
RESEARCH ARTICLE

Evaluation and comparison of statistical

methods for early temporal detection of

outbreaks: A simulation-based study

Gabriel Bédubourg1,2¤*, Yann Le Strat3

1 CESPA, French Armed Forces Center for Epidemiology and Public Health, Marseille, France, 2 Aix

Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de
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Abstract

The objective of this paper is to evaluate a panel of statistical algorithms for temporal out-

break detection. Based on a large dataset of simulated weekly surveillance time series, we

performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R

package surveillanceand two other methods. We estimated false positive rate (FPR),

probability of detection (POD), probability of detection during the first week, sensitivity, spec-

ificity, negative and positive predictive values and F1-measure for each detection method.

Then, to identify the factors associated with these performance measures, we ran multivari-

ate Poisson regression models adjusted for the characteristics of the simulated time series

(trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9%

and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%,

but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All

methods had a high negative predictive value, over 94%, while positive predictive values

ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that perfor-

mance measures were strongly influenced by the characteristics of time series. Past or cur-

rent outbreak size and duration strongly influenced detection performances.

Introduction

Public health surveillance is the ongoing, systematic collection, analysis, interpretation, and

dissemination of data for use in public health action to reduce morbidity and mortality of

health-related events and to improve health [1]. One of the objectives of health surveillance is

outbreak detection, which is crucial to enabling rapid investigation and implementation of

control measures [2]. The threat of bioterrorism has stimulated interest in improving health

surveillance systems for early detection of outbreaks [3, 4] as have natural disasters and

humanitarian crises, such as earthquakes or the 2005 tsunami, and the recent emergence or
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reemergence of infectious diseases such as Middle East Respiratory Syndrome due to New

Coronavirus (MERS-CoV) in 2012 [5] or Ebola in West Africa in 2014 [6].

Nowadays, a large number of surveillance systems are computer-supported. The computer

support and statistical alarms are intended to improve outbreak detection for traditional or

syndromic surveillance [7, 8]. These systems routinely monitor a large amount of data,

recorded as time series of counts in a given geographic area for a given population. They pro-

duce statistical alarms that need to be confirmed by an epidemiologist, who determines if fur-

ther investigation is needed. One limitation of these detection systems is an occasional lack of

specificity, leading to false alarms that can overwhelm the epidemiologist with verification

tasks [9, 10]. It is thus important to implement statistical methods that offer a good balance

between sensitivity and specificity in order to detect a large majority of outbreaks without gen-

erating too many false positive alarms.

In the literature, a broad range of statistical methods has been proposed to detect outbreaks

from surveillance data. The main statistical approaches have been reviewed by Shmueli et al.

[11] and Unkel et al. [12]. By restricting these reviews to the methods that allow temporal

detection of outbreaks without integrating the spatial distribution of cases, the general princi-

ple is to identify a time interval in which the observed number of cases of an event under sur-

veillance (i.e. the number of reported cases) is significantly higher than expected. This

identification is mainly based on a two-step process: First, an expected number of cases of the

event of interest for the current time unit (generally a week or a day) is estimated and then

compared to the observed value by a statistical test. A statistical alarm is triggered if the

observed value is significantly different from the expected value. The main difference between

statistical methods lies in how the expected value is estimated, which is most often done using

statistical process control or regression techniques or combination of both [12].

A major constraint to the practical implementation of these methods is their capacity to be

run on an increasing number of time series, provided by multiple sources of information, and

centralized in large databases [3, 13, 14]. Monitoring a large number of polymorphic time

series requires flexible statistical methods to deal with several well-known characteristics

observed in time series: the frequency and variance of the number of cases, secular trend and

one or more seasonality terms [14]. Even if some authors proposed to classify time series into

a small number of categories and sought suitable algorithms for each category, in this auto-

mated and prospective framework, statistical methods cannot easily be fine tuned by choosing

the most appropriate parameters adapted to each time series in an operational way, as

explained by Farrington et al. [15].

A key question for public health practitioners is what method(s) can be adopted to detect

the effects of unusual events on the data. Some authors have proposed a systematic assessment

of the performances of certain methods in order to choose one reference algorithm [16–20].

They assessed these methods on a real dataset [16, 21], a simulated dataset [18–20, 22, 23] or

on real time series for which simulated outbreaks were added [24, 25]. Simulating data offers

the advantage of knowing the exact occurrence of the simulated outbreaks and their character-

istics (amplitude, etc.). For example, Lotze et al. developed a simulated dataset of time series

and outbreak signatures [26]. In the same way, Noufaily et al. [9] proposed a thorough simula-

tion study to improve the Farrington algorithm [15]. Guillou et al. [27] compared the perfor-

mance of their own algorithm to that of the improved Farrington, using the same simulated

dataset. This dataset was also used by Salmon et al. to assess their method [28].

To our knowledge, no study has been proposed to thoroughly evaluate and compare the

performance of a broad range of methods on a large simulated dataset.

The objective of this paper is to evaluate the performance of 21 statistical methods applied

to large simulated datasets for outbreak detection in weekly health surveillance. The simulated
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dataset is presented in Section 2. The 21 evaluated methods and performance measures are

described in Section 3. Evaluations and comparisons are presented in Section 4. A discussion

follows in the last section.

Materials

We simulated data following the approach proposed by Noufaily et al. [9].

