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Vaccine adjuvants to engage the
cross-presentation pathway

Woojong Lee and M. Suresh*

Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
Adjuvants are indispensable components of vaccines for stimulating optimal

immune responses to non-replicating, inactivated and subunit antigens.

Eliciting balanced humoral and T cell-mediated immunity is paramount to

defend against diseases caused by complex intracellular pathogens, such as

tuberculosis, malaria, and AIDS. However, currently used vaccines elicit strong

antibody responses, but poorly stimulate CD8 cytotoxic T lymphocyte (CTL)

responses. To elicit potent CTL memory, vaccines need to engage the cross-

presentation pathway, and this requirement has been a crucial bottleneck in

the development of subunit vaccines that engender effective T cell immunity.

In this review, we focus on recent insights into DC cross-presentation and the

extent to which clinically relevant vaccine adjuvants, such as aluminum-based

nanoparticles, water-in oil emulsion (MF59) adjuvants, saponin-based

adjuvants, and Toll-like receptor (TLR) ligands modulate DC cross-

presentation efficiency. Further, we discuss the feasibility of using carbomer-

based adjuvants as next generation of adjuvant platforms to elicit balanced

antibody- and T-cell based immunity. Understanding of the molecular

mechanism of DC cross-presentation and the mode of action of adjuvants

will pave the way for rational design of vaccines for infectious diseases and

cancer that require balanced antibody- and T cell-based immunity.
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Introduction

Although highly purified recombinant subunits from pathogens are safe, they are

poorly immunogenic due to their inability to replicate, engage multiple pathways of

innate immune signaling and persist, which necessitates the use of adjuvants to augment

immunogenicity and program durable immunity (1–4). Protection afforded by most

effective vaccines heavily relies on elicitation of neutralizing antibodies and currently

used adjuvants are less effective in inducing strong CD4 and CD8 T cell-based immunity

(5). For diseases that require both neutralizing antibodies and T cell immunity, such as

AIDS, tuberculosis, and malaria, it will be crucial to incorporate immune adjuvants that

also provoke potent T-cell immunity (6–8). To trigger robust CD8 T cell immunity by
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vaccines consisting of subunit antigens, it is necessary to engage

the antigen processing pathway of cross-presenting dendritic

cells. Currently, very few adjuvants used in licensed vaccines in

the United States are known to elicit potent CTL responses.

Antigen presentation is a key regulatory process and

presents a target mechanism for potentiating adaptive immune

responses against extracellular and intracellular pathogens.

During an immune response, antigen-presenting cells (APCs)

endocytose foreign antigens, process, digest them, and load

digested peptides derived from antigens to either major

histocompatibility complex (MHC) class I or class II molecules

(9–11). Typically, internalized antigens are degraded by

endolysosomal compartments and peptides are loaded on to

MHC II molecules for presentation to CD4 T cells via endocytic

pathway. Based on this paradigm, exogenous antigens and

antigens derived from pathogens that replicate in the

endosomes are processed in the lysosomes and presented to

CD4 T cells. By contrast, cytosolic antigens that are typically

derived from endogenous sources are processed by cytosolic

proteasomes and antigenic peptides are loaded on to MHC I

molecules. Thus, depending upon the subcellular localization of

antigens (i.e. cytosolic versus endocytic compartment), antigens

are routed to two distinct protein processing pathways for

loading peptides onto MHC-I or MHC-II molecules. There are

exceptions to the aforementioned paradigm, because DCs in

particular can process and present internalized antigens to both

CD4 and CD8 T cells by cross-presentation. This process is vital

because it allows the initiation of CTL immunity when DCs are

not directly infected with cytosolic intracellular pathogens, such

as some viruses (12–14). Significant to vaccine development, DC

cross-presentation is also critical to stimulate cytotoxic T-cell

mediated immunity by subunit vaccines. Hence, understanding

the molecular mechanisms of DC cross-presentation is

important because it stimulates an important facet of immune

defense against intracellular pathogens that are not effectively

controlled by antibodies or evade recognition by antibodies. In

this review, we will focus on recent insights into molecular

mechanisms of cross-presentation of exogenous antigens and

the mechanism of action of clinically relevant vaccine adjuvants

that are known to stimulate CTL immunity.
Cross-presenting DC subsets

DC subsets can be categorized into subpopulations based on

their ontogenies, gene signatures, and functions (15, 16). Several

murine and human DC subsets are capable of cross-presenting

exogenous antigens, but only some can efficiently cross-prime

CD8 T cells. Among them, Conventional DCs (cDCs) possess all

the necessary attributes for efficient cross-presentation. In mice,

cDCs are broadly classified as migratory and lymphoid-resident

DCs. Migratory conventional DCs are localized in non-

lymphoid tissues and categorized into CD103−CD11b+ or
Frontiers in Immunology 02
CD103+CD11b− subsets. Migratory cDCs internalize antigens

