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Humans experience a variety of emotions throughout the course of their daily lives, including happiness, sadness, and rage. As a
result, an effective emotion identification system is essential for electroencephalography (EEG) data to accurately reflect emotion
in real-time. Although recent studies on this problem can provide acceptable performance measures, it is still not adequate for the
implementation of a complete emotion recognition system. In this research work, we propose a new approach for an emotion
recognition system, using multichannel EEG calculation with our developed entropy known as multivariate multiscale modified-
distribution entropy (MM-mDistEn) which is combined with a model based on an artificial neural network (ANN) to attain a
better outcome over existing methods. )e proposed system has been tested with two different datasets and achieved better
accuracy than existing methods. For the GAMEEMO dataset, we achieved an average accuracy± standard deviation of
95.73%± 0.67 for valence and 96.78%± 0.25 for arousal. Moreover, the average accuracy percentage for the DEAP dataset reached
92.57%± 1.51 in valence and 80.23%± 1.83 in arousal.

1. Introduction

Emotions play an important role in our day-to-day ac-
tivities, including communication, decision-making, and
personal development [1]. Moreover, an emotion recog-
nition system is not only important for healthy people but
also for disabled people to detect emotional changes and is
used for a variety of applications. )erefore, the system
requires a better performance measure to accurately detect
emotional changes in humans. )e human emotion rec-
ognition system is part of the artificial intelligence (AI) field
[2, 3], and this system includes the procedures of data
processing, interpreting, and identifying emotional states
[4]. )e continuous development of AI technology, in-
cluding deep learning and machine learning, is combined
with an advanced clinical treatment which has helped to

improve the classification of human emotion in recent
years [5].

Human emotion can be recognized in different ways,
such as facial expression [6, 7], speech [8], and physiological
signals, which are some of the better ways to recognize
human emotion [9]. Researchers and scientists are becoming
more and more interested in implementing an emotion
recognition system using EEG signals [10, 11]. )is is be-
cause emotion recognition systems have applications in
several areas including brain-computer interface (BCI),
healthcare, and E-learning systems [12]. In terms of BCI and
healthcare, the emotion recognition system plays a main role
in helping disabled patients, who cannot communicate di-
rectly with healthcare providers, where they can use their
emotions for communication [13]. Moreover, the real-time
advantage of EEG signal is in helping to detect the emotions
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of humans and their mental states [1]. )erefore, the
emotion recognition system is important, not only for
healthy people, to detect the changes in emotion in real-time,
but also for disabled people, in helping improve the com-
munication between patients and healthcare providers.

)ere are several significant problems found with cur-
rent emotion recognition systems. )e main concern of the
recognition system is that it should provide a better clas-
sification performance measure in terms of accuracy per-
centage, to classify changes in human emotion from time to
time. Most emotion recognition systems use EEG signals to
recognize human emotion. Hence, the traditional EEG
signal processing system uses time-domain [14], frequency-
domain [15], and time-frequency analysis [16] as feature
extraction methods to obtain important information from
the EEG signals. )ese feature extraction methods can
achieve good classification accuracy but are yet to achieve a
better emotion recognition system. )erefore, we propose a
new emotion recognition system as follows:

(i) A new entropymethod calledmultivariate multiscale
modified-distribution entropy (MM-mDistEn) has
been developed.

(ii) )e proposed system has been combined with an
artificial neural network (ANN) to achieve better
performance measures over existing methods.

2. Related Works

In Reference [15], a deep learning network (DLN) is constructed
with a Stacked Autoencoder (SAE) with hierarchical feature
learning approach to classify the different levels of arousal and
valence. )e study demonstrated an accuracy of 46.03% for
arousal and 49.52% for valence [17]. However, the principal
component analysis (PCA) has been put into use to extract
important features and minimize the nonstationary effect of the
EEG signal, and then the accuracies of valence and arousal are
improved to 5.55% and 6.53%, respectively. Reference [18]
discussed a binary classification technique for emotion detection
that utilizes sample entropy and empirical mode decomposition
(EMD), and the work reported an accuracy of 94.98%.

In Reference [19], the EEG signal characteristics have been
extracted using the power spectral density (PSD), and human
emotions are identified using the deep neural network
(DNN). )e accuracy of this study has been shown to be
82.0% for both classes of valence and arousal [19]. To classify
emotions based on their valence and arousal, machine
learning models [20] such as bagging trees (BT), support
vector machines (SVM), linear discriminant analysis (LDA),
Bayesian linear discriminant analysis (BLDA) models, and
deep convolutional neural networks (CNN) are used. Deep
CNN achieved the best recognition performance on features
that combined temporal and frequency information [21]. )e
DEAP [22] dataset has been used in all these research studies.