First, simulated baseline data (i.e. time series of counts in the absence of outbreaks) were

generated from a negative binomial model of mean μ and variance ϕμ, ϕ being the dispersion

parameter�1. The mean at time t, μ(t), depends on a trend and seasonality modeled using

Fourier terms:

log ðmtÞ ¼ yþ bt þ
Xm

j¼1

g1 cos
2pjt
52

� �

þ g2 sin
2pjt
52

� �� �

: ð1Þ

Time series were simulated from 42 parameter combinations (called scenarios and pre-

sented in Table 1 in [9]) with different values taken by θ, β, γ1, γ2, m and ϕ, respectively associ-

ated with the baseline frequency of counts, trend, seasonality (no seasonality: m = 0, annual

seasonality: m = 1, biannual seasonality: m = 2) and the dispersion parameter. For each sce-

nario, 100 replicates of the baseline data (time series with 624 weeks) were generated. We thus

obtained 42 × 100 = 4200 simulated time series. The last 49 weeks of each time series were

named current weeks. The evaluated algorithms were run on these most recent 49 weeks. Per-

formance measures described below were computed based on detection during these 49

weeks.

Secondly, for each time series, five outbreaks were simulated. Four outbreaks were gener-

ated in baseline weeks. Each outbreak started at a randomly drawn week and we generated the

outbreak size (i.e. the number of outbreak cases) as Poisson with mean equal to a constant k1

times the standard deviation of the counts observed at the starting week. The fifth outbreak

was generated in the current weeks in the same manner, using another constant noted k2. We

chose the values of k1 to be 0, 2, 3, 5 and 10 in baseline weeks and k2 from 1 to 10 in current

weeks as in [9].

Finally, outbreak cases were randomly distributed according to a lognormal distribution

with mean 0 and standard deviation 0.5.

A total of 231,000 time series were generated from the 42 scenarios: 21,000 time series dur-

ing the first step of simulation process (42 × 100 duplicates × 5 values for k1), and 210,000 time

series during the second step of simulation process (21,000 × 10 values for k2), leading to a

large simulated dataset including a great variety of time series, as observed in real surveillance

data. At the end of the simulation process, 10,290,000 current weeks were generated, among

which 6.2% were classified as outbreak weeks as they were included in an outbreak.

Methods

Statistical methods

We studied 21 statistical methods, 19 of which were implemented in the R package

surveillance [29, 30]:

• the CDC algorithm [31].

• the RKI 1, 2 and 3 algorithms [29],

• the Bayes 1, 2 and 3 algorithms [29],
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• CUSUM variants: original CUSUM [29, 32], a Rossi approximate CUSUM [32], a CUSUM

algorithm for which the expected values are estimated by a GLM model [29], a mixed Rossi

approximate CUSUM GLM algorithm [29],

• the original Farrington algorithm [15] and the improved Farrington algorithm [9],

• a count data regression chart (GLRNB) [29, 33] and a Poisson regression chart (GLR Pois-

son) [29, 34],

• the OutbreakP method [35],

• EARS C1, C2 and C3 algorithms [19, 36]

For all simulated time series, we used the tuning parameters recommended by their authors

for each algorithm when available and proposed by default in the package surveillance.

The commands used from the R package surveillance and the control tuning parameters

chosen for these 19 algorithms are presented in Table 1.

We also proposed two additional methods not implemented in the package

surveillance:

• a periodic Poisson regression where μ(t) is defined as in Eq (1). The threshold is the 1 − α
quantile of a Poisson distribution with mean equal to the predicted value at week t.

• a periodic negative binomial regression, also defined as in Eq (1), where the threshold is the

1 − α quantile of a negative binomial distribution with mean equal to the predicted value at

week t and a dispersion parameter estimated by the model.

Table 1. Commands, control tuning parameters and references of 19 algorithms implemented in the R package surveillance.

Method Command Control parameters References

Improved Farrington farringtonFlexible() b = 5, w = 3, reweight = TRUE, weightsTreshold = 2.58, thresholdMethod = “nbPlugin”, α1 [9]

Original Farrington algo.farrington() b = 5, w = 3, reweight = TRUE, α1 [15]

CDC (historical limits) algo.cdc() m = 2, b = 4, α1 [31]

CUSUM algo.cusum() k = 1.04, h = 2.26, m = NULL, α1 [29, 32]

CUSUM Rossi algo.cusum() k = 1.04, h = 2.26, m = NULL, trans = “rossi”, α1 [29, 32]

CUSUM GLM algo.cusum() k = 1.04, h = 2.26, m = “glm”, α1 [29, 32]

CUSUM GLM Rossi algo.cusum() k = 1.04, h = 2.26, m = “glm”, trans = “rossi”, α1 [29, 32]

Bayes 1 algo.bayes1() α = 0.05 (Package value) [29]

Bayes 2 algo.bayes2() α = 0.05 (Package value) [29]

Bayes 3 algo.bayes3() α = 0.05 (Package value) [29]

RKI 1 algo.rki1() - [29]

RKI 2 algo.rki2() - [29]

RKI 3 algo.rki3() - [29]

GLR Negative Binomial algo.glrnb() ARL = 5, dir = “inc” [29, 33]

GLR Poisson algo.glrpois() ARL = 5, dir = “inc” [29, 34]

EARS C1 earsC() method = “C1”, α1 [19, 36]

EARS C2 earsC() method = “C2”, α1 [19, 36]

EARS C3 earsC() method = “C3”, α1 [19, 36]

OutbreakP algo.outbreakP() K = 100, ret = c(“value”) [35]

1 α = 0.001, 0.01 or 0.05

https://doi.org/10.1371/journal.pone.0181227.t001
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These last two models were run on all the historical data. An alarm was triggered if the

observed number of cases was greater than the upper limit of the prediction interval. These

two methods are basic periodic regressions. The R code of these two algorithms is presented in

the S24 Appendix.