and migrate to the draining lymph nodes for cross-presentation

to T cells. On the other hand, lymphoid organs, such as lymph

nodes and spleen harbor CD8a+ CD11b− or CD8− CD11b+

resident cDCs. In both mice and humans, cDCs can be

classified as cDC1 and cDC2. The cDC1 subset is present in

both lymphoid and non-lymphoid tissues and expresses high

levels of a class of chemokine receptors termed X-C Motif

Chemokine Receptor 1 (XCR1) (17–19). Upon antigen

recognition in the context of cDC1, CD8 T cells secrete

copious amounts of XC-chemokine ligand 1 (XCL1) that

facilitates differentiation of effector cytotoxic T cells (20). cDCs

also express high levels of RAC2, a GTPase that facilitates the

assembly of NOX2 complex in the phagosomes, which in turn

leads to high intra-phagosomal ROS and alkalinization of

phagosomes and delayed antigen degradation within

phagosomal compartments (21–23). Injection of exogenous

antigen such as horse cytochrome c selectively induces

apoptosis in CD8a+ cDCs, suggesting that CD8a+ cDCs are

proficient in transferring exogenous antigens into cytosol

compared to other DC subsets (24). Unlike other DC subsets,

cDC1 also express high levels of genes that are critical for MHC-

I pathway (25). Further, mice deficient in WDFY Family

Member 4 (WDFY4) or Basic Leucine Zipper ATF-Like

Transcription Factor 3 (BATF3) exhibit defects in their ability

to prime virus-specific CD8+ T cells in vivo or to induce tumor

rejection, suggesting that cDC1 is the major cross-presenting DC

subset in mice in vivo (26, 27). The cDC2 subset expresses same

levels of CD11c and MHC class II compared to cDC1. However,

cDC2s express generally higher levels of CD4, CD11b and Sirpa,
but they do not express cDC1 markers, such as DNGR-1, XCR1,

and CD8a (28, 29). The homeostasis of cDC2 is also dependent

on the transcription factor called IRF4, rather than Batf3 (30,

31). In terms of functions, cDC2 is important for presenting

soluble antigens to CD4+ T cells and initiating TH2 immune

responses to allergens and extracellular pathogens, as well as

inducing ILC3 and TH17 immune responses. In sum, murine

cDC1 possesses superior capacities to cross-present exogenous

antigens to naïve CD8 T cells, compared to other DC subsets.

Extensive review of literature on cross-presentation by

different human DC subsets has been reported elsewhere (32).

Briefly, in humans, DC subsets are categorized as Blood DC

antigen 1 (BDCA1)+ DCs (CD1c+ DCs), BDCA3+ DCs

(CD141+ DCs), monocyte-derived DCs (moDCs), and

plasmacytoid DCs (pDCs). The BDCA1+ and BDCA3+ subsets

are thought to be the human counterparts of murine CD8a−

(CD11b+) and CD8a+ DCs, respectively. While it is well

established that murine cDC1 is superior to cDC2 in terms of

their ability to cross-present exogenous antigens both in vivo and

in vitro, whether or how different human DC subsets mediate

DC cross-presentation remains elusive. For example, all DC

subsets, including cDC1 (BDCA3+), cDC2 (BDCA1+), pDCs,

and moDCs are capable of cross-presenting exogenous antigens
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(33–38). In contrast to murine CD11b+ CD8a-DCs, BDCA1+

DCs can cross-present all sources of extracellular antigens,

including soluble antigens, cell-associated antigens, and

peptides (36, 38). Importantly, addition of saponin adjuvants

or TLR ligands strongly augmented DC cross-presentation in

BDCA1+ DCs (34, 39). Additionally, studies with in vitro

differentiated (with GM-CSF and IL-4) human mo-DCs report

variable results regarding their ability to effectively cross-present

exogenous antigens (40–42). For example, cell-associated viral

antigens could be effectively cross-presented by human mo-DCs

in most studies. However, their ability to cross-present soluble

proteins varied depending on the source of soluble proteins,

adjuvant formulations and maturation stimuli in vitro. Further,

Tang-Huau et al. reported that both in vitro- and in vivo-

generated human moDCs cross-present using a vacuolar

pathway (43). However, only ascites mo-DCs provide co-

stimulatory signals to induce effector cytotoxic CD8+ T cells.

