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Abstract

Background: Cell counting from cell cultures is required in multiple biological and biomedical research applications.
Especially, accurate brightfield-based cell counting methods are needed for cell growth analysis. With deep learning,
cells can be detected with high accuracy, but manually annotated training data is required. We propose a method for
cell detection that requires annotated training data for one cell line only, and generalizes to other, unseen cell lines.

Results: Training a deep learning model with one cell line only can provide accurate detections for similar unseen
cell lines (domains). However, if the new domain is very dissimilar from training domain, high precision but lower
recall is achieved. Generalization capabilities of the model can be improved with training data transformations, but
only to a certain degree. To further improve the detection accuracy of unseen domains, we propose iterative
unsupervised domain adaptation method. Predictions of unseen cell lines with high precision enable automatic
generation of training data, which is used to train the model together with parts of the previously used annotated
training data. We used U-Net-based model, and three consecutive focal planes from brightfield image z-stacks. We
trained the model initially with PC-3 cell line, and used LNCaP, BT-474 and 22Rv1 cell lines as target domains for
domain adaptation. Highest improvement in accuracy was achieved for 22Rv1 cells. F1-score after supervised training
was only 0.65, but after unsupervised domain adaptation we achieved a score of 0.84. Mean accuracy for target
domains was 0.87, with mean improvement of 16 percent.

Conclusions: With our method for generalized cell detection, we can train a model that accurately detects different
cell lines from brightfield images. A new cell line can be introduced to the model without a single manual annotation,
and after iterative domain adaptation the model is ready to detect these cells with high accuracy.
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Background
Identifying and counting individual cells from cell cul-
tures form the basis of numerous biological and biomed-
ical research applications [1, 2]. Determining numbers
of cells reflecting the growth, survival, and death of
cell populations form the foundations of e.g. basic can-
cer research and early drug development. Currently, the
most commonly used methods for counting cells in cul-
tures are based on either biochemical measurements, or
on fluorescent stainings or markers. These methods are
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often either far from optimal in accuracy, costly, or time-
consuming. For example, biochemical measurements are
indirect measurements in terms of cell numbers. With
fluorescent-based imaging, accurate cell numbers can be
obtained with well-established image analysis solutions
[3]. The fluorescentmethods are, however, often problem-
atic, as they require either 1) fixation and staining of cells,
being costly and also limiting the number of data obtained
per assay and culture, 2) live stains that are toxic to cells,
limiting the time-frame of experiments [4], or 3) are based
on expression of fluorescent markers in cells, severely
limiting the number of cell lines available for use. In addi-
tion, the use of fluorescence requires specified imaging
equipment and facilities, not at hand in all laboratories.
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To avoid the need for fluorescence-based imaging,
methods for brightfield imaging are used. Imaging with
brightfield microscopy is straightforward with standard
facilities available in almost any laboratory, and requires
no labeling, making it an efficient and affordable choice.
Also the drawbacks from the use of fluorophores on liv-
ing cells are avoided. However, these benefits come at
the cost of inferior contrast compared to fluorescence
microscopy.
Most of the current brightfield-based methods rely on

feature extraction from single in-focus images, or calcu-
lating the area which the cells have covered from the
imaged surface. While the former works well for sparse
cultures where the cells have individual profiles clearly
separated from their background, these methods often do
not perform well with dense cultures or cell lines with
growth patterns of low contrast. Calculating the area, on
the other hand, is once again an indirect estimate for
cell count, and also performs more poorly the denser the
cultures get. Thus, more accurate brightfield-based meth-
ods are desired for cell identification and cell number
determination. Especially, improvement in identification
of individual cells in dense cell clusters, as well as of cell
lines with low contrast growth patterns, are required.
Various cell detection methods for brightfield images in

