally, with the
later component exhibiting a contralateralization in condition
VtG, but not in condition noVtG.

3.1.2. Time-Frequency Analysis
Figure 4A presents a time-frequency map of the grand-average
trial (both conditions), along with topographic plots of the µ

and β bands, and the relative power spectrum for the MI period.
The spectrum plot includes the grand-average, and the individual
power spectra.

Here, we can observe a power decrease in the µ and β

frequency ranges during the MI period over centro-parietal
areas, as well as a weaker decrease during the pre-MI period.
As is evident from the individual relative power spectra in
Figure 4A (bottom panel), there is considerable inter-subject
variance. In the group of participants with prior MI experience,
six individuals showed stronger-than-average desynchronization

(yellow, µ peaks mean± std:−5.52± 2.18 dB), and four showed
weaker-than-average desynchronization (red, µ peaks mean ±

std: −1.26 ± 1.00 dB). In the group of participants with no prior
MI experience, all five individuals exhibited average or weaker-
than-average desynchronization (purple, µ peaks mean ± std:
−1.24 ± 0.92 dB). In Figure 4B, the grand-average spectra are
depicted separately for each condition, and each direction. The
spectral profiles are highly similar between the conditions and
directions, while the µ peak is slightly stronger in condition VtG
(−2.25 vs. −2.04 dB). Topographically, the strongest decrease is
located over centro-parietal areas in both conditions, whereas in
noVtG, they are more lateralized to the contralateral hemisphere.

3.2. Classification Results
3.2.1. Directions
The accuracies for classification between directions based on
amplitude features are depicted in Figure 5. The average peak
accuracy, which is obtained by averaging the subject-specific peak
accuracies, is 69.67% in condition VtG, and 67.01% in condition
noVtG, respectively. The subject-specific peak accuracies are
not significantly different between the two conditions, as per
a Wilcoxon signed-rank test (p = 0.1354). In both conditions,
the activation patterns are strongest between 0.6 and 1.2 s after
the cue-movement onset (positive), where the accuracies of
most individuals reach their peaks, and at the end of the trial
(negative). Spatially, the activation is strongest in central and
frontocentreal areas in condition VtG, while in condition noVtG,
it is concentrated over central and parietal areas.

Classification between directions based on spectral features
did not yield accuracies significantly exceeding chance level.
Therefore, the accuracies are not displayed here, but are added
to the Supplementary Materials.

3.2.2. Motor Imagery vs. Baseline
Figure 6 depicts the distribution of accuracies for classification of
MI against baseline, separated by condition. In both conditions
and for both amplitude and spectral features, the maximal
accuracies are over 90%, while the lowest accuracies range from
58.8% (condition noVtG, spectral features) to 75.7% (condition
VtG, amplitude features). For both sets of features, the average
accuracies are higher in conditionVtG (amplitude 83.2%, spectral
82.6%) than in condition noVtG (amplitude 79.5%, spectral
75.5%), and the variances of the individual accuracies are lower
in condition VtG. For the spectral features, the signed-rank test
revealed a significant difference in the individual accuracies (p
= 0.0012), while for the amplitude features, the difference is
not significant (p = 0.0730). The result of the significance tests
parallels the difference in the medians, which is marked in the
box plots. For the spectral features, the median in condition VtG
(82.7%) is higher than in condition noVtG (75.0%), whereas for
the amplitude features, they are virtually identical (VtG 82.6%,
noVtG 82.1%). The activation patterns for the amplitude features
are concentrated in central channels in condition noVtG, and a
little more frontal in condition VtG, with comparable intensity.
The power feature CSPs are concentrated in parietal and central
areas and are stronger in the µ frequency band than in β
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FIGURE 3 | Grand-average potentials (0.2–5 Hz), for each condition, and direction. The potentials are represented as 95% confidence intervals of the amplitudes at

Cz, CPz, and Pz, complemented by topographic plots at selected time points. The left panel depicts the potentials for condition VtG, whereas the dark green trace

corresponds to the direction right, and the light green trace to the direction up, respectively. Similarly, in the left panel, the potentials for direction right are shown in

dark blue, and the potentials for direction up in light blue. For time points before the cue movement onset, one set of topographic plots per condition is presented,

while for time points after the cue movement onset, one set per condition and direction is presented. These plots are framed with a color-coded frame matching the

color of the amplitude traces of the corresponding direction. The sketch in the middle at the bottom highlights the electrode positions whose amplitude traces are

shown at the top.

frequency band. Spatially, the patterns are highly similar in both
conditions, whereas they are slightly stronger in condition VtG.