Therefore, different immune subsets, especially in humans, are

likely to engage different routes of DC cross-presentation, which

can be harnessed by therapeutic vaccinations, in conditions,

such as cancer. Future studies are warranted to investigate

mechanisms to engage DC subsets to augment DC cross-

presentation following prophylactic or therapeutic vaccinations.
Molecular mechanisms of dendritic
cell cross-presentation

There are excellent reviews focused on mechanisms of cross-

presentation (9, 44, 45). Hence, in this review, we will focus on
Frontiers in Immunology 03
major concepts of DC cross-presentation that is relevant to

mechanism of action of vaccine adjuvants.
a) DC cross-presentation: vacuolar
pathway

Depending on the intracellular localization of antigens,

cross-presentation can occur by either vacuolar pathway or

cytosolic pathway. In the vacuolar pathway, exogenous

antigens are endocytosed, retained in the phagosomal

compartment, and further digested and trimmed by

residential cysteine protease cathepsins, such as Cathepsin S

(Figure 1) (46, 47). Similar to action of ERAP1 and ERAP2 in

conventional MHC-I antigen presentation, endosome-

localized insulin regulated aminopeptidase (IRAP) is

recruited to the phagosomes to facilitate the formation of

MHC-I complexes by digesting antigenic peptides generated

within the endocytic (IRAP+, Rab14+) compartment (48, 49).

In the absence of IRAP, phagosomal maturation is accelerated,

leading to more degradative and microbicidal phagosomes

(50). While it is widely believed that cytosolic proteasome is

a key component in cytosolic pathway, recent work suggests

that active proteasomes within cross-presenting cell

phagosomes can generate intraphagosomal proteasome-

generated peptides using TAP-independent mechanism (51).

Hence, antigenic peptides derived from exogenous antigens

can be directly digested by active proteasomes in early

phagosomes, in addition to residential cathepsins and
FIGURE 1

Schematic Overview of the Vacuolar Pathway of Cross-presentation. The internalized antigens are processed by residential cathepsin (cathepsin
S; Cat S), Insulin regulated aminopeptidase (IRAP), or proteasomes in the Rab14+ and IRAP+ phagosomes. The processed peptides are loaded
onto MHC-I molecules derived from cellular membrane. The peptide-MHC I complexes (pMHC-I) are trafficked back to the plasma membrane
by recycling endosomes, which are mediated by kinesin-1 and microtubules.
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aminopeptidases within phagosomes. Once antigenic peptides

are generated, the peptides are loaded onto MHC I originated

from recycling endosomes, leading to the activation of CD8 T

cells. In a related study, Stahl et al. linked Polylactide-co-

glycolide (PLGA) and polyethylene glycol (PEG) and

exogenous antigen (OVA) with substrates of cathepsin S.

This study found that PLGA-PEG-OVA linked with

cathepsin S substrates resulted in enhanced cross-

presentation mediated by residential cathepsins in DCs (52).

However, such delivery system also appears to engage cytosolic

pathway, as further evidenced by enzyme-triggered antigen

release from endosomes into cytosol.

To gain better insight into the dynamics of recycling

endosomes, Belabed et al. examined whether a motor protein,

kinesin-1 promoted antigen cross-presentation through the

scission of tubulations from early endosomes in DCs (53). In

the absence of kinensin-1, antigen degradation, the

downregulation of endosomal pH, and MHC-I recycling were

severely impaired in DCs, resulting in reduced DC cross-

presentation. This suggests that kinesin-1 may act as a vital

checkpoint that controls antigen degradation, MHC-I recycling,

and endosomal pH for optimal DC cross-presentation by the

vacuolar pathway.
Frontiers in Immunology 04
b) DC cross-presentation:
cytosolic pathway

In the cytosolic pathway, exogenous antigens are first

endocytosed into phagosomes, translocated to the cytoplasm,

and subsequently degraded by cytosolic proteasomes (Figure 2).

First, lysosome-related organelles (LRO) promote the delivery of

NADPH oxidase complex (NOX2) to phagosomes by a process

mediated by Rab27a and Rac2 (21, 54, 55). NOX2 complex in the

phagosomes generates free radicals (reactive oxygen species,

ROS), thus increasing pH, which in turn contributes to the

alkaline and less proteolytic environment within phagosomes

(56). Particularly, maintenance of alkaline phagosome

environment is critical for delaying antigen degradation and

improving the efficiency of DC cross-presentation. The partially

digested antigens are subsequently translocated from

phagosomes into cytosolic compartment for further processing

by cytosolic proteasomes.