focus have been developed in recent years [5–8]. Unfo-
cused brightfield images or whole brightfield z-stacks
have also been applied to cell detection. In our previous
study, a z-stack with 25 focal planes was used as input
to count PC-3 prostate cancer cells [9]. The method was
based solely on the intensity values in images combined
with logistic regression classifier. Selinummi et al. used
z-stack for creating contrast-enhanced two-dimensional
images that provided segmentation results comparable
to fluorescence based segmentation [10]. Z-stacks were
found to provide useful information for especially cell
boundary detection. With a pinhole aperture, one can
acquire unfocused images with bright spots marking the
cells, which also provides results matching fluorescence
based methods [11]. Ali et al. utilized unfocused images
for cell and nucleus boundary detection for robust auto-
matic segmentation procedure [12]. Their method is
based on differences between two out-of-focused images
from opposite directions in z-stack. A similar method
with two unfocused, opposite images was proposed by
Dehlinger et al. [13]. Z-stacks can also be used to handle
slight variations in focal depth, which can be very use-
ful when using autofocus algorithms. This was shown in
the research performed by Sadanandan et al., where three
consecutive focal planes were used as an input to deep
CNN [14].
Convolutional neural networks (CNNs) are the state-

of-the-art in machine learning research. After the success
of CNNs in ImageNet competition [15], they have been

adopted for classification tasks in biomedical imaging
[16, 17]. By discarding the fully connected layers of CNN,
the network becomes fully convolutional (FCN) which
outputs a heatmap instead of single class value [18]. FCNs
have previously been successfully used in cell detection
tasks [19]. In a recent study, FCNs have been applied
to class-agnostic counting using only a single training
example from new domain [20]. A more sophisticated
version of basic FCN is the U-Net, especially designed
for biomedical image segmentation where localization
has high importance [21, 22]. Usually, neural networks
are trained in a supervised manner, meaning that large
amounts of annotated training data is required.
Domain adaptation can solve machine learning prob-

lems where high amount of labeled training data from
source domain is present, but there is only little or no
labeled data for target domain [23]. Many domain adap-
tation methods are based on creating a transformation
between source and target domains [24, 25]. Domain
adaptation can also be performed by learning feature rep-
resentations shared by both the source and target domains
[26, 27].
We propose a method for generalized cell detection

from brightfield z-stacks using single annotated cell line
(PC-3) for supervised training step. U-Net is chosen as the
deep learning model due to its exceptional performance
in related tasks, and also due to its fully convolutional
and resolution preserving nature. We test the generaliza-
tion capabilities with LNCaP, BT-474 and 22Rv1 cell lines.
Each of these cell lines has their own unique appearance
in brightfield images, and these cell lines can be consid-
ered as target domains which are somewhat similar to
the source domain. The model is trained first with anno-
tated PC-3 samples, which results in high precision but
sometimes low recall for other cell lines. We use the pre-
dictions from the pre-trained model for generating targets
for unseen domains (cell lines) in unsupervised domain
adaptation step. In contrast to many transfer learning
approaches, we do not use any manually annotated train-
ing data for the target domain. However, we preserve some
of the original training data to prevent excessive influ-
ence of the imperfections in predictions. Thus, training
is performed in semi-supervised manner while domain
adaptation is unsupervised.

Methods
In this study, we explore methods for improving general-
ization in cell detection.We use brightfield z-stacks of PC-
3 cell line for supervised training of U-Net-based model
for cell detection, and apply an unsupervised domain
adaptation step to improve the detection accuracy of cell
lines lacking annotated training data. Implementation was
programmed with Python language and Keras and Ten-
sorFlow modules for deep learning.
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Brightfield data
The data consists of brightfield focus stacks (a.k.a.
z-stacks) of monolayer cultures of cancer cell lines.
Images were acquired with QImaging Retiga-2000R
camera using Olympic IX71 microscope and Objective
Imaging Surveyor scanning and imaging software. The
z-stack range was 240 μm, and distance between adja-
cent focal planes was 10 μm. Images have a pixel reso-
lution of 1596 × 1196 pixels, corresponding to an area
of 1190.8μm × 891.4μm. Autofocus method was used
to detect most focused image, above and below of which
12 focal planes were imaged. Thus, each stack consists
of 25 focal planes in which the 13th focal plane is in
focus.
Four cancer cell lines were used in this research: prostate