3.2.3. Conditions
The classification accuracies for classifications between the two
conditions are shown in Figure 7. Using amplitude features, the
average peak accuracy was 80.39% (SD 5.41%). Accuracies of
over 70% were achieved both during the MI period, and the pre-
MI period, with a maximum grand average accuracy of 75.00%.
For spectral features, we achieved an average peak accuracy of
73.04% (SD 4.25%), and a maximum grand average accuracy of
71.4%. The activation pattern of the amplitude features during
the pre-MI period is most pronounced between −1.4 and −0.7

s. This pattern is strongly positive in parietal areas, and negative
in frontal areas. During the MI period, the patterns are strongly
positive in central areas, peaking between 1.1 and 1.6 s. power
feature CSPs (Figure 7) for the µ frequency band show that
during the MI period (specifically, from 0.5 to 2 s), there is more
negativity (i.e., a greater power decrease in condition VtG than in
condition noVtG) in parietal areas. During the same time period,
we can see more positivity (i.e., a greater decrease in power of
condition noVtG than in condition VtG) in frontal areas. During
the pre-MI period (specifically, from −0.7 to 0.4 s), there is a
positivity (i.e., a greater decrease in power of condition noVtG
than in condition VtG) in frontal areas. Power feature CSPs for
the β frequency band during the MI period (specifically, from 0.5
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FIGURE 4 | Summary of spectral features. (A) Time-frequency decomposition of the grand-average trial, as time-frequency map, topographic plots, and power

spectrum. The time-frequency decomposition and spectrum are computed relative to the period marked by dotted vertical lines in the time-frequency map. The

time-frequency map and spectrum are depicted at location C3. The topographic plots were computed from the ranges marked by the black dashed lines in the

time-frequency map, i.e., 0.5–2 s in the time dimension, and 8–12 Hz for the µ band, and 15–32 Hz for the β band in the frequency dimension. The bottom panel

depicts the grand-average (black solid line) and single-subject spectra (colored dashed lines), respectively, during the MI period (0.5–2 s). The single-subject spectra

are grouped into three subgroups, i.e., MI-experienced with stronger than average spectral peaks (yellow), MI-experienced with average or weaker µ peaks (red), and

MI-naïve (purple). (B) Power spectra at C3 and topographic plots for the two conditions, and two directions. Green and blue colors identify the conditions. Spectra

and topographic plots were computed from the same ranges marked in (A).

to 2 s) are is a more negative (i.e., a greater power decrease in
condition VtG than in condition noVtG) in central motor areas,
and more positive in posterior parietal areas. During the pre-
MI period (specifically, from t = −0.7 to t = 0.1s), there is a
positivity (i.e., a greater decrease in power of condition noVtG
than in condition VtG) in central and parietal areas.

3.3. Behavioral Results
Figure 8 shows a summary of participants’ answers to selected
questions on the questionnaire. Here, darker shades of green
and blue correspond to a lower rated effort, and lighter shades
to a higher rated effort. Two participants did not fill out the
questionnaire correctly (one fully, one partly). The missing
answers are indicated by question marks (gray segments).

On average, each condition was rated close to neutral
with respect to mental tiresomeness (average ratings: VtG 3.2,
noVtG 3.0). Three participants individually found condition
VtG more tiring than condition noVtG, while one participant
found condition noVtG more tiring. With respect to physical
tiresomeness, both conditions were rated as “not very tiring” on
a group level (average ratings: VtG 1.7, noVtG 2.0), where one
individual found condition noVtG more tiring, and none found
VtGmore tiring. No participant gave a rating of 5 in this category
for either condition.