We evaluated the performances of the methods with three different α values: α = 0.001, α =

0.01 and α = 0.05.

Performance measures

We considered eight measures to assess the performance of the methods:

• Measure 1 is false positive rate (FPR). For each method and each scenario, we calculated the

FPR defined as the proportion of weeks corresponding to an alarm in the absence of an out-

break, as in [9]. Nominal FPRs were 0.0005 for analyses with α = 0.001, 0.005 for analyses

with α = 0.01 or 0.025 for analyses with α = 0.05.

• Measure 2 is probability of detection (POD). For each scenario and for each current week

period, if an alarm is generated at least once between the start and the end of an outbreak,

the outbreak is considered to be detected [9]. POD is an event-based sensitivity (i.e. the

entire outbreak interval is counted as a single observation for the sensitivity measurement)

and is thus the proportion of outbreaks detected in 100 replicates.

• Measure 3 is probability of detection during the first week (POD1week), which makes it pos-

sible to evaluate the methods’ ability to enable early control measures.

• Measure 4 is observation-based sensitivity (Se): Outbreak weeks associated with an alarm

were defined as True Positive (TP), non-outbreak weeks without alarm as True Negative

(TN), outbreak weeks without alarm as False Negative (FN) and non-outbreak weeks with

alarm as False Positive (FP). Thus, Se = TP/(TP+FN).

• Measure 5 is specificity (Sp) defined as Sp = TN/(TN+FP). Unlike FPR which was calculated

on current weeks without any simulated outbreak, specificity was calculated on the entire

number of current weeks out of the 210 000 time series including current outbreaks.

• Measure 6 is positive predictive value (PPV) defined as: PPV = TP/(TP+FP).

• Measure 7 is negative predictive value (NPV) defined as: NPV = TN/(TN+FN).

• Measure 8 is F1-measure defined as the harmonic mean of the sensitivity and the PPV: F1 = 2

× (Se × PPV)/(Se + PPV). F1-measure assumes values in the interval [0, 1] [37].

In the result section, we proposed to calculate averaged performance measures, i.e. to calcu-

late FPR on the overall 21,000 time series without outbreak during the current weeks, and to

calculate the other performance measures on the overall 210,000 time series with simulated

outbreaks during the current weeks.

FPR was estimated prior to the simulation of current outbreaks, i.e. among the 49 current

weeks for 21,000 (5 × 4,200) time series. Other indicators (POD, POD1week, Se, Sp, PPV,

NPV) were estimated once outbreaks had been simulated, i.e. on the current weeks of all the

time series (210,000 time series).

For each α value, we proposed ROC curve-like representation of these results with four

plots representing sensitivity according to 1-specificity, POD and POD1week as functions of

FPR, and sensitivity according to PPV.
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Factors associated with the performance measures

To identify the factors associated with the performance measures for α = 0.01 and assess the

strength of associations, multivariate Poisson regression models [38] were run, as in Barboza

et al. [39] or Buckeridge et al. [40]. A set of covariates corresponding to the characteristics of

the simulated time series was included: trend (yes/no), seasonality (no/annual/biannual), the

baseline frequency coefficient θ, the dispersion coefficient ϕ and k1 representing the amplitude

and duration of past outbreaks. The last three covariates and k2 were treated as continuous

and modeled using fractional polynomials. The statistical methods were introduced as covari-

ates to estimate performance ratios, i.e. the ratios of performances of two methods, adjusted

for the characteristics of the time series represented by the other covariates.

Adjusted FPR, POD, POD1week, sensitivity, and specificity ratios were estimated with the

improved Farrington algorithm as reference. 95% confidence intervals were calculated with

robust estimation of standard errors. For each continuous covariate modeled by fractional

polynomials, ratios were presented for each value [41].

The simulation study, the implementation of the detection methods, and the estimations of

performance were carried out using R (version 3.2.2), in particular using the package sur-
veillance. Poisson regression models used to identify the factors associated with the per-

formance measures and to assess the strength of associations were run using Stata 14.

Results

Averaged performances of the methods

In this section, we present the averaged performances of each evaluated method, i.e. the perfor-

mances irrespective of the scenario and of the characteristics of the time series. Table 2 pres-

ents averaged FPR, specificity, POD, POD1week, sensitivity, negative predictive value, positive

predictive value and F1-measure for all 42 scenarios and all past and current outbreak ampli-

tude and duration and for α = 0.01. Overall, FPR ranged from 0.7% to 59.9% and POD from

43.3% to 88.7%. Methods with the highest specificity, such as the improved Farrington method

or the periodic negative binomial regression, presented a POD lower than 45% and a sensitiv-

ity lower than 21%. Averaged measures for α = 0.001 and α = 0.05 are presented in S1 Table

and S2 Table. RKI 1-3, GLR Negative Binomial, GLR Poisson, Bayes 1-3 and OutbreakP algo-

rithms’ performances do not vary with α values (see Table 1). Their performances are only

reported in Table 2. For each method, a radar chart presenting the measures 1-7 for α = 0.01 is

proposed in the S23 Appendix.