cancer cell lines PC-3, 22Rv1 and LNCaP, and breast can-
cer cell line BT-474. All cell lines were obtained from
American Type Culture Collection (ATCC, Rockville,
MD, U.S.A.) and cultured under the recommended con-
ditions. Example images from these cells are shown in
Fig. 1. These cell lines were chosen due to their differential
appearance in z-stacks, varying from separately growing,
high contrast PC-3 and LNCaP to dense and low contrast
populations of BT-474 and 22Rv1. The networks were
trained with PC-3 using the same data that was used in
our previous study [9]. This data was acquired from one
cell cultivation, where the cells grew for six days and were
imaged daily. For training, we used two images from each
day. Thus, twelve images of size 1196 × 1596, including
5878 annotated cells in total were used.
Four images from each cell line were annotated for the

purpose of validating results. The annotated cell count in
testing data is 1975 for PC-3 cells, 2183 for LNCaP cells,
1022 for BT-474 cells and 2883 for 22Rv1 cells. Annota-
tions for validating PC-3 cells were not used in training,
and the images of PC-3 cells for validation are from a

separate cultivation than the training data. In the domain
adaptation step, none of the annotated images of other cell
lines were used to prevent any distortion of results from
over-fitting.

Method selection and comparison
When selecting the best method for this task, the first
criterion was that the resolution of prediction has to be
similar to input image resolution, to ensure best pos-
sible separation of the cells. Second criterion was that
the prediction should be performed to the whole image
at once, since pixelwise prediction would require exces-
sive computational resources when fulfilling the resolu-
tion requirement. Thus, many deep learning architectures
were discarded. Deep learning architectures similar to
U-Net fulfill these requirements. Also other, more basic
fully convolutional networks without maxpooling layers
were taken into consideration, however, the results were
inferior to U-Net-like architectures. Two chosen methods
from literature were included for comparison: subtrac-
tion between opposite z-stack planes [12], and image
processing based method from one unfocused image [7].
Some experiments were also performed with pixel inten-
sity based logistic regression classification [9], but the
results for other cell lines than PC-3 were not comparable
to other methods.
In addition to the actual method, the most suitable focal

planes from z-stack were defined. Eachmethod was tested
with various degrees of unfocusing and, if possible, var-
ious amount of input focal planes. The results of these
experiments are shown in Table 1.
Best overall results were acquired with U-Net architec-

ture taking focal planes 13, 14 and 15 as input. Example
images of these input focal planes for each cell line are
shown in Additional file 1. Most focused focal plane in
z-stack has index 13 according to autofocus algorithm

Fig. 1 Examples of each studied cell line in z-stack with 25 focal planes. The grid represents focal planes, circles marking the planes in the figure in
corresponding order
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Table 1 Method and input comparison. For methods by Ali [12] and Buggenthin [7] the results from focal plane producing best overall
score are given

Ali Buggenthin U-Net U-Net U-Net U-Net U-Net (smaller)

Focal planes 8,18 9 13 11-15 12-14 13-15 13-15

PC-3 0.90 0.8 0.933 0.949 0.944 0.955 0.955

LNCaP 0.683 0.673 0.885 0.889 0.88 0.893 0.895

BT-474 0.576 0.671 0.76 0.724 0.777 0.76 0.757

22Rv1 0.511 0.606 0.69 0.612 0.619 0.673 0.672

Total 0.67 0.688 0.817 0.794 0.805 0.82 0.82

Best result for each cell line is marked with boldface

used in imaging. However, when looking at the planes in
question, one can argue that actually the most focused
focal plane is the one with index 14. Then, our con-
clusion for best suited planes would be the same as
in [14].
When studying the intermediate outputs of U-Net