For condition VtG, participants on average stated that they
found it easy to remain focused throughout the experiment, and
to concentrate on the MI task (average ratings: 3.7 in both cases).
Furthermore, they found it easy to concentrate on the vibrotactile
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FIGURE 5 | Classification results for direction right vs. direction up, based on amplitude features. The grand-average accuracies are depicted as thick solid lines, in

green for condition VtG, and in blue for condition noVtG. Single-subject accuracies are represented by dash-dotted dark gray lines, and the individual peak accuracies

are marked with squares for MI experienced participants, and diamonds for MI naïve participants, with the same color coding as in Figure 4. Below the accuracy

plots, the activation patterns are presented for selected time intervals during the MI period.

guidance (average rating: 4.3). For condition noVtG, they judged
it as slightly harder to remain focused (average rating: 3.4), yet
slightly easier to concentrate on the MI task (average rating: 4.1).
Individually, two participants found it easier to remain focused
in condition VtG, and one participant in condition noVtG,
respectively. Three participants found it easier to concentrate on
the MI task in condition VtG, and five vice versa.

Furthermore, all participants were confident or very confident
that they detected the majority of the incongruent trials. On
average, participants correctly detected 10.07 (SD 1.94) of 12
incongruent trials, and wrongly detected 0.63 (SD 1.25) of 120
regular (congruent) trials as incongruent trials. More detailed
statistics of the detection of incongruent trials can be found in
the Supplementary Materials.

4. DISCUSSION

We have studied amplitude and spectral features in EEG
signals recorded during a center-out MI task guided by a
visual cue in conjunction with kinesthetic vibrotactile guidance
(condition VtG), or by a visual cue alone (condition noVtG),
focussing on directional and movement-related information.
When classifying between directions for amplitude features, we
found better average accuracies, as well as stronger activation
patterns in condition VtG, but the peak accuracies were not
significantly different. Classification of MI against baseline gave
good accuracies in either condition, for both amplitude and

spectral features. Mean accuracies were higher in condition VtG
(significantly so for spectral features, where power feature CSPs
were stronger than in condition noVtG). These results confirm
that the directional and movement-related information are not
adversely affected by the vibrotactile guidance. An enhancement
could only be substantiated with respect to the motor state
detection from spectral features.

Most participants performed well in detecting which trials
were incongruent, i.e., 11 of 15 participants correctly detected
75% or more incongruent trials. We did not find a link
between the rate of correctly detected incongruent trials, and the
performance in the presented analyses.

4.1. Neurophysiology
The grand-average potentials shown in Figure 3 exhibit slight
differences in the positive peak amplitude of the EP evoked by
the cue movement onset between directions, where the positive
peak is stronger in right trials, in both conditions. Possibly, the
inherent internal mapping between the cue moving up and the
imagined movement to the front may influence the intensity of
the potential. The positive peak is followed by a combination
of two negative peaks, the first of which we attribute to the late
negative component of the evoked potential, while the second
one vaguely presents the characteristics of an MRCP as a central
negativity, which is expected when the imagined movement
is initiated. Since the onset of the MRCP depends on when
exactly the imagery is initiated, and thus varies between subjects
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FIGURE 6 | Classification results for MI vs. baseline. The distributions of accuracies are presented as box plots, with the individual accuracies identified with the same

color coding as in Figures 4, 5. Statistical difference is marked with an asterisk. The activation patterns of the amplitude features, and the power feature CSPs are

shown below the box plots.

and between individual trials, it is unsurprising that there is
considerable variance in the grand-average potential. The spatial
profile of the MRCP seems to be influenced by the vibrotactile
guidance, since it is more contralateral in condition VtG.

