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ABSTRACT

Motivation: It has been proven that the accessibility of the target
sites has a critical influence on RNA–RNA binding, in general and
the specificity and efficiency of miRNAs and siRNAs, in particular.
Recently, O(N6) time and O(N4) space dynamic programming (DP)
algorithms have become available that compute the partition function
of RNA–RNA interaction complexes, thereby providing detailed
insights into their thermodynamic properties.
Results: Modifications to the grammars underlying earlier
approaches enables the calculation of interaction probabilities for
any given interval on the target RNA. The computation of the ‘hybrid
probabilities’ is complemented by a stochastic sampling algorithm
that produces a Boltzmann weighted ensemble of RNA–RNA
interaction structures. The sampling of k structures requires only
negligible additional memory resources and runs in O(k·N3).
Availability: The algorithms described here are implemented in C
as part of the rip package. The source code of rip2 can be
downloaded from http://www.combinatorics.cn/cbpc/rip.html and
http://www.bioinf.uni-leipzig.de/Software/rip.html.
Contact: duck@santafe.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
RNA–RNA binding is a major mode of action of various
classes of non-coding RNAs and plays a crucial role in many
regulatory processes in all living organisms. Examples include the
regulation of translation in both prokaryotes (Narberhaus and Vogel,
2007) and eukaryotes (Banerjee and Slack, 2002; McManus and
Sharp, 2002), the targeting of chemical modifications (Bachellerie
et al., 2002), insertion editing (Benne, 1992) and transcriptional
control (Kugel and Goodrich, 2007). Emerging evidence suggests,
furthermore, that RNA–RNA interactions also play a role for
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the functionality of long mRNA-like ncRNAs (Hekimoglu and
Ringrose, 2009). A common theme in many RNA classes, including
miRNAs, snRNAs, gRNAs, snoRNAs and in particular many of the
procaryotic small RNAs, is the formation of RNA–RNA interaction
structures that are much more complex than simple complementary
sense–antisense interactions. Thermodynamically, the binding of
two RNA molecules A and B can be described by the binding energy
�Gbind =GAB −GA −GB, i.e. by the difference of the energy of
structure formation GAB of the AB complex and the folding energies
GA and GB of the two individual RNAs A and B. Thus, the binding
or hybridization energy has been widely used as a criterion to predict
RNA–RNA interactions (Busch et al., 2008; Rehmsmeier et al.,
2004; Tjaden et al., 2006).

The interaction between two RNAs is governed by the same
physical principles that determine RNA folding: the formation of
specific base pairing patterns whose energy is largely determined by
base pair stacking and loop strains. Secondary structures, therefore,
are an appropriate level of description to quantitatively understand
the thermodynamics of RNA–RNA binding. Just as the general
RNA folding problem with unrestricted pseudoknots (Akutsu,
2000), the RNA–RNA interaction problem (RIP) is Non-Polynomial
(NP)-complete in its most general form (Alkan et al., 2006;
Mneimneh, 2009). Polynomial-time algorithms can be derived,
however, by restricting the space of allowed configurations in
ways that are similar to pseudoknot folding algorithms (Rivas and
Eddy, 1999). The simplest approach concatenates two (or more)
interacting sequences and then employs the standard secondary
structure folding algorithm with a slightly modified energy model
that treats loops containing cut-points as external elements. The
software tools RNAcofold (Bernhart et al., 2006; Hofacker et al.,
1994), pairfold (Andronescu et al., 2005) and NUPACK (Dirks
et al., 2007) subscribe to this strategy. The main problem of
this approach is that it cannot predict important motifs such
as kissing-hairpin loops. The paradigm of concatenation has
also been generalized to the pseudoknot folding algorithm of
Rivas and Eddy (1999). The resulting model, however, still does
not generate all relevant interaction structures (Chitsaz et al.,
2009b; Qin and Reidys, 2007). An alternative line of thought,
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Fig. 1. Examples of RNA-RNA interactions structures. The primary interaction region(s) are highlighted in grey in the experimentally supported structural
models from the literature: (A) ompA-MicA: (Udekwu et al., 2005); (B) sodB-RyhB: (Geissmann and Touati, 2004); (C) fhlA-OxyS: (Argaman and Altuvia,
2000). Hybridization probabilities computed by rip2 are annotated by black boxes for regions with a probability larger than 10%. In many cases, the
computational predictions identify additional hybridization regions that may further stabilize the interaction.

implemented in RNAduplex and RNAhybrid (Rehmsmeier
et al., 2004), is to neglect all internal base pairings in either
strand, i.e. to compute the minimum free energy (MFE) secondary
structure of hybridization of otherwise unstructured RNAs. RNAup
(Mückstein et al., 2006, 2008) and intaRNA (Busch et al., 2008)
restrict interactions to a single interval that remains unpaired
in the secondary structure for each partner. As a special case,
snoRNA/target complexes are treated more efficiently using a
specialized tool (Tafer et al., 2009) due to the highly conserved
interaction motif. Algorithmically, the approaches mentioned so far
are close relatives of the RNA folding recursions given by Zuker
and Sankoff (1984).