Fig 1 illustrates these results by plotting for the 21 methods the global results: sensitivity

according to 1-specificity (line 1), POD according to FPR (line 2), POD1week according to

FPR (line 3) and sensitivity according to PPV (line 4) for the 3 α values (columns 1-3). Two

groups stand out from the rest. The first group consists of Bayes 1, 2 and 3. These methods

present the best POD (around 0.8) and POD1week with a FPR around 10%. The second group

consists of the 4 CUSUM methods: CUSUM, CUSUM Rossi, CUSUM GLM, and CUSUM

GLM Rossi. For α = 0.01, these methods present the best sensitivity (around 0.80) but the low-

est specificity (0.55) and the highest FPR (0.40). Note that while of the algorithm test statistics

are based on the likelihood of single-week observations independent of recent ones, CuSUMs

are not, and they may be important for applications where detection of gradual events rather

than one-week spikes is especially critical. The OutbreakP method had the lowest specificity

without having a better POD or POD1week than the first two groups. Finally, a third group

consists of the other methods that had good specificity (over 0.9) but a lower sensitivity, POD

and POD1week than the first two groups. All 21 methods presented a high negative predictive
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value, greater than 94%. The PPV of OutbreakP is very low (6.5%), while the Periodic Negative

Binomial GLM method had the highest PPV (68.4%).

A first attempt to visualize certain differences is to plot POD and FPR according to the sce-

nario and the k1 or k2 values. To illustrate this, Fig 2 shows the performances of the CDC

method. The first row represents FPR for an increasing past outbreak constant k1 = 0, 2, 3, 5

and 10 according to the 42 scenarios. The second row shows POD according to k2 for the 42

scenarios (each curve corresponds to a simulated scenario) for an increasing past outbreak

constant k1 = 0, 2, 3, 5 and 10. It clearly shows that performance depends on the scenario. The

same plots with tables presenting numerical values for each method and different α values are

presented in the S2 Appendix to S22 Appendix. To better compare the 21 methods, we pre-

sented on a single display in the S1 Appendix, their FPR according to the scenarios and their

POD according to the k2 values for k1 = 5 and α = 0.01.

To better understand which characteristics are associated with each performance and to

compare each method with the improved Farrington method, we present the results obtained

from the multivariate Poisson regression models in the next section.

Adjusted performance ratios and associated factors

Table 3 presents the adjusted performance ratios for performance measures 1 to 5 as described

in the Methods’ section (α = 0.01 for Improved Farrington, Original Farrington, Periodic Pois-

son GLM and Neg Binomial GLM, CDC and EARS C1-C3. α = 0.05 for Bayes 1-3).

Table 2. FPR, specificity, POD, POD1week, sensitivity, NPV, PPV and F1-measure for all 21 evaluated methods (for past outbreak constant k1 = 0, 2,

3, 5, 10 and current outbreak k2 = 1 to 10 for POD and sensitivity). α = 0.01 for Improved Farrington, Original Farrington, Periodic Poisson GLM and Neg

Binomial GLM, CDC and EARS C1-C3. α = 0.05 for Bayes 1-3.

Method FPR Specificity POD POD1week Sensitivity NPV PPV F1-measure

Improved Farrington 1.0% 99.0% 43.3% 34.0% 20.5% 95.0% 58.3% 0.30

Original Farrington 2.3% 97.7% 56.9% 45.5% 29.0% 95.4% 45.0% 0.35

Periodic Poisson GLM 3.3% 96.8% 67.8% 56.6% 35.6% 95.8% 42.3% 0.39

Periodic Neg Binomial GLM 0.7% 99.4% 44.8% 36.3% 20.7% 95.0% 68.4% 0.32

CDC 3.6% 95.5% 45.0% 18.7% 34.2% 95.6% 33.2% 0.34

CUSUM 44.0% 52.7% 80.5% 70.5% 75.4% 97.0% 9.5% 0.17

CUSUM Rossi 39.5% 57.6% 77.0% 65.9% 71.8% 96.9% 10.1% 0.18

CUSUM GLM 44.2% 52.0% 84.4% 73.8% 79.5% 97.5% 9.9% 0.18

CUSUM GLM Rossi 39.9% 56.8% 81.1% 69.5% 76.1% 97.3% 10.4% 0.18

Bayes 1 (α = 0.05) 10.1% 90.5% 76.2% 66.2% 39.1% 95.7% 21.4% 0.28

Bayes 2 (α = 0.05) 9.4% 91.0% 80.8% 69.4% 45.7% 96.2% 25.0% 0.32

Bayes 3 (α = 0.05) 11.1% 88.9% 83.4% 71.9% 51.8% 96.5% 23.6% 0.32

RKI 1 8.3% 92.3% 67.8% 58.9% 30.4% 95.3% 20.6% 0.25

RKI 2 5.5% 94.7% 67.8% 57.8% 34.5% 95.6% 30.0% 0.32

RKI 3 7.0% 93.0% 71.3% 60.6% 41.8% 96.0% 28.3% 0.34

GLR Negative Binomial 4.3% 95.7% 50.8% 29.8% 21.6% 94.9% 24.9% 0.23

GLR Poisson 15.5% 84.5% 75.5% 60.3% 45.9% 95.9% 16.4% 0.24

EARS C1 6.9% 93.7% 66.3% 57.4% 25.6% 95.0% 21.2% 0.23

EARS C2 8.5% 92.4% 68.0% 57.1% 38.8% 95.8% 25.1% 0.31

EARS C3 7.4% 92.9% 54.2% 8.5% 35.3% 95.6% 24.7% 0.29

OutbreakP 59.9% 37.4% 70.4% 67.9% 66.1% 94.4% 6.5% 0.12

https://doi.org/10.1371/journal.pone.0181227.t002
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Fig 1. Sensitivity versus 1-specificity (line 1), POD versus FPR (line 2), POD1week versus FPR (line 3) and sensitivity

versus PPV (line 4) for α = 0.001, 0.01 and 0.05 (columns 1-3). (Farr = Improved Farrington, OrigFarr = Original Farrington,

Serf = periodic Poisson GLM, SerfNB = periodic Negative Binomial GLM, CDC = CDC algorithm, CUSUM = CUSUM,