3. Methodology

In our emotion recognition system, multivariate entropy is
used for the extraction of important features from the

multichannel EEG signal. Recording the EEG signal from
the human brain using one or two channels is not enough to
provide sufficient information about human emotion, and
therefore, the multivariate approach is an alternate research
approach for the analysis of multichannel EEG signals. In
this research, MM-mDistEn is used as a feature extraction
method. )is method achieved good performance measures
to provide not only for classification but also for the pre-
diction of epileptic EEG signals [23]. )erefore, MM-
mDistEn is employed in this method to take advantage of
multivariate entropy calculation, and the calculated entropy
values have been used for the next step of emotion classi-
fication. )e classification between the valence and arousal
of the emotion EEG signal is achieved using ANN.)ere are
three steps to calculate the MM-mDistEn, and these rep-
resent the construction of multivariate time series, a coarse-
graining process.

3.1. Multivariate Multiscale Modified-Distribution Entropy
(MM-mDistEn). )e algorithm is constructed as follows:

Step 1. Multivariate time series:
Firstly, we developed the multivariate time series
from the given time series data. )e calculation is
shown in (1):

X � xc,i 
N

i�1,
(1)

where c is the number of channels (variables) and N is
the number of samples in each channel.
Step 2. Coarse-graining process:
According to the scale factor, the multivariate time
series data may be used to generate the coarse-grained
time series, and the equation can be expressed as
follows:

g
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where g
Ns

c,j is the multivariate coarse-grained time se-
ries, s is a scale factor, c is the number of channels
(variables), and N is the number of samples
(Ns � (N/s)).
Step 3. Calculate multivariate multiscale modified-
distribution entropy:
Before determining the entropy values, we perform the
phase-space reconstruction, and the reconstruction is
as follows:
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where m and τ are the embedding dimension and time
delay, respectively. For this research, we used the m� 3
and τ � 1 (see more information in parameter selec-
tion). In our newly formulated approach, MM-mDis-
tEn, which is based on distribution entropy, two
additional threshold parameters, “r” and “n,” are added

to the existing parameters. )e number of n is set to 2,
whereas the standard deviation of all the data values is
multiplied by 0.2 to determine the value of r [24].

MM-mDistEn can be calculated by using the following
equation:

MM − mDistEn(m, τ, r, n, B, s) � −
1

log2(B)


B

t�1
Pt D

s
ij log2 Pt D

s
ij  , 1≤ i, j≤m − − 1, i≠ j. (4)

Predefined values are used for the selection parameters
in MM-mDistEn. To calculate the entropy values, a total of
five parameter values are needed. )e proposed entropy
method’s optimal parameter values are determined using
simulation data, and three separate series, the chaotic series,
and the Gaussian series are each employed [23]. )ere are
400 samples in each series. First, we reconstruct the phase-
space using the time delay (τ) and dimension (m), whose
values are 1 and 3, respectively [25]. Because this value can
distinguish between the three data series, the embedding
dimension value in Figure 1 has been set to 3. )e distance
matrix (Dij) is then constructed with the parameters r and n,
where r is the standard deviation of the series multiplied by
0.2 and n is set to 2 [26]. )e parameter r is the time series’
standard deviation multiplied by 2, and n is equal to 2,
because in Figure 2 a big r and n value can affect noise while a
small r and n value can result in information loss [24]. A
further parameter value known as the bin number (B) is
required when calculating the empirical probability density
function (ePDF), and B is set to 64 for our estimation [27].
)e dimension (m), which we left at the same value as before,
and two extra parameters, the breadth of the fuzzy expo-
nential function and the step of the fuzzy exponential
function, which we left at 0.3 and 2, respectively, are required
for the computation of fuzzy entropy [26]. )e scale factor
(s) is also required because we calculated the multivariate
multiscale entropy values, and the scale values utilised in our
investigation ranged from 1 to 15 [28].

)e emotion classification system has been implemented
using MM-mDistEn for feature extraction, and ANN is used
for the classification of two classes: valence and arousal. )e
flow diagram is shown in Figure 3. First, the EEG raw data is
reconstructed into multivariate time series and the coarse-
graining process is also applied to get the multiscale time
series. After getting MM-mDistEn features, these features
are split into the training dataset and testing dataset.
Backpropagation is used to train the ANN model, and the
RMSprop algorithm is used for optimisation [29]. )e
rectified linear unit (ReLU) activation function [30] has been
deployed for the hidden layers to introduce nonlinearity and
improve robustness. )e loss function in this model is the
binary crossentropy used to evaluate the binary classification
problem.)e performance of the ANNmodel has then been
estimated using the cross-validation procedure utilising 10-
fold cross-validation [28, 31]. For both datasets, the net-
works for each person have been trained separately.)e level

of arousal/valence is categorised as high if the score for each
topic is more than 4.5. )e level of arousal/valence is cat-
egorised as low [32] if each subject receives a score of less
than 4.5. Figure4 showed the accuracy performance measure
of our system. Table 1 described the comparison between our
system and some previous research works.