A different approach was taken independently by Pervouchine
(2004) and Alkan et al. (2006), who proposed MFE folding
algorithms for predicting the joint structure of two interacting
RNA molecules. In this model, “joint structure” means that the
intramolecular structures of each partner is pseudoknot free, the
intermolecular binding pairs are non-crossing and there is no so-
called “zig-zag” configuration (see below for details). The optimal
joint structure can be computed in O(N6) time and O(N4) space by
means of dynamic programming (DP). More recently, extensions
to the partition function were proposed by Chitsaz et al. (2009b)
(piRNA) and Huang et al. (2009) (rip1). In contrast with the
RNA folding problem, where minimum energy folding and partition
functions can be obtained by very similar algorithms, this is
much more complicated for joint structures. The reason is that
simple unambiguous grammars are known for RNA secondary
structures (Dowell and Eddy, 2004), while the disambiguation of
grammar underlying the Alkan–Pervouchine algorithm requires the
introduction of a large number of additional non-terminals (which
algorithmically translate into additional DP tables). Although the
partition function of joint structures can be computed in O(N6) time
and O(N4) space, the current implementations require very large
computational resources. Salari et al. (2009) recently achieved a
substantial speed-up making use of the observation that the external
interactions mostly occur between pairs of unpaired regions of
single structures. Chitsaz et al. (2009a), on the other hand, use tree-
structured Markov random fields to approximate the joint probability
distribution of multiple (≥3) contact regions.

The binding energies provides a useful overall characterization
of an RNA–RNA interaction. In many cases, however, the locations
of the intermolecular base pairs and the detailed structure of the
interaction complex is of crucial importance. Bacterial sRNAs,
for example, may either up- or down-regulate mRNA translation
depending on the structural changes induced by the interaction
(Urban and Vogel, 2007). In particular, in RNA–RNA complexes
with multiple interaction sites, i.e. in the class of structures for
which the expensive computation of joint structures is necessary,
one is interested in the probabilities of hybridization in individual
regions and in the interdependencies of alternative conformations,
see Fig. 1. The probabilities of the individual building blocks of
the DP recursions of Huang et al. (2009), furthermore, do not lend
themselves to direct biophysical interpretations (see Supplementary
Material).

We therefore extend our previous framework in two directions: (i)
A modification of the underlying grammar explicitly treats hybrids,
i.e. maximal regions with exclusively intermolecular interactions.
This allows us to investigate local aspects in much more detail.
(ii) A stochastic bracktracing algorithm, in analogy to similar
approaches for RNA secondary structure prediction (Ding and
Lawrence, 2003; Tacker et al., 1996), which can be used to
produce representative structure and to generate samples from the
thermodynamic properties. These samples can be useful to assess
complex structural features for which it would be too tedious or
expensive to design and implement dedicated exact backtracing
algorithms.

2 THE HYBRID-PARTITION FUNCTION

2.1 Some basic facts
We briefly review some basic concepts and outline the notation introduced
in Huang et al. (2009). Full details are given in the Supplementary Material.

Given two RNAsequences R= (Ri)N
1 and S = (Sj)M

1 (e.g. an antisense RNA
and its target or an mRNA and its sRNA regulator) with N and M vertices,
we label the vertices such that R1 is the 5′ end of R and S1 denotes the 3′
end of S. The arcs of R and S then represent the respective, intramolecular
base pairs. An arc is called exterior if it is of the form RiSj and interior,
otherwise.
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A B

Fig. 2. (A) A zigzag, generated by R2S1, R3S3 and R5S4. (B) We partition
the joint structure J1,24;1,23 in segments and tight structures.

A B C D

Fig. 3. The four basic types of TS. (A) ◦: {RiSh}=Ji,j;h,� and i= j, h=�;
(B) �: RiRj ∈Ji,j;h,� and ShS� �∈Ji,j;h,�; (C) � : {RiRj,ShS�}∈Ji,j;h,�; (D) �:
ShS� ∈Ji,j;h,� and RiRj �∈Ji,j;h,�.

Next, we formally define joint structures (Alkan et al., 2006; Chitsaz et al.,
2009b; Huang et al., 2009; Pervouchine, 2004). A joint structure, J(R,S,I),
see Fig. 2B, is a graph such that

(1) R, S are secondary structures (each nucleotide being paired with
at most one other nucleotide via hydrogen bonds, without internal
pseudoknots);

(2) I is a set of exterior arcs without external pseudoknots, i.e. if Ri1 Sj1 ,
Ri2 Sj2 ∈ I then i1 < i2 implies j1 < j2;

(3) J(R,S,I) contains no ‘zig-zags’, see Fig. 2A;

where a zig-zag is defined as follows: suppose there is an exterior arc RaSb

with RiRj and Si′ Sj′ , where i<a< j and i′ <b< j′. Then RiRj is subsumed
in Si′ Sj′ , if for any RkSk′ ∈ I , i<k < j implies i′ <k′ < j′. A zigzag, is a
subgraph containing two dependent interior arcs Ri1 Rj1 and Si2 Sj2 neither
one subsuming the other (Fig. 2). Dependence here means that there exists
at least one exterior arc RhS� such that i1 <h< j1 and i2 <�< j2.