Regarding the µ and β power decrease during the MI
period illustrated in Figure 4, there is considerable inter-subject
variability with three individuals exhibiting particularly strong
patterns, and five individuals with very weak or uncharacteristic
patterns. Part of this variability may be explained by the level
of experience with MI tasks. In fact, all of the six participants
with better-than-average µ and β peaks possessed prior MI
experience, and the five MI naïve participants are among the
eight weakest mu/beta peaks. However, it is well documented
that ERD/ERS profiles can generally vary considerably between
individuals (Allison and Neuper, 2010; Blankertz et al., 2010;
Ahn and Jun, 2015; Wriessnegger et al., 2020), and while MI
is a skill that can be trained and refined, naïve subjects may
exhibit weak or strong patterns as a result of their neuroanatomy.
The separation in the strength of the power profiles between
the three groups highlighted in Figure 4 is to some extent also
visible in the classification results of MI against baseline based
on spectral features in Figure 6, especially in condition VtG.
Between conditions and directions, the grand average spectral
profiles show small variations. The µ peaks are fairly consistent,
especially in experienced subjects, and the β peaks vary slightly in
strength, where the peaks for direction up are stronger. Spatially,

the pattern in condition VtG is more bilateral, compared to
condition noVtG, where it is mostly contralateral. Furthermore,
the pattern is slightly broader in condition VtG.

It is worth mentioning that condition VtG contained an
additional task, i.e., responding after every trial whether the two
guidance modalities were congruent, as mentioned in section 2.2.
However, this task was executed outside of the main trial period,
and with enough temporal distance to avoid contamination of the
signals of interest by the additional motor activity of the key press
motion. On average, the key press occurred 2.4 s after the end of
the trial, and afterwards, ∼5–6 s passed before the start of the
baseline of the next trial. To our best knowledge, these offsets are
sufficient to avoid any overlap of the signals of interest with ERD
(Pfurtscheller and Da Silva, 1999) or an MRCP (Deecke et al.,
1976) elicited by the key press movement.

4.2. Classification
For classification between directions based on amplitude features
(Figure 5), accuracies exceeded the significance threshold during
the MI period, with peak accuracies of 58–80% (grand average
65%) in condition VtG, and 58–76% (grand average 61%)
in condition noVtG. While the difference in peak accuracies
is not significant, the accuracies in condition VtG show less
inter-subject variability. Furthermore, condition VtG exhibits
stronger activation patterns, which appear as a mixture of
central and parietal activations. The activation patterns in
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FIGURE 7 | Classification results for condition VtG vs. condition noVtG, for amplitude features (left), and spectral features (right). The grand-average accuracies are

depicted as thick black lines, single-subject accuracies as dash-dotted dark gray lines. The individual peak accuracies are marked with squares for MI experienced

participants, and diamonds for MI naïve participants, with the same color coding as in Figures 4–6. Below the accuracy plots, the activation patterns of the amplitude

features (bottom left), and the power feature CSPs of the spectral features (bottom right) are presented for selected time intervals within the pre-MI and MI periods.

FIGURE 8 | Overview of subjective ratings on the questionnaire. The (top) row (green colors) refers to condition VtG, the (bottom) row (blue colors) to condition

noVtG. Darker colors correspond to a lower rated effort (e.g., “not at all tiring,” or “very easy to concentrate.” The gray portions identify invalid/missing answers.

condition noVtG, on the other hand, are more centered in
postcentral and parietal areas, but strongest parietally. Kobler
et al. (2020a) found that directional information is encoded
both in parietal areas, and to a lesser degree in central motor
areas. Evidently, the classification results presented here are a
product of a combination of both networks, whereas motor
areas seem to be more strongly represented in condition VtG.
It is worth pointing out that Kobler et al. (2020a) concluded

that the decoding performance is not driven by differences
in EPs.

When classifying the MI periods against the baselines
(Figure 6), the best performing individual in each condition and
for each set of features achieved accuracies exceeding 90%. For
both sets of features, better results, i.e., higher mean, and lower
variance of accuracies, were achieved in condition VtG, whereas
the medians are only significantly different for spectral features.
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The power feature CSPs show that in both µ and β frequency
bands, there is a decrease in power during the MI period, relative
to the baseline, in parietal and central areas in both conditions.
In both conditions, the decrease is stronger in the µ frequency
band. The decrease is stronger (in both frequency bands) in
condition VtG than in condition noVtG, which indicates that the
vibrotactile guidance has more impact on the power difference
betweenMI and baseline, and specifically, the biggest impact is in
the µ frequency band. The activation patterns of the amplitude
features, on the other hand, differ slightly in their spatial
distribution, where the pattern for condition VtG is concentrated
more frontally. The patterns reflect the spatial profiles of the
potentials within the time window used for these classifications.