Excessive degradation of antigens mediated by lysosomal

proteases negatively affects the efficiency of cross-presentation to

CD8 T cells but promotes MHC-II-presentation to CD4 T cells

(57, 58). Consistent with this idea, Samie et al. showed that

prolonged stimulation with LPS elevates expression of the
FIGURE 2

Schematic Overview of the Cytosolic Pathway of Cross-presentation. Antigens are internalized into the alkaline phagosomes by a process that is
tightly regulated by various proteins, such as NADPH oxidases 2 (NOX2), Aquaporin 3(AQP3), and Rab39a. NOX2 complexes are recruited to the
phagosomes by lysosome-related organelle (LRO) mediated by Rab27a and Rac Family Small GTPase 2 (Rac2). ER-Golgi intermediate
compartment (ERGIC) derived from endoplasmic reticulum (ER) deliver various intracellular components required for cytosolic pathway, such as
Rab39a, Transporter Associated With Antigen Processing (TAP), and SEC22 Homolog B 61(Sec61), which is coordinated by sec22b. The antigens
are unfolded by Gamma-interferon-inducible lysosomal thiol reductase (GILT), which will be released into cytosol, presumably by leaky
membranes effected by sec61, or heat shock protein (HSP90). Partially unfolded peptides will be further processed by cytosolic proteasomes
and transported back to the phagosomes by TAP. The antigenic peptides are processed by IRAP, so that they can be readily loaded onto MHC-I
molecules to form pMHC-I molecules are either derived from endolysosomes derived from ER, which is mediated by CD74, or recycled from
endosomal recycling component (ERC) from plasma membrane.
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transcription factor EB (TFEB), which triggers lysosomal

maturation and activation of lysosomal proteases (59). Later

studies by Bretou et al. have mechanistically dissected the

regulatory role of TFEB-TRPML1 (Transient Receptor

Potential Mucolipin 1) axis in lysosomal calcium channels, DC

migration and motility in vivo (60). The p38a signaling pathway

in DCs has essential roles, as it tightly regulates DC maturation

and production of pro-inflammatory cytokines, including IL-6,

IL-12, and TNF-a (61–63). In accordance with this concept,

Zhou et al. found that deletion of p38a in cDCs resulted in

impaired cross-presentation, thereby facilitating antigen

degradation, and reducing the production of IL-12p40 and IL-

12p70 (64). As lysosomal acidity increases in DCs, the efficiency

of cross-presentation wanes due to the premature state of

phagosomes. In particular, p38 likely acts as a negative

regulator of TFEB-mediated lysosomal biogenesis, especially in

microglia (65–67). Hence, careful modulation of lysosomal

activity mediated by p38-TFEB signaling axis is also likely

critical in determining the fate of an internalized antigen and

in regulating the balance between the two exogenous antigen-

presenting pathways in DCs.

How antigens trapped in the endosomes gain access to the

cytosol remains controversial, but it is widely believed that

translocation of antigens from phagosomes into cytosol can

occur via 1) translocon/transporter proteins, or 2) chemical-

induced membrane damage. For transporter-mediated antigen

leakage, disulfide bonds of antigens are reduced and unfolded by

GILT (Gamma-interferon-19 inducible lysosomal thiol

reductase) or Hsp90, respectively (68, 69). Subsequently,

unfolded polypeptides can escape from phagosomes into

cytosol by ER-associated degradation (ERAD) member, sec61,

which are refolded by Hsp90. To test that Sec61 is vital for

endosomal leakage of antigen, using a Sec61-specific

intracellular antibody, Zehner et al. trapped Sec61 in the ER

and prevented its transport to endosomes, thereby blocking

antigen translocation and cross-presentation (70). Expression

of ER intrabody inhibited antigen translocation and cross-

presentation, which demonstrated that endosomal Sec61

mediates antigen transport across endosomal membranes.

Moreover, the authors showed that the recruitment of Sec61 to

endosomes, and hence antigen translocation and cross-

presentation are dependent on DCs’ activation by Toll-like

receptor (TLR) ligands. However, Grotzke et al. recently

reported that a chemical inhibitor of Sec61, mycolactone, did

not influence antigen dislocation from the cytosol, but rather

severely inhibited protein import into the ER (71). While both

studies have shown that sec61 blockade negatively affects DC

cross-presentation, Sec61’s role in regulating antigen leakage is

likely more complex.