The (induced) subgraph of G induced by V has vertex set V and contains
all G-edges having both incident vertices in V . The subgraph of a joint
structure J(R,S,I) induced by a pair of subsequences (Ri,Ri+1,...,Rj) and
(Sh,Sh+1,...,S�) is denoted by Ji,j;h,�. In particular, J(R,S,I)=J1,N;1,M and
Ji,j;h,� ⊂Ja,b;c,d if and only if Ji,j;h,� is a subgraph of Ja,b;c,d induced by
(Ri,...,Rj) and (Sh,...,S�). In particular, we use S[i,j] to denote the subgraph
of the pre-structure G(R,S,I) induced by (Si,Si+1,...,Sj), where S[i,i]=Si

and S[i,i−1]=∅.
Given a joint structure, Ja,b;c,d , a tight structure (TS), Ji,j;h,�, (Huang et al.,

2009) is a specific subgraph of Ja,b;c,d . A TS contains a rightmost exterior arc
whose Ja,b;c,d -ancestors (see Supplementary Material for more details) with
maximal length give rise to one of the four types of joint structures illustrated
in Fig. 3. Intuitively, a TS is obtained as follows: given an exterior arc, α,
consider its ancestors of maximal length. If there is none, then TS equals
α. If there is (at least) one, β, then the TS is determined by the maximal
ancestor of the leftmost exterior arc descending from β or its endpoint if
there is none.

In the following, a TS is denoted by JT
i,j;h,�

. If its type is known, then T
can be replaced by its type∈{◦,�,�,�}, see Fig. 3. For instance, we use
J�

i,j;h,�
to denote a TS of type �.

2.2 The hybrid grammar

A hybrid structure, JHy
i1,i�;j1,j�

, is a maximal sequence of intermolecular
interior loops consisting of exterior arcs (Ri1 Sj1 ,...,Ri� Sj� ) where Rih Sjh is
nested within Rih+1 Sjh+1 and where the internal segments R[ih +1,ih+1 −1]
and S[jh +1,jh+1 −1] consist of single-stranded nucleotides only. That is,
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Fig. 4. Illustration of the reduction of arbitrary joint structures and of right-
tight structures, Procedure (a), and of tight structures, Procedure (b). In the
bottom row the symbols for the 10 distinct types of structural components
are listed: A, B maximal secondary structure segments R[i,j], S[r,s]; C
arbitrary joint structure J1,N;1,M ; D right-tight structures JRT

i,j;r,s; E double-

tight structure JDT
i,j;r,s; F tight structure of type �, � or �; G type � tight

structure J�
i,j;r,s; H type � tight structure J�

i,j;r,s; J type � tight structure

J�
i,j;r,s; K hybrid structure JHy

i,j;h,�
; L substructure of a hybrid Jh

i,j;h,�
such that

RiSj and RhS� are exterior arcs and Jh
i,j;h,�

itself is not a hybrid since it is not
maximal; M isolated segment R[i,j] or S[h,�].

a hybrid is the maximal unbranched stem–loop formed by external arcs.
Each hybrid thus forms a distinctive region of interaction between the two
RNAs. Note that we can interpret interactions admitted by intaRNA/RNAup
(Busch et al., 2008; Mückstein et al., 2008) as joint structures with at most
one hybrid.

In the following, we redesign the grammar outlined by Huang et al.
(2009) so that it explicitly makes use of hybrids. An efficient solution of
the partition function problem for RIP requires an unambiguous context-free
grammar with the constraint that the number of break points, i.e. the number
of non-terminals in each individual production, is as small as possible. This
is achieved by introducing several specific types of joint structures that are
described in detail in the following. We call a joint right-tight structure
(RTS), JRT

i,j;r,s in Ji1,j1;r1,s1 , if its rightmost block is a Ji1,j1;r1,s1 -TS and double-

tight structure (DTS), JDT
i,j;r,s in Ji1,j1;r1,s1 , if both of its leftmost and rightmost

blocks are Ji1,j1;r1,s1 -TS’s. We remark that this definition is a bit different
from the notion of the DTS defined in Huang et al. (2009). In particular,
we consider single interaction arcs as particular DTS. Adopting the point
of view of Algebraic Dynamic Programming (Giegerich and Meyer, 2002),
we regard each decomposition rule as a production in a suitable grammar.
Fig. 4 summarizes the three basic steps of the hybrid grammar: (I) “interior
arc-removal” to reduce TS. The scheme is complemented by the usual loop
decomposition of secondary structures, and (II) “block-decomposition” to
split a joint structure into two smaller blocks.

The grammar in Fig. 4 corresponds to the decomposition (parsing) of a
joint structure into interior arcs and hybrids. Fig. 5A shows the corresponding
parse tree. The full details of the decomposition procedures are described
in Section 2 of the Supplementary Material, where we show that for each
joint structure J1,N;1,M , we indeed obtain a unique decomposition tree (parse
tree), denoted by TJ1,N;1,M . More precisely, TJ1,N;1,M has root J1,N;1,M and
all other vertices correspond to a specific substructure of J1,N;1,M obtained
by the successive application of the decomposition steps of Fig. 4 and the
loop decomposition of the secondary structures. Thus, the hybrid grammar
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A

B

Fig. 5. Different grammars lead to different (parse) trees. We show the parse
tree TJ1,11;1,11 for the same joint structure J1,11;1,11 according to the grammars
of rip2 (A) and rip1 (B), respectively.

is unambiguous. The two panels of Fig. 5 contrast the grammars of rip1
(Huang et al., 2009) and the hybrid grammar of rip2 introduced here. In
rip1, hybrids were immediately decomposed into individual external base
pairs and their associated interior loops, so that individual hybrids were not
tractable in a straightforward manner.