In this research, two different emotion EEG datasets are
used to show the performance of the proposed recognition
system.)ey are a database for emotion recognition systems
based on EEG signals and various computer games
(GAMEEMO) and a database for emotion analysis using
physiological signals (DEAP). A detailed description will be
provided for each dataset in the following section.

3.2. Database for Emotion Recognition System Based on EEG
Signals and Various Computer Games (GAMEEMO). )e
first dataset, GAMEEMO, was composed of 28 subjects, with
ages ranging from 20 to 27 years with good health conditions
and no disease history [33]. Each subject played four
computer games for 5min to measure funny, boring, horror,
and calm emotions. In this dataset, they used a 14-channel
EEG device and established a connection using a Wi-Fi
network. )e sampling rate is 128Hz, and the bandwidth of
the EEG signal is between 0.16Hz and 43Hz and included
two types of datasets: raw and preprocessed data. For pre-
processed data, they used the fifth-order sinc filter to remove
artifacts resulting from the movement of hands, head, and
arms. In this research proposal, the preprocessed data is used
for the analysis of emotion EEG signal and the visualization
of the emotion EEG signal from subject No. 1 with the
different areas of the human brain, including frontal,
temporal, parietal, and occipital, which is shown in Figure 5.

3.3. Database for EmotionAnalysis using Physiological Signals
(DEAP). 32 healthy subjects with an average age of 26.9
years are recorded for 32-channel EEG and 8-channel pe-
ripheral physiological signals in the DEAP database [22].
Each participant had to watch 40 one-minute-long music
video snippets and rate them based on their valence, arousal,
dominance, likeability, and familiarity. )e sampling rate of
this dataset is 128Hz, and the signal is applied with the
band-pass filter of the frequency of 4.0 to 45Hz. Indepen-
dent component analysis (ICA) is applied to eliminate EOG
noise in the DEAP dataset to ensure the data can accurately
represent the emotion of the participants.

Computational Intelligence and Neuroscience 3
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Figure 2: Entropy values (no unit) of simulation data: (a) number of bins (B) (20 to 29), (b) time delay (τ) (1 to 10), and (c) tolerance (r).
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Figure 3: Flow diagram of emotion classification using multivariate EEG signals.
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Figure 1: Entropy values (no unit) of simulation data as a function of different scale factors using three embedding dimensions: (a) m� 2,
(b) m� 3, and (c) m� 4.
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Figure 4 shows the human emotional states which
augment personal ratings from left to right [30]. In this
research work, the 3 s pretrials have been removed from the
63 s trials, and the 60 s trials have been used for the analysis

of the emotion EEG signal. )e first trail of subject No. 1
with the different areas of the human brain, including
frontal, temporal, parietal, and occipital, is visualized in
Figure 6.

Figure 4: From the top to bottom, human emotion states are valence and arousal [30].

Table 1: Comparison of results with other studies on the GAMEEMO dataset.

Reference Feature extraction method Classifier Accuracy (%) valence Accuracy (%) arousal
[33] DWT MLPNN 82.0 94.6
[32] Spectral entropy BiLSTM 76.93 —
[34] Prime pattern network SVM 100 —
Our work Multivariate entropy ANN 95.73 96.78
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Figure 5: Emotion EEG signals from subject No. 1.
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Figure 7: MM-mDistEn values for emotion EEG signals from the DEAP dataset (subject no. 1).
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4. Results and Discussion

Both Figures 7 and 8 are the data visualization of the
entropy values of subject No. 1 from GAMEEMO and
DEAP. )ese figures illustrate the patterns of what an
emotional EEG signal looks like in entropy values in the
different areas of the human brain, including frontal,
temporal, parietal, and occipital. It can be clearly seen that
the difference between the original EEG signal (see

Figures 5 and 6) and the calculated entropy values of the
emotion signals (see Figures 7 and 9) from the different
areas of the brain. )e peak calculated entropy values
indicate a high intensity of human emotion in those
periods due to the nature of the entropy which can reveal
the high entropy values for irregularity in the time-series
signal [26].