CUSUMR = CUSUM Rossi, CUSUMG = CUSUM GLM, CSMGR = CUSUM GLM Rossi, Bay1 = Bayes 1, Bay2 = Bayes 2,

Bay3 = Bayes 3, RKI1 = RKI 1, RKI2 = RKI 2, RKI3 = RKI 3, Pois = GLR Poisson, GLRNB = GLR Negative Binomial,

C1 = EARS C1, C2 = EARS C2, C3 = EARS C3, OutP = Outbreak P).

https://doi.org/10.1371/journal.pone.0181227.g001
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• Adjusted FPR ratios decreased when the amplitude and duration (driven by k1 in Eq (1)) of

past outbreaks increased. It is indeed more difficult to detect an outbreak when past out-

breaks have occurred, especially when these outbreaks are large and when the method does

not under-weight their influence to estimate the expected number of cases. Adjusted FPR

ratio was 2.75 times higher for time series with a secular trend than for the others. As we sim-

ulated time series with a non-negative trend (β� 0 in Eq (1)), it was expected that FPR

would decrease with a trend, especially for methods which do not integrate a trend in the

estimation of the expected number of cases. In the same way, annual seasonality–and bian-

nual seasonality to an even greater extent–and overdispersion increased FPR. We observed a

nonlinear relation between FPR and baseline frequency: FPR ratio increased from the lowest

frequencies to 12 cases per week, then decreased for the highest frequencies, with no clear

explanation. Only periodic negative binomial GLM presented a FPR lower than improved

Farrington FPR (FPR ratio = 0.71). Adjusted FPR ratios of OutbreakP and all CUSUM vari-

ants were higher than 40. Another group of methods all presented FPR ratios below 10:

CDC, RKI variants, EARS methods, periodic Poisson GLM, original Farrington, Bayes 2 and

GLR negative binomial. FPR ratios for other methods (Bayes 1 and 3, and GLR Poisson)

were between 10 and 17.

• Adjusted specificity ratios were almost all equal to 1 as the amplitude and duration of past

outbreaks had little influence on specificity. They were significantly lower for time series

with a secular trend (adjusted specificity ratio = 0.84) or with annual or biannual seasonality

(respective ratios: 0.99 and 0.98). Specificity decreased when dispersion increased but

Fig 2. CDC algorithm performances for α = 0.01 by increasing past outbreak amplitude k1 = 0, 2, 3, 5 or 10 with (i) on the first row: false

positive rate for 42 simulated scenarios, (ii) on the second row: probability of detection for 42 simulated scenarios (each curve

corresponding to a scenario) by increasing current outbreak amplitude k2 = 1 to 10.

https://doi.org/10.1371/journal.pone.0181227.g002
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Table 3. Performance ratios with the improved Farrington method as reference, adjusted for past and current outbreaks (duration and amplitude),

trend, seasonality, dispersion and baseline frequency (α = 0.01 for Improved Farrington, Original Farrington, Periodic Poisson GLM and Neg Bino-

mial GLM, CDC and EARS C1-C3. α = 0.05 for Bayes 1-3).

Covariates Categories/values FPR ratio? (CI

95%)

Specificity ratio? (CI

95%)

POD ratio? (CI

95%)

POD1week ratio? (CI

95%)

Sensitivity ratio? (CI

95%)

Methods Improved Farrington Ref (-) Ref (-) Ref (-) Ref (-) Ref (-)

Original Farrington 2.43 (2.38 - 2.49) 0.99 (0.99 - 9.99) 1.32 (1.31 - 1.32) 1.34 (1.33 - 1.35) 1.42 (1.41 - 1.42)

Periodic Poisson GLM 3.43 (3.35 - 3.50) 0.98 (0.98 - 0.98) 1.57 (1.56 - 1.58) 1.67 (1.66 - 1.68) 1.74 (1.73 - 1.75)

Periodic Neg Binomial

GLM

0.71 (0.68 - 0.73) 1.00 (1.00 - 1.00) 1.03 (1.03 - 1.04) 1.07 (1.06 - 1.08) 1.01 (1.00 - 1.02)

CDC 3.79 (3.71 - 3.87) 0.96 (0.96 - 0.96) 1.04 (1.03 - 1.05) 0.55 (0.55 - 0.55) 1.67 (1.66 - 1.68)

CUSUM 45.79 (44.90 -

46.70)

0.53 (0.53 - 0.53) 1.86 (1.85 - 1.87) 2.07 (2.06 - 2.08) 3.69 (3.67 - 3.71)

CUSUM Rossi 41.08 (40.28 -

41.90)

0.58 (0.58 - 0.58) 1.78 (1.77 - 1.79) 1.94 (1.93 - 1.95 3.51 (3.49 - 3.53)

CUSUM GLM 45.95 (45.06 -

46.87)

0.53 (0.52 - 0.53) 1.95 (1.94 - 1.96) 2.17 (2.16 - 2.18) 3.89 (3.87 - 3.91)

CUSUM GLM Rossi 41.50 (40.69 -

42.32)

0.57 (0.57 - 0.57) 1.87 (1.87 - 1.88) 2.04 (2.03 - 2.05) 3.72 (3.70 - 3.74)

Bayes 1 10.48 (10.27 -

10.70)

0.91 (0.91 - 0.91) 1.76 (1.75 - 1.77) 1.95 (1.93 - 1.96) 1.91 (1.90 - 1.92)

Bayes 2 9.74 (9.54 - 9.94) 0.92 (0.92 - 0.92) 1.87 (1.86 - 1.88) 2.04 (2.03 - 2.05) 2.23 (2.22 - 2.24)