Let us now have a closer look at the energy evaluation of Ji,j;h,�. Each
decomposition step in Fig. 4 results in substructures whose energies are
assumed to contribute additively and generalized loops that can be evaluated
directly. There are the following two basic scenarios:
(I) Interior Arc removal: the first type of decomposition is derived from the
decomposition of TS of Huang et al. (2009). Most of the decomposition
operations in Procedure (b) displayed in Fig. 4 can be viewed as the
“removal” of an arc (corresponding to the closing pair of a loop in
secondary structure folding) followed by decomposition. Both, loop type
as well as the subsequent decomposition steps depend on the newly exposed
structural elements. Following the approach of Zuker and Sankoff (1984)
for secondary structures, we treat the loop-decomposition problem by
introducing additional matrices. Without loss of generality, we can assume
that we open an interior base pair RiRj .

The set of base pairs on R[i,j] consists of all interior pairs RpRq

with i≤p<q≤ j and all exterior pairs RpSh with i≤p≤ j. An interior
arc is exposed on R[i+1,j−1] if and only if it is not enclosed
by any interior arc in R[i,j]. An exterior arc is exposed on R[i+1,

j−1] if and only if it is not a descendant of any interior arc in R[i+1,j−1].
Given RiRj , the arcs exposed on R[i+1,j−1] correspond to the base pairs
immediately interior of RiRj . Let us write ER[i,j] =Ei

R[i,j]∪̇Ee
R[i,j] for this

set of ‘exposed base pairs’ and its subsets of interior and exterior arcs.
As in secondary structure folding, the loop type is determined by ER[i,j] :=
ER as follows: ER =∅, hairpin loop; ER =Ei

R and |ER|=1, interior loop
(including bulge and stacks); ER =Ei

R, |ER|≥2, multi-branch loop; ER =Ee
R,

kissing-hairpin loop; |Ei
R|,|Ee

R|≥1, general kissing loop.
This picture needs to be refined even further since the arc removal

is coupled with further decomposition of the interval R[i+1,j−1]. This
prompts us to distinguish TS and DTS with different classes of exposed base
pairs on one or both strands. It will be convenient, furthermore, to include
information on the type of loop in which it was found.

A TS J�
i,j;h,�

is of type E, if S[h,�] is not enclosed in any base pair

(J�,E
i,j;h,�

). Suppose J�
i,j;h,�

is located immediately interior to the closing pair

SpSq (p<h<�<q). If the loop closed by SpSq is a multi-loop, then J�
i,j;h,�

is of type M (J�,M
i,j;h,�

). If SpSq is contained in a kissing loop, we distinguish
the types F and K, depending on whether or not Ee

S[h,�] =∅.

Analogously, there are in total four types of a hybrid JHy
i,j;h,�

,

i.e. {JHy,EE
i,j;h,�

,JHy,EK
i,j;h,�

,JHy,KE
i,j;h,�

,JHy,KK
i,j;h,�

}.

A B

Fig. 6. Decomposition of JDT ,KKB
i,j;h,�

(l.h.s.) and JRT ,KKA
i,j;h,�

(r.hs.).

(II) Block decomposition: the second type of decomposition is the splitting
of joint structures into ‘blocks’. Here, the hybrid grammar differs from the
grammar of Huang et al. (2009) in two ways. First, we use the hybrid as a
new block of the grammar, decomposing a hybrid by removing its exterior
arcs in parallel simultaneously starting from the right. Second, we split a
joint structure into blocks via alternating decompositions of RTS and DTS
as shown in the Procedure (a) of Fig. 4.

In order to guarantee the maximality hybrids, we observe that the RTS’s
JRT ,KK

i,j;h,�
, JRT ,KE

i,j;h,�
, JRT ,EK

i,j;h,�
and JRT ,EE

i,j;h,�
can appear in two scenarios, depending

on whether or not there exists an exterior arc Ri1 Sh1 such that R[i,i1 −1]
and S[h,h1 −1] are isolated segments. In case such an exterior arc exists,
we say the RTS is of type (B) or (A), otherwise. Similarly, a DTS, JDT ,KK

i,j;h,�
,

JDT ,KE
i,j;h,�

, JDT ,EK
i,j;h,�

or JDT ,EE
i,j;h,�

is of type (B) or (A) depending on whether RiSh

is an exterior arc. In Fig. 6A, we display the decomposition of JDT ,KKB
i,j;h,�

into
hybrids and RTS of type (A) and in Fig. 6B, we display the decomposition
of JRT ,KKA

i,j;h,�
into secondary structure segments and DTS accordingly.

Suppose JDT
i,j;r,� is a DTS contained in a kissing loop, that is, we have

either Ee
R[i,j] �=∅ or Ee

S[h,�] �=∅. Without loss of generality, we may assume
Ee

R[i,j] �=∅. Then, at least one of the two ‘blocks’ contains at least an exterior
arc belonging to Ee

R[i,j] labeled by K or F, otherwise, see Fig. 6A.