By contrast, for chemical-induced membrane damage, ROS

and lipid peroxides create leaky membranes in the phagosomes.
Frontiers in Immunology 05
Using elegant sets of translocation assays with various model

antigens, Dingjan et al. demonstrated that pharmacological

inhibition or genetic knockdown of NOX2 reduced

intracellular levels of lipid peroxides, leading to reduced

leakage of antigen from endosomes and dampened cross-

presentation (72). A later study also found that VAMP8-

mediated NOX2 recruitment to endosomes is necessary for

antigen release from phagosomes (73). Alteration of lipid

structure presumably disrupts endosomal membrane integrity,

thereby facilitating antigen translocation to the cytoplasm. Nalle

et al. demonstrated that hydrogen peroxide-transporting

channel aquaporin-3 (AQP3) is essential for H2O2 entry into

the endosomes; subsequently H2O2 affects lipid peroxidation

and endosomal antigen leakage (74). This, in turn, leads to

phagosomal membrane rupture, releasing antigens into the

cytoplasm that can be cross-presented by MHC-I. In recent

research that examined the physiological relevance of antigen

leakage mediated by ROS in vivo, stimulation of DCs by

complement protein C5a augmented ROS-mediated antigen

leakage resulting in efficient DC cross-presentation in the

Peyer’s patches (75). In the same study, the authors further

demonstrated that CD8 T cell immunity engendered by C5a

signaling provides protective immunity against oral Listeria

infection. Hence, C5a signaling appears to play a predominant

role in eliciting DC cross-presentation thereby augmenting ROS

production in vivo, at least in the context of intestinal pathogens.

Moreover, the polymer polyethyleneimine (PEI)-based

platform has been used to exploit the proton sponge

mechanism to induce osmotic imbalance within phagosomes.

Osmotic imbalance triggers rupture of the antigen-containing

phagosomes, and antigen leakage into the cytoplasm (76, 77).

High-throughput screening of small molecules recently

identified two compounds (prazosin and tamoxifen) that can

increase endosome-to-cytosol import, which enhanced anti-

tumor immunity (78). Another study suggested that Alum-

linked antigen augmented cross-presentation stimulated potent

effector T cell responses, boosted tumor-infi ltrating

lymphocytes, and decreased the Treg/CD8 ratio (79). Hence,

therapeutic development of small molecules or chemical

modification of the antigen that can harness endosome-to-

cytoplasm import may be used as an immunotherapeutic

strategy to enhance CD8 T cell immunity through augmenting

DC cross-presentation. More details on antigen export to the

cytosol during cross-presentation are extensively reviewed

elsewhere (80), but in summary, conventional antigen leakage

from endosomes can be accomplished by transporter proteins or

chemical-induced membrane damage.

As phagosomes undergo maturation, they directly interact

with ER at their membranes to exchange various molecules that

promote their maturation (81). Recruitment of specific sets of

ER and ER-Golgi intermediate compartment (ERGIC)
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components to phagosomes is mediated by the ER-resident

SNARE Sec22b. ERGIC may contain protease inhibitors, such

as Cystatin C and lipid bodies (LB), which can directly regulate

phagosomal acidity and proteolytic activity in phagosomes (82,

83). Knock-down of Sec22b in BMDCs by shRNA dampens

antigen leakage from endosomes into the cytosol. The follow-up

study also generated a conditional DC-specific mutation in

the sec22b gene and further interrogated the intrinsic role of

sec22b in DCs. In this study, the authors discovered that sec22b

is vital for eliciting CD8 T cell responses to dead cells and for

eliciting effective anti-tumor immune responses during anti–

PD-1 treatment in mice (84). However, Wu et al. reported that

sec22b plays a dispensable role in cross-presenting antigens both

in vivo and in vitro (85). Notably, reduced DC cross-

presentation was attributed to off-target effects of the shRNA.

Interestingly, recent work by Rock group suggests that Rab39a

acts as a regulatory transport protein, and promotes the

recruitment of NOX2 complex and sec22 on mature

phagosomes, leading to an increase in ROS in the phagosomes

(86). This, in turn, results in phagosome alkalinization and

delaying antigen processing. Rab39a also facilitates the

generation of antigenic peptide-loaded MHC-I complexes in

phagosomes. Therefore, in conjunction with Rab39a, sec22b

appears to play a vital role in shuttling different cellular

components required for cytosolic pathway from ER to

the phagosomes.