Bayes 3 11.58 (11.35 -

11.82)

0.90 (0.90 - 0.90) 1.93 (1.92 - 1.94) 2.11 (2.10 - 2.13) 2.53 (2.52 - 2.55)

RKI 1 8.60 (8.42 - 8.78) 0.93 (0.93 - 0.93) 1.57 (1.56 - 1.57) 1.73 (1.72 - 1.74) 1.49 (1.48 - 1.50)

RKI 2 5.77 (5.65 - 5.89) 0.96 (0.96 - 0.96) 1.57 (1.56 - 1.58) 1.70 (1.69 - 1.71) 1.69 (1.68 - 1.70)

RKI 3 7.30 (7.15 - 7.45) 0.94 (0.94 - 0.94) 1.65 (1.64 - 1.66) 1.78 (1.77 - 1.79) 2.04 (2.03 - 2.05)

GLR Negative Binomial 4.49 (4.40 - 4.59) 0.97 (0.97 - 0.97) 1.17 (1.17 - 1.18) 0.87 (0.87 - 0.88) 1.06 (1.05 - 1.06)

GLR Poisson 16.15 (15.83 -

16.47)

0.85 (0.85 - 0.85) 1.75 (1.74 - 1.75) 1.77 (1.76 - 1.78) 2.24 (2.23 - 2.25)

EARS C1 7.16 (7.01 - 7.31) 0.95 (0.95 - 0.95) 1.54 (1.53 - 1.55) 1.69 (1.68 - 1.70) 1.25 (1.24 - 1.26)

EARS C2 8.85 (8.67 - 9.04) 0.93 (0.93 - 0.93) 1.57 (1.56 - 1.58) 1.68 (1.67 - 1.69) 1.90 (1.89 - 1.91)

EARS C3 7.74 (7.59 - 7.91) 0.94 (0.94 - 0.94) 1.25 (1.25 - 1.26) 0.25 (0.25 - 0.25) 1.73 (1.72 - 1.74)

OutbreakP 62.32 (61.10 -

63.56)

0.38 (0.38 - 0.38) 1.63 (1.62 - 1.64) 2.00 (1.98 - 2.01) 3.23 (3.21 - 3.25)

k1 0 Ref (-) Ref (-) Ref (-) Ref (-) Ref (-)

2 0.99 (0.98 - 0.99) 1.00 (1.00-1.00) 0.99 (0.99 - 0.99) 0.99 (0.99 - 0.99) 0.99 (0.99-0.99)

3 0.98 (0.98 - 0.99) 1.00 (1.00-1.00) 0.98 (0.98 - 0.98) 0.98 (0.98 - 0.98) 0.98 (0.98-0.98)

5 0.98 (0.97 - 0.98) 1.01 (1.01-1.01) 0.97 (0.97 - 0.97) 0.97 (0.97 - 0.97) 0.96 (0.96-0.97)

10 0.96 (0.96 - 0.96) 1.01 (1.01-1.01) 0.94 (0.94 - 0.94) 0.93 (0.93 - 0.94) 0.93 (0.93-0.93)

k2 1 - - Ref (-) Ref (-) Ref (-) Ref (-)

2 - - 1.00 (1.00 - 1.00) 1.32 (1.32 - 1.32) 1.30 (1.30 - 1.30) 1.23 (1.23 - 1.23)

3 - - 1.00 (1.00 - 1.00) 1.63 (1.63 - 1.64) 1.64 (1.64 - 1.64) 1.47 (1.47 - 1.48)

4 - - 1.00 (1.00 - 1.00) 1.93 (1.93 - 1.94) 2.01 (2.00 - 2.01) 1.73 (1.73 - 1.73)

5 - - 1.00 (0.99 - 1.00) 2.22 (2.21 - 2.22) 2.39 (2.38 - 2.40) 1.99 (1.98 - 1.99)

6 - - 0.99 (0.99 - 0.99) 2.47 (2.47 - 2.48) 2.76 (2.75 - 2.77) 2.23 (2.22 - 2.24)

7 - - 0.99 (0.99 - 0.99) 2.69 (2.68 - 2.70) 3.10 (3.09 - 3.11) 2.44 (2.44 - 2.45)

8 - - 0.99 (0.99 - 0.99) 2.85 (2.84 - 2.86) 3.37 (3.36 - 3.39) 2.62 (2.61 - 2.63)

9 - - 0.99 (0.99 - 0.99) 2.95 (2.94 - 2.95) 3.57 (3.56 - 3.58) 2.75 (2.74 - 2.76)

10 - - 0.99 (0.99 - 0.99) 2.96 (2.95 - 2.97) 3.67 (3.65 - 3.68) 2.82 (2.81 - 2.83)

Trend No (β = 0) Ref (-) Ref (-) Ref (-) Ref (-) Ref (-)

Yes (β 6¼ 0) 2.75 (2.74 - 2.76) 0.84 (0.84 - 0.84) 1.17 (1.16 - 1.17) 1.28 (1.28 - 1.28) 1.20 (1.20 - 1.20)

(Continued)
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increased when the baseline frequency (θ in Eq (1)) increased. Only the periodic negative

binomial GLM presented a specificity as good as that of the improved Farrington method

(specificity ratio = 1.00).