2.3 Forward recursions
The computation of the partition function proceeds ‘from the inside to
the outside’, see Equation (3). The recursions are initialized with the
energies of individual external base pairs and empty secondary structures on
subsequences of length up to 4. In order to differentiate multi- and kissing-
loop contributions, we introduce the partition functions Qm

i,j and Qk
i,j . Here,

Qm
i,j denotes the partition function of secondary structures on R[i,j] or S[i,j]

having at least one arc contained in a multi-loop. Similarly, Qk
i,j denotes the

partition function of secondary structures on R[i,j] or S[i,j] in which at least
one arc is contained in a kissing loop. Let J

ξ,Y1Y2Y3
i,j;h,�

be the set of substructures
Ji,j;h,� ⊂J1,N;1,M , induced from some joint structure J1,N;1,M , such that Ji,j;h,�

appears in TJ1,N;1,M as an interaction structure of type ξ∈{DT ,RT ,�,�,�,◦}
with loop-subtypes Y1,Y2 ∈{M,K,F} on the subintervals R[i,j] and S[h,�],
Y3 ∈{A,B}. Let Qξ,Y1Y2Y3

i,j;h,�
denote the partition function of the set J

ξ,Y1Y2Y3
i,j;h,�

.

All recursions for Qξ,Y1Y2Y3
i,j;h,�

represent a reformulation of the hybrid grammar
specified in Fig. 4.

For instance, the recursion for QDT ,KKB
i,j;h,�

displayed in Fig. 6A is given by:

QDT ,KKB
i,j;h,�

=
∑

i1,h1

QHy,KK
i,i1;h,h1

QRT ,KKA
i1+1,j;h1+1,�

+QHy,KK
i,i1;h,h1

QRT ,KF
i1+1,j;h1+1,�

+QHy,KK
i,i1;h,h1

QRT ,FF
i1+1,j;h1+1,�

+QHy,KK
i,i1;h,h1

QRT ,FK
i1+1,j;h1+1,�

+QHy,KK
i,j;h,�

,

(1)

where the corresponding recursion for QHy,KK
i,j;h,�

is

QHy,KK
i,j;h,�

=
∑

i1,h1

QHy,KK
i,i1;h,h1

e
−(σ0+σGInt

i1 ,h1 ,j,�+(j+�−i1−h1−2)β3)
. (2)
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Analogously, the recursions for QHy,EE
i,j;h,�

,QHy,EK
i,j;h,�

and QHy,KE
i,j;h,�

read:

QHy,EE
i,j;h,�

=
∑

i1,h1

QHy,EE
i,i1;h,h1

e
−(σ0+σGInt

i1 ,h1 ,j,�);

QHy,EK
i,j;h,�

=
∑

i1,h1

QHy,EK
i,i1;h,h1

e
−(σ0+σGInt

i1 ,h1 ,j,�+(�−h1−1)β3);

QHy,KE
i,j;h,�

=
∑

i1,h1

QHy,KE
i,i1;h,h1

e
−(σ0+σGInt

i1 ,h1 ,j,�+(j−i1−1)β3)
.

(3)

2.4 Hybrid probabilities
Since the probabilities of individual base pairs are not independent, it is
not possible to compute the probabilities for particular hybrids directly from
them. Hybrid probabilities thus cannot be obtained in a simple way from the
backward recursions described by Huang et al. (2009).

Given two RNA sequences, our notion of probability is based on the
ensemble of all possible joint interaction structures. Let QI denote the
partition function of all these joint structures that can formed by two input
RNA sequences. The probability of a fixed joint structure J1,N;1,M is given by

PJ1,N;1,M = QJ1,N;1,M

QI
. (4)

In difference to the computation of the hybrid-partition function ‘from
the inside to the outside’ (IO), the computation of probabilities of specific
substructures is obtained ‘from the outside to the inside’. The same principle
applies to the computation of base pairing computation of base pairing
probabilities of secondary structures (McCaskill, 1990) and joint structures
(Huang et al., 2009).

Let J =J1,N;1,M , with associated decomposition tree T (J) and let �Ji,j;h,�
=

{J |Ji,j;h,� ∈T (J)} denote the set of all joint structures J such that Ji,j;h,� is
contained in the decomposition tree T (J). Then we have, by construction,

PJi,j;h,�
=

∑

J∈�i,j;h,�

PJ . (5)

Following the (OI)-paradigm, the probability of a parent structure, Pθs ,
is computed prior to the calculation of PJi,j;h,�

. The conditional probability
PJi,j;h,�|θs equals Qθs (Ji,j;h,�)/Q(θs), where Q(θs) is the partition function of
θs, and Qθs (Ji,j;h,�) the partition function of all those θs, that have in addition
Ji,j;h,� as a child in their parse trees. Consequently, PJi,j;h,�

can inductively
be computed by summing over all probabilities Pθs , i.e.