model, we noticed that cell detections were already
present in multiple intermediate layers before the last.
Thus, the question rose whether some of the layers could
be discarded without loosing accuracy. One residual layer

set was removed from the architecture while keeping the
symmetry, and in the last column of Table 1 we can see
that the results are as good as with whole U-Net. Thus, to
reduce computational burden and memory requirements
of the model, this smaller architecture was chosen as the
method. This network architecture, with some example
layer outputs, is shown in Fig. 2.More detailed description
of layers is presented in Additional file 1. After select-
ing the best method, the training pipeline was further
improved for better accuracy.

Fig. 2 Architecture of the network. The network is a reduced version of U-Net, with one set of layers removed to maintain symmetry of the U-Net.
Image patches are real examples of inputs and outputs, selected by maximum activation. More intermediate outputs are presented in Additional
file 1. Each image patch is normalized for better visibility before adding to stack of patches
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Training details
Initially, we trained the deep learning model with PC-3
exclusively. For training target, a binary mask was cre-
ated. Each cell is presented with a disk shaped structuring
element with a radius of 8, but if these circles touch
each other, the radius is reduced for better separation of
the cells. The maximum radius of 8 is a good trade-off
between cell separation capability of the model and class
balance in training.With this radius, we get approximately
20 to 1 relation between background and cell pixels, which
is still a manageable class balance. We use a total of 12
1596 × 1196 images for training the network. One quar-
ter of the training set was set aside for validation during
training.
The most difficult cell line from cell detection point-of-

view is 22Rv1. These cells are much smaller than the cells
from other cell lines. Based on this knowledge, we aug-
mented the training data by resizing PC-3 images to 75
percent of their original size, which doubled the amount
of training data. To match the resized images, maximum
radius for circles in training targets was reduced to 6
pixels, using the same proportion.
Since training target is a binary mask, binary crossen-

tropy was chosen as a loss function. We used stochas-
tic gradient descent (SGD) optimizer with a Nesterov
momentum of 0.8, and batch size was 5 samples. We set
the learning rate to 0.1 at the beginning of training, and
after every 10 epochs reduced it to half. Since convolu-
tion discards a small proportion of information from the
border of the image, and the fully convolutional nature of
U-Net architecture allows changing input size, the size of
input patches was switched after each set of 10 epochs
for better utilization of the training data. After loading
each training set, image transformations were applied
randomly to each patch of training data. These transfor-
mations include rotation, translation, small intensity shifts
and adding noise. The model was trained for a total of
60 epochs. However, the weights were saved only when

validation loss decreased, resulting in an actual amount of
epochs less than 60.

Domain adaptation
In this study, domain adaptation is used to fit the model
trained with PC-3 cell line (source domain) to other
cell lines (target domains). Not a single cell from target
domains LNCaP, BT-474 and 22Rv1 was annotated for
training purposes.
After achieving reasonable recall and, more importantly,

high precision for all cell lines via training with only PC-3,
the domain adaptation step was applied. In Fig. 3, the
pipeline of the method is presented. Domain adaptation
is marked with a blue dashed square and it is repeated
six times in total. Domain adaptation was performed in
an unsupervised manner; half of the training data was
generated by auto-labeling from the target cell line, while
the other half represented randomly selected patches of
previously used PC-3 training data. Since the domain
adaptation step is based on predictions of unseen cell
lines, annotated PC-3 training data is required to pre-
vent the model from fitting to false positives or negatives.
Without the annotated data, the false predictions can get
amplified during training since auto-labeling is performed
iteratively during training.
Auto-labeling was performed in the following manner.