Calcium signaling is linked to various DC effector functions,

such as phagocytic capacities, maturation, and migration (87,

88), but the exact regulatory immune checkpoint that governs

calcium signaling and cross-presentation has not been well

established. Nunes-Hasler et al. identified STIM1 (store-

operated-Ca2+-entry regulator) as an important checkpoint

for effective DC cross-presentation (89). The absence of

STIM1 reduced the efficiency of DC cross-presentation by

impairing phagosomal proteolysis, IRAP recruitment, and

fusion of phagosomes. This suggests that the delivery of

endolysosomal enzymes to phagosomes mediated by STIM1-

dependent calcium signaling may be required for effective DC

cross-presentation. Uncoordinated 93 homolog B1 (UNC93B1)

has been implicated in cross-presentation; UNC93B1 is activated

by TLR triggering and controls the intracellular trafficking of

TLRs from the ER toward endosomes (90–92). Another report

by Maschalidi et al. further showed that UNC93B1 (an ER

protein crucial for regulating intracellular TLR signaling)

induces STIM1 oligomerization, which facilitates calcium ion

efflux from ER into cytosol to induce DC cross-presentation

(93). Using UNC93B1 mutants that cannot oligomerize with

STIM1, authors further demonstrated that less calcium ion

influx leads to less antigen degradation and phago-lysosomal

fusion. Consequently, less antigens are exported from

phagosomes into cytosol, leading to deficient DC cross-

presentation. At a biochemical level, Wang et al. demonstrated
Frontiers in Immunology 06
that UNC93B1 acts a chaperone that facilitates the formation of

resting STIM1 dimers under calcium ion depletion (94). As a

result, the interaction between Orai1 (Ca2+ channels)-STIM1

results in an influx of calcium ions from extracellular milieu into

the cytoplasm.

Translocated antigens are further digested into antigenic

peptides by cytosolic proteasomes. The antigenic peptides are

transported into nascent phagosomes by TAP transporters,

which are further trimmed by IRAP, so that the peptides are

ready to be loaded onto MHC I molecules. For cytosolic

pathway, the primary source of MHC-I is the endosomal

recycling component (ERC) marked by Rab11a, Rab23,

VAMP3, and VAMP8 (95–97). Here, MHC I from the cell

surface could be recycled by ERC and transported towards cross-

presenting phagosomes using endocytosis. As another source of

MHC I, endolysosomes mediated by CD74, aid in loading

exogenous peptides to the phagosomes (98).

Multiple studies also demonstrate that cytosolic pathway can

occur independently of TAP (99–105). Using TAP-deficient

DCs, Merzougui et al. showed that TAP plays a vital role in

recycling MHC I molecules to the phagosomes, and antigenic

peptides generated by cytosolic proteasomes are transported to

the phagosomes by an alternative transporter (102). In later

studies, they found that the generation of melanoma peptide

(PMEL209-217) requires cytosolic proteasomes for cross-

presentation, but not TAP or tapasin for peptide loading on

MHC-I molecules (101). This could be explained by two possible

mechanisms. First, not all peptides require TAP transporters for

translocation to the phagosomes, but they can still be

transported to the phagosomes via unknown energy-

dependent mechanism (106). As described earlier, residential

proteasomes within phagosomes can also further trim

exogenous antigens into antigenic peptides, which explains

why such cross-presentation can occur in the absence of TAP

(51). Recently, Barbet et al. elucidated an alternative mechanism

for TAP-independent cross-presentation, in which MHC-I

peptide complex is recycled to ERGIC complex, rather than

ERC (100). ERGIC complex loaded with MHC-I can be

delivered to phagosomes independent of TLR signaling,

suggesting that cross-presentation can still occur normally,

even when classic MHC-I presentation and endosomal

recycling compartment–dependent cross-presentation

pathways are impaired.
Regulation of DC cross-presentation
by extracellular receptors

Certain extracellular receptors mediate uptake of

extracellular antigens and route them into phagosomal

compartments in DCs. Therefore, directly targeting antigens
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to specific extracellular receptors expressed by DCs, such as

Fc-g receptors, DC-SIGN, DEC-205, and XCR1, has been an

effective strategy for enhancing DC cross-presentation (107–

110). Among them, CLEC9a is a group V C-type lectin-like

receptor that is expressed by cDC1 and used for recognizing

actin filaments by dead cells to facilitate DC cross-

presentation (111–113). In addition to its role in antigen

uptake, Clec9a also appears to route antigens to early and

recycling endosomes to enhance DC cross-presentation in

cDC1 (114). Because targeting Clec9a enhances MHC I

presentation in cDC1, targeting antigens to mouse Clec9A

enhances CD8 T cell responses (112, 113). Additionally,

Clec9A-mediated antigen delivery elicits potent humoral

immune responses in mice and non-human primates,

suggesting that Clec9a-based antigen delivery can induce

potent, balanced humoral and cell-mediated immunity (115–

117). Clec9a-based antigen delivery is shown to engender

protective immunity against infections, including malaria

and influenza, as well as cancer (117–119).