PJi,j;h,�
=

∑

θs

PJi,j;h,�|θs Pθs =
∑

θs

[
Qθs (Ji,j;h,�)/Q(θs)

]
Pθs . (6)

Let P
Hy
i,j;h,�

denote the probability of the set of substructures J such that

the specific hybrid substructure, JHy
i,j;h,�

, appears in the decomposition tree

T (J), i.e. JHy
i,j;h,�

∈T (J). Since each joint structure JHy
i,j;h,�

is either one of the

four types JHy,EE
i,j;h,�

,JHy,EK
i,j;h,�

,JHy,KE
i,j;h,�

or JHy,KK
i,j;h,�

, we arrive at

P
Hy
i,j;h,�

=P
Hy,EE
i,j;h,�

+P
Hy,EK
i,j;h,�

+P
Hy,KE
i,j;h,�

+P
Hy,KK
i,j;h,�

. (7)

We remark that, by construction, for [h1,�1] �=[h2,�2], the hybrid

probabilities P
Hy
i,j;h1,�1

and P
Hy
i,j;h2,�2

quantify disjoint classes of joint
structures. This is a consequence of the maximality of hybrids, which implies
that, for fixed interval [i,j], each [h1,�1] corresponds to a unique hybrid

JHy
i,j;h1,�1

. Based on the notion of hybrid probability, we can introduce

P
target
[i,j] =

∑

h,�

P
Hy
i,j;h,�

, (8)

which is, according to the above, the probability of the target site [i,j] and
furthermore

πR(i)=
∑

p,q: p≤i≤q

∑

h,�

P
Hy
p,q;h,�

, (9)
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Fig. 7. Hybrid probability: the maximality of hybrids implies that—although
the intervals [h1,�1] and [h2,�2] overlap—they belong to two distinct hybrids
(gray).

measuring, for each base i in R the probability that i is contained in a hybrid.
A particulary instructive observable is the interaction base pairing matrix,
given by

πi,k =
∑

p,q: p≤i≤q

∑

r,s:r≤k≤s

P
Hy
p,q;r,s. (10)

Clearly, πi,k measures the probability that a pair of nucleotides (i,k),
located on different strands, is contained in an interaction region. In contrast
with the base pairing probabilities, large values of πi,k do not imply that i
and k actually form an exterior base pair. Instead, it highlights regions of
intermolecular interactions.

2.5 Boltzmann sampling
A dynamic programming scheme for the computation of a partition function
implies a corresponding stochastic backtracing procedure that can be used to
sample from the associated distribution (Tacker et al., 1996). The usefulness
of this approach for RNA secondary structures is discussed by Ding and
Lawrence (2003). The same ideas can of course also produce representative
samples from the Boltzmann equilibrium distribution of RNA interaction
structures (Fig. 8).

The basic data structure of the algorithm is a stack A that stores tuples
of the form {(i,j;h,�;ξ)} describing a pair of intervals [i,j] in R and [h,�]
in S and the type ξ of the—not further specified—joint structure formed
by the two intervals. The stack A, initialized with (1,N;1,M,?) where ‘?’
denotes the unspecified type, guides the backtracing which is complete as
soon as A is empty. A list L is used to collect the interior and exterior
arcs and unpaired bases generated by the decompositions and eventually
define the sampled interaction structure. In the first step, (1,N;1,M,?)
is decomposed according to the grammar in Fig. 4 into either (i) a pair
of secondary structures, or (ii) a RTS (i,N;j,M;RTEE) with probabilities
derived as explained above. Depending on the stochastic choice, we push
either (i) (1,N;0,0;sec) and (0,0;1,M;sec) or (ii) (1,i−1;0,0,sec),
(0,0;1,j−1;sec) and (i,N;j,M;RTEE) into the stack A.

Given A and L, we can associate a probability by considering the
decomposition of the particular type of joint structure. For instance, suppose
we have extracted (i,j;h,�,DTKKB) from stack A, see Fig. 6. Then, the
probabilities for continuing with one of the five decompositions displayed in
Fig. 6, for each position of the break points i1 ∈[i,j] and h1 ∈[h,�], is given
by

P
0
i1,h1

= QHy,KK
i,i1;h,h1

QRT ,KKA
i1+1,j;h1+1,�

/QDT ,KKB
i,j;h,�

,

P
1
i1,h1

= QHy,KK
i,i1;h,h1

QRT ,KF
i1+1,j;h1+1,�

/QDT ,KKB
i,j;h,�

,

P
2
i1,h1

= QHy,KK
i,i1;h,h1

QRT ,FF
i1+1,j;h1+1,�

/QDT ,KKB
i,j;h,�

,

P
3
i1,h1

= QHy,KK
i,i1;h,h1

QRT ,FK
i1+1,j;h1+1,�

/QDT ,KKB
i,j;h,�

,

P
4
i1,h1

= QHy,KK
i,j;h,�

/QDT ,KKB
i,j;h,�

.
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Fig. 8. Stochastic backtracing algorithm: elements of stack A are
successively decomposed according to the hybrid-grammar. The resulting
arcs and unpaired vertices are stored in the list L which, once A is empty,
eventually contains the Boltzmann-sampled interaction structure.

One of these decompositions is accordingly sampled and the respective
output is pushed back into stack A. For instance, if P1

i1,h1
is selected, then

we push (i,i1;h,h1;HyKK) and (i1 +1,j;h1 +1,�;RTKF) back into stack A.