First, prediction was calculated for four randomly selected
images of the target cell line. The images that were anno-
tated for testing purposes were not available for the selec-
tion. Then, local peaks were detected from the predicted
heat map with a threshold of 0.2 and a minimum dis-
tance of 5 pixels between peaks. Threshold was set low to
include also weak predictions to training data. Each peak
was marked as a cell, and these cell points were trans-
formed to training targets with binary dilation with a disk
shaped structuring element with a radius of 6 pixels. The
model was trained for another 60 epochs in total. New
prediction-based training data was calculated after each

Fig. 3 Pipeline for iterative unsupervised domain adaptation for cell detection



Liimatainen et al. BMC Bioinformatics           (2019) 20:80 Page 6 of 10

set of 10 epochs, simultaneously decreasing the learning
rate to half and changing patch size, as was performed in
supervised training.

Validation metrics
In the task of cell counting, true negatives are ambiguous.
Since true negatives are not included in F1-score, it is a
suitable metric for validating our results. To findmatching
cells between prediction and ground truth, detected cell
coordinates were compared to ground truth coordinates
with Euclidean distance, and distance below 20 was con-
sidered as detection. If multiple coordinates were found
within the threshold distance, only the closest of these was
accepted as detection.
We count true positives (TP), false positives (FP) and

false negatives (FN) for each image in the test set. With
these values, we calculate precision (positive predicting
value), TP

TP+FP , and recall (sensitivity), TP
TP+FN . Finally, F1-

score is calculated via equation 2 × precision×recall
precision+recall .

In density-based accuracy calculations, a density map
was created using kernel density estimation with normal
kernel (σ = 50 pix) for smoothing discrete cell loca-
tions into local neighborhood. This density map was then
divided into five areas covering equal density range. Note
that this does not correspond to dividing the areas based
on equal area coverage, nor will there be equal number of
cells within the density areas.

Results
To demonstrate the performance of the proposed cell
detection methodology, we present results for different
experimental setups. First, we show how deep learning
masters the challenge of label-free cell detection from
bright field focus stacks in a very accurate manner. Sec-
ond, we show how precision remains high for cell lines
never seen by the classifier. Finally, we present how the
high precision can be used for iterative unsupervised
domain adaptation. Furthermore, we present detection

accuracy in relation to cell growth density. While small
example images are presented in result figures, examples
of whole image level detections are given in Additional
file 1.
We performed convolutional neural network based

label-free cell detection of PC-3 cancer cells. We acquire
F1-score of 0.95 for this cell line. An example prediction
is shown in Fig. 4, on the left half. Even though the pre-
diction is often close to perfect, the stacking cells are not
always well separated. This slightly reduces the overall
accuracy, but with a score of 0.95, our method can still be
used to e.g. accurately count the growth curve of PC-3 cell
line.
Then, we tested how the cell detector generalizes from

PC-3 to multiple cancer cell lines. The scores acquired
with the model trained with PC-3 cell line only are shown
in first halves of plots in Fig. 6. We achieve a high accuracy
with 0.89 F1-score for LNCaP cell line. An example detec-
tion is shown in Fig. 4. When moving to cell lines of dense
populations and low contrast, namely BT-474 and 22Rv1,
the scores are decreased. Precision still remains high for
both of these cell lines, but recall drops drastically when
compared to LNCaP and PC-3. Also, recall fluctuates a
lot between each set of 10 epochs. We could say that the
model does not actually fit to BT-474 and 22Rv1 as it does
to PC-3 and LNCaP. Indeed, the best score is acquired
after only 20 epochs of training, which implies that the
more the model is fitted towards PC-3, the farther it goes
from fitting to BT-474 and 22Rv1. At this stage, heavy data
augmentation had already been applied and this improved
especially the 22Rv1 detection. For this cell line, the F1-
score is about 0.1 higher when we double the training data
by resizing it to 75 percent of the original size. 22Rv1 cells
are the smallest in our set, so smaller cells in training data
naturally improve the accuracy.
Next, we applied unsupervised domain adaptation to

improve generalization to unlabeled data from unseen cell
lines. In Fig. 5, we show how domain adaptation step