The regulatory mechanism of Clec9a-mediated DC cross-

presentation has been explored at both cellular and systemic

levels. Canton et al. identified that engagement of Clec9a triggers

SYK signaling, which subsequently leads to NOX2-mediated

escape of phagosomal contents into the cytosol. Hence, Clec9a

could possibly act as a checkpoint of cytosolic pathway that

allows leakage of exogenous antigens into cytoplasm to activate

CD8 T cells. Giampazolias et al. discovered that gelsolin, an

abundant actin-binding protein found in the plasma and

produced by tumors, perturbs the binding between DNGR-1

and F-actin, resulting in poor interaction between dead cancer

cells and cDC1 and dampened DC cross-presentation (120).

Tullett et al. discovered a negative regulatory mechanism of

Clec9a-mediated DC cross-presentation, where ubiquitin ligase

RNF41 interacts with Clec9A at the steady state. Following

uptake of dead cells, RNF41 dissociates from Clec9A to

increase the levels of Clec9a to augment effective DC cross-

presentation. Therefore, RNF41 acts as a negative regulator of

Clec9A in the context of cross-presentation of deal cell-derived

antigens (121).

Ding et al. identified a negative role of a lectin family member,

Siglec-G inDC cross-presentation (122). The authors found that the

expression of Siglec-G in CD8a+ DC results in poor assembly of

NOX2 complexes of DC phagosomes, leading to acceleration of

antigen degradation and decreased formation of MHC class I–

peptide complexes. Intriguingly, Streng-Ouwehand et al. chemically

modified the chicken ovalbumin by attaching Lewisx (LeX) to target

C-type lectin receptor called MGL1 (103) and found that such

modification of OVA resulted in a potent CD8 T cell response. As a

mechanism, the authors proposed that cross-presentation of LeX-

modified antigens is independent of TAP1- or Cathepsin S.

Intriguingly, LeX-modified antigens are routed to Rab11+/

LAMP1+ compartments (recycling endosomes/lysosomes), rather

than Rab11+/EEA1+ (recycling/early endosomes) compartments.
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Antigen transfer and immune
cross-talks to enhance DC
cross-presentation

Another alternative mechanism that can facilitate DC cross-

presentation is transfer of antigenic peptides from other immune

cells to DCs by direct cell-cell contact (123, 124). Sachheri et al.

initially showed that exposure of melanoma cells to Salmonella

augments the expression of a gap junction protein, Connexin 43;

gap-junction mediated by Connexin 43 is critical for antigenic

peptide transfer from cells infected with intracellular bacteria to

DCs (125). Mazzini et al. demonstrated that CX3CR1+

macrophages process antigenic peptides for transfer to

CD103+ dendritic cells. It was further confirmed that CD103+

cells deficient in Cx43 cannot cross-present antigens in vivo,

which results in poor oral tolerance, an active process of immune

unresponsiveness to orally ingested antigens (126). Further,

Huang et al. showed that ex vivo antigen-loaded monocytes

elicit potent therapeutic anti-tumor T cell responses in mice by

promoting efficient antigen transfer mediated by gap junction

via connexin 43 between CD8a+ DCs and monocytes (127).

Importantly, a recent study demonstrated that Dioscin (steroid-

based saponin) increases DC cross-presentation and enhances

gap junctions between melanoma and DCs, culminating in

greater anti-tumor killing effects of CD8 T cells (128). Taken

together, these data suggest a putative role of monocytes and

macrophages in transferring antigenic peptides to DCs to

promote CD8 T cell responses, that can be leveraged for

enhancing cell-mediated immunity.

In both humans and mice, numerous studies suggest that

pDCs endocytose, process, and present exogenous antigens to

CD8 T cells, presumably using cross-presentation (38, 129, 130).

Oberkampf et al. reported that induction of cross-presentation

by pDCs is regulated by mitochondrial ROS-dependent

mechanism, including antigen degradation and phagosomal

pH (131). Fu et al. demonstrated that the antigens only

delivered to pDCs (anti-Siglec-H-OVA) could be cross-

presented to CD8 T cells in vivo (132). However, pDCs alone

were not sufficient to directly cross-present antigens to CD8 T

cells. Rather, antigen transfer from pDC to cDC1s mediated by

exosomes-derived from pDCs were critical for priming CD8 T

cells. Strikingly, both pDCs and cDCs expressed MHC I-antigen

complexes at their surfaces, but only cDCs, and not pDCs were

able to induce robust proliferation of naïve OT-I cells ex vivo.