3 RESULTS AND CONCLUSIONS
We presented here a modified and improved unambiguous grammar
for the RIP. Compared with rip1 (Huang et al., 2009), it reduces
the computational efforts, in particular the memory consumption, by
about a third. In the Supplementary Material, we contrast rip2with
rip1 and show that hybrids (as opposed to TS, RTS or DTS) are
uniquely suited for identifying the interaction regions of two RNA
molecules. The complete set of recursions is compiled in Section 3

of the Supplementary Material. It comprises 9 4D-arrays Q�,�,�
i,j;r,s

for TS of various types, 20 4D-arrays QRT
i,j;r,s for RTS and 20 4D-

arrays QDT
i,j;r,s for DTS. The implementation has been complemented

by a stochastic backtracing facility. Fig. 9 gives an example of
the output produced by rip2 (see also Supplementary Material,
Fig. 4). Despite algorithmic improvements, rip2 still requires quite
substantial computational resources for practical applications. rip2
is in practise limited to problem sizes of N1 +N2 �250 on current
hardware. While rip2 is still not an efficient tool for large-scale
routine applications, it is suitable for investigating the fine details

A B

C

Fig. 9. Interaction of sodB–RhyB. (A) Base-pairing probability matrix.
The upper right triangle shows the probabilities obtained from the exact
backwards recursion, the lower left triangle is the estimate from a sample
of 10 000 structures obtained by stochastic backtracing, showing that the
estimates converge quickly. (B) Comparison of the structure proposed in
Geissmann and Touati (2004) and the rip2 prediction. While the major
stable hairpins agree and rip2 correctly predicts the primary interaction
region, rip2 also identifies additional interaction regions that may stabilize
the interaction. (C) Sampled joint structures (here the 20 most frequent ones)
are represented as dot-bracket strings: () and [] represent pairs of interior and
exterior arc, respectively, while dots indicate unpaired bases. | separates the
two RNA sequences which are both written in 5′ →3′ direction.
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Fig. 10. Interaction maps. The ompA–MicA interaction (A) has a dominating
interaction region that brings together the 3′ end of ompA and the 5′ terminus
of MicA. The sodB–RhyB interactions (B) has two clear hybridization regions
in the middle of the molecules and a diffuse contact area at the 3′ end
of sodB. The grayscale show the probabilities πik . Tick marks indicate
every 10th nucleotide. The correlations between the major binding regions
can be computed easily from Boltzmann samples. The heatmaps show the
correlation coefficients for the most probable interaction regions (indicated
by numbers in the interaction maps). (C) For sodB–RhyB, we observe fairly
weak correlations, except for the cooperative interaction between contacts
3 and 4. In case of ompA–MicA, we observe strong negative correlations
between conflicting hybridization regions.

of particular interactions. Future work will thus focus on controlled
approximations with the aim of a drastic reduction of both: CPU
and memory consumption.

The major advantage of stochastic sampling is that it provides
a generic and convenient means to estimate quantities that cannot
be easily computed directly by backwards recursion (Ding and
Lawrence, 2003). Both, the ompA-MicA and sodB-RhyB complexes
show a primary, highly likely, hybrid region and several additional
less stable points of contact, see Fig. 10. In these examples, it
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is of interest to investigate in detail how the putative interaction
regions influence each other: is the binding cooperative so that
the major hybrids in Fig. 10 are positively correlated, or do
they constitute mutually exclusive contacts? Once a sufficiently
large Boltzmann sample is obtained, we can easily compute,
e.g. correlations ρPQ between indicator variables P and Q that
measure the existence of external base pairs in two different
hybrids. Fig. 10C provide examples, showing that there are strong
correlations between hybridization regions. These multiple contacts
can contribute substantially to the total interaction energy.

ACKNOWLEDGEMENTS
We want to thank Sven Findeiß for discussions. We are grateful to
Sharon Selzo of the Modular and BICoC Benchmark Center, IBM
and Kathy Tzeng of IBM Life Sciences Solutions Enablement. Their
great support was vital for all computations presented here.

Funding: 973 Project of the Ministry of Science and Technology;
PCSIRT Project of the Ministry of Education; National Science
Foundation of China (to C.M.R. and his lab); Deutsche
Forschungsgemeinschaft under the auspices of SPP-1258 ‘Small
Regulatory RNAs in Prokaryotes’ (grant No. STA 850/7-1to P.F.S.
and his lab); European Community FP-6 project SYNLET (Contract
Number 043312 to P.F.S. and his lab).

Conflict of Interest: none declared.

REFERENCES
Akutsu,T. (2000) Dynamic programming algorithms for RNA secondary structure

prediction with pseudoknots. Disc. Appl. Math., 104, 45–62.
Alkan,C. et al. (2006) RNA-RNA interaction prediction and antisense RNA target

search. J. Comput. Biol., 13, 267–282.
Andronescu,M. et al. (2005) Secondary structure prediction of interacting RNA

molecules. J. Mol. Biol., 345, 1101–1112.
Argaman,L. and Altuvia,S. (2000) fhlA repression by OxyS RNA: kissing complex

formation at two sites results in a stable antisense-target RNA complex. J. Mol.
Biol., 300, 1101–1112.

Bachellerie,J. et al. (2002) The expanding snoRNA world. Biochimie, 84, 775–790.
Banerjee,D. and Slack,F. (2002) Control of developmental timing by small temporal

RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays, 24,
119–129.

Benne,R. (1992) RNA editing in trypanosomes. the use of guide RNAs. Mol. Biol. Rep.,
16, 217–227.