Fig. 4 Unprocessed predictions and detected cells of PC-3 and LNCaP cell line. The figures in upper row are results before domain adaptation, and
the bottom row shows the very similar results after domain adaptation step with corresponding cell line. The heat maps present unprocessed
results of detection. Results are presented with cubehelix colormap [28]
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Fig. 5 BT-474 (left) and 22Rv1 (right) detections before (top) and after (bottom) domain adaptation step

improves the results. F1-score for 22Rv1 rises from 0.65 to
0.84, and the score for BT-474 rises from 0.74 to 0.87.
In Fig. 7, we show detection accuracies divided into

groups of different cell densities, and cell amount within
those areas. Density areas are illustrated as contour over-
lays in Additional file 1. Accuracies are calculated for
models adapted to each unseen domain, and also for the
model before domain adaptation. In Fig. 7, left panel, the
dashed lines represent accuracy before domain adapta-
tion. The accuracy decreases considerably when moving
to denser areas, but after domain adaptation (solid lines),
the accuracies of the densest areas are comparable to
sparser areas. It should be noted that in the second to last
densest group, there are only 4 LNCaP cells, which results
in sudden drop in accuracy.

Discussion
Convolutional neural network based label-free cell
detection of PC-3 cancer cells
The convolutional neural network based label-free cell
detection was applied to data from PC-3 cancer cell line
with the accuracy of F1-score 0.95. PC-3 cell line has a
clear profile in brightfield focus stacks and high detection

accuracy is acquired with as few as 10 to 20 epochs of
training of a deep learning model, as shown in Fig. 6.
With a U-Net-like model, we obtain a clean and sharp
heat map as an output, where each cell is represented
with a circle. It should be noted that we aim at cell
detection, not segmentation, and the model outputs cir-
cular detections since it was trained with a binary mask
where circles represent the cells. A high accuracy can
be achieved also with a single image in focus, but with
z-stacks we can improve especially the precision of detec-
tions. Non-cell objects are often not as similar to cells
in images out-of-focus as they are in only focused image.
For example, the artifacts caused by impurities in cam-
era lens do not change their appearance when going out
of focus.

Generalization from PC-3 to multiple cancer cell lines
Generalization to other cell lines was analyzed by apply-
ing the cell detection model trained with PC-3 cell line to
data from other cancer cell lines, which were LNCaP, BT-
474 and 22Rv1. In brief, the results obtained for LNCaP
were of high accuracy, while the accuracy dropped for BT-
474 and 22Rv1. The LNCaP cell line somewhat resembles

Fig. 6 F1-score, precision and recall as a function of training epochs for all cell lines. First 60 epochs (x-axis) the model trained with PC-3 only, and
next 60 epochs the model was trained also with the corresponding cell line
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PC-3 since the cells tend to grow separately. Especially the
cell lines that grow in dense populations do not receive
very high accuracy with the network trained with PC-3
only. One reason for this might be that there often is no
background around cells that grow close to each other,
while each non-stacked cell of PC-3 has at least some
background around them. Also the height and shape of
the cells in z may affect their contrast properties. In Fig. 5,
on top row, we see detections of BT-474 and 22Rv1 after
supervised training. BT-474 is detected with reasonable
accuracy, achieving an F1-score of 0.74. For the dense
population of 22Rv1 cells, most cells in the center of the
example image have not been detected, and the F1-score is
only 0.64. However, the score is high enough for successful
domain adaptation.