• The adjusted POD ratios significantly decreased when past outbreak amplitude and duration

(k1) increased, which is logical. They increased when current outbreak amplitude and dura-

tion (k2) increased, which is also normal. POD was higher for time series with secular trends

which can be explained by the positive trend. POD decreased when there was an annual or a

biannual seasonality (respective POD ratio = 0.97 and 0.92). Only the highest dispersion

value (θ = 5) had an influence on POD (adjusted POD ratio = 1.09). Bayes 1, 2 and 3,

CUSUM variants and the GLR Poisson method presented the highest POD ratios, from 1.75

(GLR Poisson) to 1.95 (CUSUM GLM). Any method was less able to detect an outbreak than

the improved Farrington algorithm.

• POD1week presented results that were similar to those of POD. Adjusted POD1week ratios

were significantly lower than those of POD for EARS C3 (0.25 versus 1.25), for CDC (0.55

versus 1.04) and for GLR negative binomial (1.17 versus 0.87). Other methods presented

ratios for POD1week that were similar to or greater than those of POD.

• Finally, similar results were observed for sensitivity and for POD. Bayes 2 and 3 methods,

OutbreakP, RKI 3, CUSUM variants and the GLR Poisson method presented the highest

Table 3. (Continued)

Covariates Categories/values FPR ratio? (CI

95%)

Specificity ratio? (CI

95%)

POD ratio? (CI

95%)

POD1week ratio? (CI

95%)

Sensitivity ratio? (CI

95%)

Seasonality

(m)

No (m = 0) Ref (-) Ref (-) Ref (-) Ref (-) Ref (-)

Annual (m = 1) 1.06 (1.06 - 1.06) 0.99 (0.99 - 0.99) 0.97 (0.97 - 0.97) 0.98 (0.98 - 0.98) 0.97 (0.97 - 0.97)

Biannual (m = 2) 1.13 (1.12 - 1.13) 0.98 (0.98 - 0.98) 0.92 (0.92 - 0.92) 0.93 (0.93 - 0.93) 0.92 (0.92 - 0.92)

Dispersion (ϕ) 1 Ref (-) Ref (-) Ref (-) Ref (-) Ref (-)

1.1 1.02 (1.02 - 1.02) 1.00 (1.00 - 1.00) 1.00 (1.00 - 1.00) 1.00 (1.00 - 1.00) 1.00 (1.00 - 1.00)

1.2 1.04 (1.04 - 1.04) 1.00 (1.00 - 1.00) 1.00 (1.00 - 1.00) 1.00 (1.00 - 1.00) 0.99 (0.99 - 0.99)

1.5 1.07 (1.06 - 1.07) 0.99 (0.99 - 0.99) 0.99 (0.99 - 1.00) 1.00 (1.00 - 1.00) 0.98 (0.98 - 0.98)

2 1.08 (1.08 - 1.08) 0.99 (0.99 - 0.99) 0.99 (0.99 - 0.99) 1.00 (1.00 - 1.00) 0.98 (0.97 - 0.98)

3 1.08 (1.08 - 1.08) 0.98 (0.98 - 0.98) 0.98 (0.98 - 0.98) 1.01 (1.01 - 1.01) 0.98 (0.98 - 0.99)

5 1.07 (1.07 - 1.08) 0.97 (0.97 - 0.97) 1.09 (1.09 - 1.09) 1.16 (1.16 - 1.17) 1.11 (1.11 - 1.11)

Frequency (θ) -2 (0, 14 cases) Ref (-) Ref (-) Ref (-) Ref (-) Ref (-)

0.1 (1.1 cases) 1.14 (1.14 - 1.14) 0.99 (0.99 - 0.99) 1.01 (0.93 - 0.94) 1.03 (1.03 - 1.03) 0.95 (0.94 - 0.95)

0.5 (1.65 cases) 1.18 (1.18 - 1.19) 0.98 (0.98 - 0.98) 1.01 (1.01 - 1.01) 1.04 (1.04 - 1.04) 0.94 (0.94 - 0.94)

1.5 (4.48 cases) 1.27 (1.25 - 1.28) 0.97 (0.97 - 0.98) 1.02 (1.02 - 1.03) 1.07 (1.07 - 1.08) 0.92 (0.92 - 0.93)

2.5 (12.18 cases) 1.22 (1.19 - 1.26) 0.98 (0.98 - 0.98) 1.03 (1.03 - 1.04) 1.10 (1.10 - 1.10) 0.90 (0.89 - 0.90)

3.75 (42.52 cases) 0.88 (0.84 - 0.93) 1.02 (1.02 - 1.02) 1.04 (1.04 - 1.04) 1.10 (1.10 - 1.10) 0.84 (0.84 - 0.84)

5 (148.41 cases) 0.38 (0.34 - 0.42) 1.13 (1.13 - 1.13) 1.03 (1.03 - 1.03) 1.04 (1.04 - 1.04) 0.77 (0.77 - 0.77)

? Each ratio was statistically significant with p� 10e − 3.

https://doi.org/10.1371/journal.pone.0181227.t003
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sensitivity ratios, from 2.04 (RKI 3) to 3.89 (CUSUM GLM). As observed in the POD model,

any method was less able to detect an outbreak than the improved Farrington algorithm.

Estimation from the multivariate regression models to explain PPV and NPV are presented

in S3 Table.

Discussion

We presented a systematic assessment of the performance of 21 outbreak detection algorithms

using a simulated dataset. One advantage of a simulation study for outbreak detection methods

benchmarking is the a priori knowledge of the occurrence of outbreaks, which enables the

developpment of a real “gold standard”. Some authors have already proposed that simulation

studies be used to assess outbreak detection methods [18, 19, 23], and others have suggested

adding simulated outbreaks to real surveillance data baselines [16, 24, 25], but without propos-

ing a systematic assessment of the performance of a broad range of outbreak detection meth-

ods. Choi et al. [20] proposed such a study design based on the daily simulation method

proposed by Hutwagner et al. [18] but do not study the influence of past outbreaks or time

series characteristics (frequency, variance, secular trends, seasonalities, etc.), on methods

performance.