Performance is evaluated based on two datasets by
calculating precision, recall, F1-score, and accuracy:
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Precision(%) �
TP

TP + FP
× 100,

Recall(%) �
TP

TP + FN
× 100,

F1 score(%) �
2∗TP

2∗TP + FP + FN
× 100,

Accuracy(%) �
TP + TN

TP + FP + TN + FN
× 100,

(5)

where TN is the number of true negatives, TP is the number
of true positives, and FN and FP are the number of false
negatives [31] and false positives, respectively [31]. We
calculated the precision of individual subjects for the

classification of human emotions. It clearly shows that the
average precision percentage of the classification of two
classes for all the 28 subjects from the GAMEEMO dataset
has been found to be 97.03% for valence and 98% for arousal
as shown in Figure 8. Moreover, the average precision
percentage from the DEAP dataset for all 32 subjects has
been 85.34% in valence and 81.12% in arousal as shown in
Figure 10.

)e recall of individual subjects has been calculated for
the classification of human emotions. )e average recall
percentage of the two classes for all the 28 subjects is found
to be 95.78% for valence and 97.57% for arousal, as shown in
Figure 11. In addition, the average recall percentage from the
DEAP dataset for all 32 subjects is 90.93% in valence and
89.53% in arousal as shown in Figure 12.
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Figure 10: Precision percentage of all subjects for the DEAP dataset.
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)e overall F1-score of the subjects has been calculated
to measure the classification of emotions. )e average F1-
score for classifications of two classes for all 28 subjects from
the GAMEEMOdataset is 96.21% for valence and 97.53% for
arousal (see Figure 13). Furthermore, the average percentage
of F1-scores from the DEAP dataset for all 32 subjects is
86.03% in valence and 84% in arousal as shown in Figure 14.

To find out how accurately human emotions are clas-
sified, we calculated the accuracy of individual subjects. )e
average accuracy percentage for valence and arousal of the
two classes has been 95.79% for all 28 subjects from the
GAMEEMO dataset as shown in Figure 15. Moreover, the
average accuracy percentage of the DEAP dataset for all 32
subjects has been 90.26% in valence and 80.48% in arousal as
shown in Figure 16.

)e training time for each dataset is illustrated in Fig-
ures 17 and 18. For the GAMEEMO dataset, the average
running time for valence classification is 3.16 minutes while
arousal classification is 3.07 minutes. On the other hand, the
average running time for valence and arousal from the
DEAP dataset are 4.58 and 4.67 minutes, respectively. Data
analysis is done offline with Python and MATLAB (R2019a,
)e MathWorks, Natwick, MA) (3.9.7).

In Table 1, it is clearly shown that our proposed method
achieves better accuracy measures than existing methods
such as discrete wavelet transform (DWT) with multilayer
perceptron neural network (MLPNN) and spectral entropy
calculation with a deep learning model of bidirectional long-
short termmemory (BiLSTM) [29, 31].)e average accuracy
of our proposed method is smaller than the prime pattern
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network with a support vector machine (SVM) [34], but our
proposed system used the multichannel approach to cal-
culate the features from all 14 channels of EEG.

)e comparison of our proposed emotion recognition
system and others studies on the same dataset of DEAP is
shown in Table 2. )ese recent studies include the frequency
band power with LSTM-RNN, frequency band with CNN
and time, wavelet, and frequency with SVM. Our proposed
emotion recognition system achieved the highest accuracy
percentage in valence and arousal. Although the accuracy of
our model for arousal is less than that of CNN model be-
cause we used fewer parameters for the implementation of

CNN than our ANNmodel [22] and all accuracy percentages
are shown in Table 2.

5. Conclusion

In this research, we proposed an alternative approach to an
emotion recognition system using our developed method
called MM-mDistEn which is combined with the powerful
classification algorithm as an ANN. We proved that our
system achieved better accuracy performance not only for
the GAMEEMO dataset but also for the DEAP dataset.
)erefore, our proposed system significantly improves the
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Figure 17: Running time of all subjects for the GAMEEMO dataset.
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Figure 18: Running time of all subjects for the DEAP dataset.

Table 2: Comparison of results with other studies on the DEAP dataset.

Reference Feature extraction method Classifier Accuracy (%) Accuracy (%)
Valence Arousal

[1] Time, wavelet, and frequency SVM 65.92
[35] Frequency band CNN 90.26 88.9
[36] Frequency band power LSTM-RNN 81.10 74.38
Our work Multivariate entropy ANN 92.57 80.23

Computational Intelligence and Neuroscience 11



performance of emotion recognition compared with other
existing methods. For further studies, we still need to analyze
the several emotion classes instead of the two classes: valence
and arousal that are used in our proposed system.

Data Availability

)e GAMEEMO dataset can be obtained from https://data.
mendeley.com/datasets/b3pn4kwpmn. )e DEAP dataset
can be downloaded from: https://www.eecs.qmul.ac.uk/
mmv/datasets/deap/. Both GAMEEMO and DEAP data-
bases have been used for this study.
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