Improved generalization through iterative unsupervised
domain adaptation
With domain adaptation, domain being another cell line,
we can greatly increase the accuracy of the cell detec-
tion for the unseen cell lines, especially those growing
in dense populations. The worse the accuracy is before
domain adaptation, the more it is improved with domain
adaptation. In Fig. 5, we show how multiple previously
undetected cells get clear detections after domain adapta-
tion (bottom row). Especially in 22Rv1 (Fig. 5 on the right),
the improvement is drastic. Even though some of the cells
in the dense center have non-zero confidence that is not
registered to the score before domain adaptation, there
are several clear detections for these cells after domain
adaptation (compare top and bottom row).
For cell lines that already get very accurate predictions

with F1-scores around 0.9 after initial training with PC-3,
the domain adaptation step does not result in a signifi-
cant change. Thus, we can apply the domain adaptation
step to any cell line with reasonable confidence of not
reducing the detection accuracy. In Fig. 4, we can see very

little difference in the detections for PC-3 and LNCaP
cells, even though in the predicted heat map, the detection
signals are visibly more distinct.

Relation between accuracy and cell growth density
In order to gain more insight into the effect of cell den-
sity on the detection accuracy, we created a pooled test
set by using data from all cell lines for determining the
detection accuracy. It should be noted that this time, the
absolute number of cells and the relative fraction of cells
from each cell line varies from density area to another
(see Fig. 7, center panel for the cell type distributions
among areas). From results for the whole test set (Fig. 7,
right panel), we see that with the model trained with PC-
3 only, the accuracy is low on dense areas. In addition,
when adapting to LNCaP domain, the score remains low
although slight improvement is apparent. When training
with the densely growing cell lines, BT-474 and 22Rv1,
the scores are considerably improved. Even though both
of these cell lines grow in dense populations, the BT-474
cells are bigger than 22Rv1 cells. Thus, 22Rv1 cell line is
able to grow more dense than the other cell lines, result-
ing in that they are the only cell line present in densest
of areas (Fig. 7, center panel). Yet, the improvement in
scores for BT-474 is comparable to 22Rv1-trained model.
This implies that the size of cells is not a property that
greatly differentiates the cells in the model’s point of view.
However, the height of cells affects the contrast of cells in
z-stacks. This is a property that also affects the similarity
between cell lines. In addition, the cells within dense pop-
ulations do not have any visible background surrounding
them, which is a joint property of BT-474 and 22Rv1
cell lines.
According to these results, the overall accuracy never

decreases when adapting to a new domain. Thus, the
new features learned during domain adaptation cannot be
just cell line specific. In addition, since PC-3 data is also

Fig. 7 Accuracy for cell lines before (dashed) and after domain adaptation with corresponding cell line (left). No score is given when cell line is not
present in density group. Amount and type of cells in density groups (center). Accuracy for whole test set, including all cell lines (same set for all
models), calculated with models before domain adaptation and after adapting to each unseen domain (right)
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used when adapting to a new domain, the PC-3 detection
accuracy does not decrease.

Conclusions
Many applications of biological and biomedical research
require accurate cell detection and counting. Our results
show that with deep learning we can accurately detect
PC-3 cells from brightfield z-stacks without the need
for fluorescence imaging. Furthermore, the model gen-
eralizes well for cell lines similar to PC-3. In case of
densely growing cells with low contrast, properties that
differentiate these cells from PC-3, we achieve lower
recall but high precision. High precision enables auto-
mated generation of suitable training targets for domain
adaptation. With iterative unsupervised domain adapta-
tion, we can increase the accuracy of previously poorly
detected cell lines considerably. The higher the dissim-
ilarity is between the source and the target cell lines,
the more improvement can be achieved via domain
adaptation.
Our contribution to research fields depending on cell

counting is a framework for unsupervised domain adapta-
tion, including a pre-trained model, for accurate detection
of various cell lines unseen by the classifier. Manual anno-
tation for these cell lines is not required due to automated
labeling of new training data. Since our method is based
on brightfield images, it is available for all laboratories
with just basic imaging equipment.

Additional file

Additional file 1: Supplementary Figures S1–13 and Supplementary
Table S1. (PDF 18200 kb)
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