Classification between conditions (Figure 7) revealed that
the signals are well-discriminable during the MI period, with
both sets of features achieving peak grand average accuracies
above 70%. For amplitude features, a comparable performance is
reached during the pre-MI period, where in some participants,
the peak accuracy during the pre-MI period is even higher
than during the MI period. Considering the activation patterns,
however, the discriminability in these two intervals is based on
different underlying discrepancies. While during the MI period,
the pattern is focused on central and postcentral areas, the pattern
during the pre-MI period is composed of a positive parietal
activation, and a negative frontal activation. For spectral features,
on the other hand, the accuracy during the pre-MI period
only slightly increases compared to the baseline, and hovers
very narrowly above the significance threshold (peak GA 57%).
This suggests that the vibrotactile stimulation does not per se
induce ERD without the presence of a motor task, reinforcing
an earlier finding from Hehenberger et al. (2020) cited in the
introduction. There, no ERD was found in a non-movement
condition with vibrotactile stimulation. Power feature CSPs show
that in both µ and β frequency bands, there is a decrease in
power during the MI period. In the µ band it is more parietal,
while in the β band it is more central. Since changes in power
happen at the same time (during MI) for both frequency bands,
but are on different topological areas, this could explain why
the best classification results were achieved when combining
both frequency bands, and indicate that both µ and β bands
harbor important information about change in power for our
feature classification.

4.3. Behavioral Results
According to the ratings provided on the questionnaire,
participants were split on how mentally tiring they perceived the
task. In both conditions, a slim plurality leaned toward higher
ratings (more tiring). On the other hand, most participants
gave low ratings on how physically tiring it was, and none
rated it as very physically tiring. In these two categories, the
differences between the two conditions were relatively small.
In fact, all but four participants gave the same rating in both
conditions. Regarding the questions whether they were able
to remain focused, and whether it was easy to concentrate
on the motor imagery task, and on the vibrotactile guidance,
respectively, no participant gave the lowest rating, i.e., none
found it very hard to remain focused, or to concentrate on the

task or the guidance. Interestingly, more participants responded
that they were well able to remain focused during condition VtG,
while more participants responded that they found it easy to
concentrate on the motor imagery task in condition noVtG.

The aggregate of these results lead us to surmise that the
influence of the vibrotactile guidance on these markers is
predominantly subjective. This would correspond with informal
feedback we have received from participants in previous studies
with vibrotactile stimulation, and in pilot tests for this study.
While our results on this aspect aremixed, Corbet et al. (2018) did
find that the workload (specifically, frustration, effort, andmental
demand) of an MI task was significantly lower with electrotactile
guidance than with visual guidance. Furthermore, Cincotti et al.
(2007) reported in a series of studies comparing vibrotactile
feedback to visual feedback to an MI task that most participants
found the vibrotactile feedback to feel more natural.

It should be noted that the behavioral data was collected at the
end of the experiment, where subjective impressions of the first
conditionmight not be fully accurate. Since the behavioral results
were not part of our main hypothesis, we opted to collect these
data jointly at the end of the experiment. For a more thorough
analysis of behavioral data, it would be advantageous to collect
data more frequently (e.g., after each condition).

5. CONCLUSION

The two orthogonal center-out movement directions were
discriminable in low-frequency EEG amplitudes with moderate
accuracies in both conditions, significantly exceeding chance
level. The average performance is slightly higher when the
vibrotactile guidance was present, though the individual peak
accuracies do not differ significantly. Furthermore, we achieved
moderate to decent accuracies (up to 95%) when classifying
the MI period against the baseline, using either low-frequency
amplitude features, or µ and β band spectral features. Average
accuracies were higher, and less variable in conditionVtG, though
this improvement is only significant for spectral features. Based
on these findings, we conclude that the vibrotactile guidance does
not impede either the extraction of directional information or
the detection of motor imagery, and perhaps provides beneficial
effects in both cases. Therefore, we see vibrotactile guidance
as a viable option to feasibly supplement visual guidance,
while in applied cases, individual preferences should be taken
into account.
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