Bernhart,S. et al. (2006) Partition function and base pairing probabilities of RNA
heterodimers. Algorithms Mol. Biol., 1, 3.

Busch,A. et al. (2008) IntaRNA: efficient prediction of bacterial sRNA targets
incorporating target site accessibility and seed regions. Bioinformatics, 24,
2849–2856.

Chitsaz,H. et al. (2009a) biRNA: fast RNA-RNA binding sites prediction. In
Proceedings of the 9th Workshop on Algorithms in Bioinformatics (WABI), Vol. 5724
of Lectures Notes in Computer Science. Springer, pp. 25–36.

Chitsaz,H. et al. (2009b) A partition function algorithm for interacting nucleic acid
strands. Bioinformatics, 25, i365–i373.

Ding,Y. and Lawrence,C.E. (2003) A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acid Res., 31, 7280–7301.

Dirks,R. et al. (2007) Thermodynamic analysis of interacting nucleic acid strands. SIAM
Rev., 49, 65–88.

Dowell,R.D. and Eddy,S.R. (2004) Evaluation of several lightweight stochastic context-
free grammars for RNA secondary structure prediction. BMC Bioinformatics,
5, 7.

Geissmann,T. and Touati,D. (2004) Hfq, a new chaperoning role: binding to messenger
RNA determines access for small RNA regulator. EMBO J., 23, 396–405.

Giegerich,R. and Meyer,C. (2002) Algebraic Dynamic Programming. In Vol. 2422 of
Lecture Notes in Computer Science. Springer, London, pp. 349–364 .

Hekimoglu,B. and Ringrose,L. (2009) Non-coding RNAs in polycomb/trithorax
regulation. RNA Biol., 6, 129–137.

Hofacker,I.L. et al. (1994) Fast folding and comparison of RNA secondary structures.
Monatsh. Chem., 125, 167–188.

Huang,F.W.D. et al. (2009) Partition function and base pairing probabilities for RNA-
RNA interaction prediction. Bioinformatics, 25, 2646–2654.

Kugel,J. and Goodrich,J. (2007) An RNA transcriptional regulator templates its own
regulatory RNA. Nat. Struct. Mol. Biol., 3, 89–90.

McCaskill,J.S. (1990) The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers, 29, 1105–1119.

McManus,M.T. and Sharp,P.A. (2002) Gene silencing in mammals by small interfering
RNAs. Nat. Rev., 3, 737–747.

Mneimneh,S. (2009) On the approximation of optimal structures for RNA-RNA
interaction. IEEE/ACM Trans. Comp. Biol. Bioinform., 6, 682–688.

Mückstein,U. et al. (2006) Thermodynamics of RNA-RNA binding. Bioinformatics,
22, 1177–1182.

Mückstein,U. et al. (2008) Translational control by RNA-RNA interaction: improved
computation of RNA-RNA binding thermodynamics. In Elloumi,M. et al.
(eds) Bioinformatics Research and Development — BIRD 2008, Vol. 13 of
Communication in Computer and Information Science. Springer, Berlin,
pp. 114–127.

Narberhaus,F. and Vogel,J. (2007) Sensory and regulatory RNAs in prokaryotes: A new
german research focus. RNA Biol., 4, 160–164.

Pervouchine,D. (2004) IRIS: intermolecular RNA interaction search. Proc. Genome
Inform., 15, 92–101.

Qin,J. and Reidys,C.M. (2007) A combinatorial framework for RNA
tertiary interaction. Technical Report 0710.3523, arXiv. Available at
http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.3523v3.pdf.

Rehmsmeier,M. et al. (2004) Fast and effective prediction of microRNA/target duplexes.
Gene, 10, 1507–1517.

Rivas,E. and Eddy,S.R. (1999) A dynamic programming algorithms for RNA structure
prediction including pseudoknots. J. Mol. Biol., 285, 2053–2068.

Salari,R. et al. (2009) Fast prediction of RNA-RNA interaction. In Proceedings of the
9th Workshop on Algorithms in Bioinformatics (WABI), Vol. 5724 of Lecture Notes
in Computer Science. Springer, pp. 261–272.

Tacker,M. et al. (1996) Algorithm independent properties of RNA structure prediction.
Eur. Biophy. J., 25, 115–130.

Tafer,H. et al. (2009) RNAsnoop: efficient target prediction for box H/ACA snoRNAs.
Bioinformatics, University of Leipzig. Available at http://www.bioinf.uni-
leipzig.de/Publications/PREPRINTS/0 9-025.pdf

Tjaden,B. et al. (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic
Acids Res., 34, 2791–2802.

Udekwu,K. et al. (2005) Hfq-dependent regulation of OmpA synthesis is mediated by
an antisense RNA. Genes Dev., 19, 2355–2366.

Urban,J.H. and Vogel,J. (2007) Translational control and target recognition by
Escherichia coli small RNAs in vivo. Nucleic Acids Res., 35, 1018–1037.

Zuker,M. and Sankoff,D. (1984) RNA secondary structures and their prediction. Bull.
Math. Biol., 46, 591–621.

181

http://arxiv.org/PS_cache/arxiv/pdf/0710/0710.3523v3.pdf
http://www.bioinf.unileipzig.de/Publications/PREPRINTS/0