The simulated dataset we used to perform our study is large enough to include the consider-

able diversity of time series observed in real surveillance systems. We also simulated a high

diversity of outbreaks in terms of amplitude and duration. In our opinion, this simulated data-

set presents a high representativeness of real weekly surveillance data. To extend our results to

daily surveillance data, it should be necessary to perform a similar study with daily surveillance

data. These characteristics of the simulated dataset enabled us to propose simple intrinsic per-

formance indicator estimations such as FPR and POD and sensitivity and specificity to com-

pare the performance of the evaluated methods. Furthermore, this allows us to compare our

results to other studies based on the same dataset. Negative predictive value and positive pre-

dictive value are proposed as operational indicators for decision making when an alarm is trig-

gered, or not triggered, by an algorithm. A benefit of the addition of outbreaks to the baseline

weeks is that outlier removal strategies considered by many authors may be objectively tested

and evaluated. One limitation in the simulation process was the fact that only increasing secu-

lar trends were used. Increasing secular trends would facilitate outbreak detection, while

decreasing trends would hamper it. Furthermore, our study was designed based on weekly sur-

veillance, while syndromic surveillance systems are most often daily systems. In daily surveil-

lance time series, other seasonalities such as the “day of the week” effect need to be taken into

account, which is not the case in our study.

The performance of the evaluated methods was only considered from a general perspective,

in order to detect outbreaks in a large number of polymorphic weekly-based time series. In a

pragmatic approach, it seems very difficult to adapt the tuning parameters of these methods

for every time series. In France, public health agencies, such as the French National Public

Health Agency (Santé publique France), the French Agency for Food, Environmental and

Occupational Health Safety (Anses) and the French Armed Forces Center for Epidemiology

and Public Health (CESPA) have deployed computer-supported outbreak detection systems in

traditional or syndromic surveillance contexts [42–45]. They monitor a broad range of time

series on a daily or weekly basis without, however, having rigorously evaluated the algorithms

implemented. In the same way, the performance of the methods varied according to different

baseline profiles depending on trend, seasonality, baseline frequency and overdispersion. Even

if similar meta-models were already proposed by Buckeridge et al. for example [40], an original

approach was to compare performance indicators adjusted for these parameters in a regression
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model. As expected, the adjusted performance of the 21 methods was penalized by increasing

amplitude and duration in past outbreaks and by annual or biannual seasonality. Conversely,

performance was better for increasing amplitude and duration in current outbreaks to be

detected. More generally, the methods’ performance was highly dependent on simulation tun-

ing parameters.

We proposed various measures to monitor the performance of outbreak detection methods.

False positive rate (FPR) and probability of detection (POD) were proposed by Noufaily et al.

[9]. We proposed an observation-based sensitivity measure and an event based sensitivity

(POD). The concept of sensitivity based on alerting in each observation period is not applica-

ble in some applications because signals of interest are intermittent and multimodal and may

even be interpreted as multiple events. Many of the algorithms are based on the likelihood of

single-week observations independent of recent ones, but CUSUMs are not, and the large sen-

sitivity advantage in the CUSUMs methods, diminished for POD and POD1week, may be a

result of the way the outbreak effects are modeled. By contrast, the implementation of the

POD measure is uniformly applicable. Public health response to an outbreak depends on its

early detection. In the POD definition, an outbreak was considered to be detected even if the

first statistical alarm was issued during its last week. With the aim of estimating early detection

performance, we also proposed POD during the first week, which cannot be considered alone,

because even if it is done belatedly, an outbreak needs to be detected by the methods. While

POD1week was an indicator of a method’s ability to detect an outbreak early, we did not pro-

pose any measure of timeliness like Salmon et al. [28] or Jiang et al. [45]. This topic could be

further explored in another study. To give some insight on the speed of detection, we calcu-

lated it for the Improved Farrington algorithm and the CUSUM GLM Rossi algorithm. On

average, on the overall dataset, it took 1.23 weeks for the Improved Farrincton method to

detect an outbreak or 1.16 weeks for the CUSUM GLM Rossi method.

No method presented outbreak detection performances sufficient enough to provide reli-

able monitoring for a large surveillance system. Methods which provide high specificity or

FPR, such as the improved Farrington or CDC algorithms, are not sensitive enough to detect

the majority of outbreaks. These two algorithms could be implemented in systems that moni-

tor health events to detect the largest outbreaks with the highest specificity.

Conversely, methods with the highest sensitivity and able to detect the majority of out-

breaks–Bayes 3 or CUSUM GLM Rossi for example–produced an excessive number of false

alarms, which could saturate a surveillance system and overhelm an epidemiologist in charge

of outbreak investigations. As a screening test in clinical activity, the aim of an early outbreak

detection method is to identify the largest possible number of outbreaks without producing

too many false alarms.

The performances presented in this paper should be interpreted with caution as they

depend both on tuning parameters and on the current implementation of the methods in the

R packages. Packages evolve with time and their default parameters may also change. So this

work based on R available packages, may be viewed as a starting point for researchers to

enhance the comparison of methods and/or to optimize the tuning according to their data.

Since no single algorithm presented sufficient performance for all scenarios, combinations of

methods must be investigated to achieve predefined minimum performance. Other perfor-

mance criteria should be proposed in order to improve the choice of algorithms to be imple-

mented in surveillance systems. Therefore, we suggest that a study of the detection period

between the first week of an outbreak and the first triggered alarm be conducted.
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