Another important immune cell that can presumably

interact with DCs is the platelet, which have critical roles in

hemostasis, vascular homeostasis, and immunoregulation (133–

135). Consistent with these roles, Han et al. found that P-selectin

from platelets interact with PSGL1 to activate peripheral blood

monocytes to augment antigen cross-presentation by forming an

adhesion synapse (136). The authors termed platelet-matured

cells as “physiological DCs” because they were generated in the
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absence of exogenous cytokines. The authors also confirmed that

physiological DCs mount a robust cell-mediated immunity,

compared to GM-CSF-derived BMDCs. Hence, leveraging the

ability of monocytes to interact with platelets can be used as a

powerful strategy for physiological DC-based immunotherapies

to mount cell-mediated immune responses.
Adjuvants and cross-presentation

A) Alum

In the 1920s, Glenny et al. observed that guinea pigs injected

with an emulsion containing diphtheria toxoid precipitated with

potassium alum were better protected against repeated

intradermal injections with diphtheria toxin, than those

injected with toxoid alone. Since then, aluminum hydroxide

(Alum) had been the primary adjuvant licensed for human use

for 70 years. Alum has been safely used in many human vaccines

as an adjuvant for promoting antibody and TH2 immune

responses; hence Alum often serves as a benchmark to

evaluate novel adjuvants in vaccine research. A key

mechanism proposed for Alum-mediated adjuvant effects

includes an antigen depot effect, in which antigens are stored

and slowly released from the sites of immunization (137, 138).

When antigens are retained at the injection site, such retention

can induce local NLRP3-dependent inflammasome activation,

leading to prolonged inflammation accompanied by the

production of IL-1b and IL-18 and a potent polarization of

TH2 immunity and antibody responses (139–142). It is also

postulated that Alum can trigger the release of danger-associated

molecular patterns (DAMPs), including uric acid, alarmin and

double-stranded RNA from target cell, which increase the

overall immune responses to vaccines (143, 144). Aggregated

alums are positively charged microgels (1–10 µm) in aqueous

solutions that attach to and spread on dendritic cells (DCs) to

trigger lipid sorting of the cellular membrane. As a result,

exogenous antigens formulated with Alum will be internalized

without being phagocytosed together with Alum. The

internalized antigens formulated with Alum will be processed

via lysosomes using conventional MHC II presentation pathway,

but Alum remains very ineffective for eliciting CD8 T

cell responses.

To overcome this caveat, several labs have attempted to

optimize the biochemical and/or biophysical properties of Alum

to augment DC cross presentation, as shown in Figure 3. An

earlier report demonstrated that Alum itself taken by APCs

could induce lysosomal leakage, which makes Alum an attractive

candidate for engaging cytosolic pathway of DC cross-

presentation to activate CD8 T cells. Li et al. demonstrated

that conjugation of OVA to alpha-alumina nanoparticles

resulted in efficient cross-presentation of the OVA antigen

both in vitro and in vivo, by triggering autophagic flux (145).
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Subsequently Jiang et al. turned Alum from gel into nano-sized

vaccine carriers AlO (OH)-polymer nanoparticles (APNs)

loaded with CpG and examined their adjuvanticities to

potentiate CD8 T cell responses. They found that APN

internalization in DCs was completely reduced in the presence

of dextran sulfate and fucoidan, both of which are ligands for the

scavenger receptor. Mechanistically, APN-driven cross-

presentation was abrogated by MG-132 (proteasome

inhibitors) and brefeldin A (ER transporter inhibitors) in DCs.

Additionally, APN itself was found to escape from lysosomes,

which presumably promotes the access of antigens into cytosol

for further processing by cytosolic proteasomes. Further, a

recent study has demonstrated that intramuscular

immunization of an alum-stabilized Pickering emulsion

(PAPE) with RBD of spike protein showed robust IFN-g-
producing CD8 T cells in a COVID-19 vaccine (146). Ren

et al. also found that coated rehydragel (aluminum hydroxide

wet gel suspension) with cationic polyethyleneimine (PEI)

facilitated DC cross-presentation (147). Unlike Alum-based

nanoparticles, Rehydragel/PEI-mediated DC cross-presentation

requires both lysosomes and proteasomes as a part of machinery

to activate CD8 T cells. This suggests that rehydragel-PEI-

mediated DC-cross presentation engage both vacuolar and

cytosolic DC cross-presentation. In line with this conclusion,

Alum-based nanoparticles coupled with CpG also engage both

vacuolar and cytosolic pathways, in contrast to TLR agonists that

mainly engage the vacuolar pathway and the Alum-based

nanoparticles that engage the cytosolic pathway. Together, it is

possible to engineer biochemical and biophysical attributes of

Alum to elicit optimal CD8 T cell-based immunity by engaging

the cytosolic pathway.
B) MF59

MF59 is an adjuvant consisting of squalene (4.3%) with

stabilizing non-ionic surfactants Tween 80 (0.5%) and Span 85

(0.5%) in citric acid buffer. Fluad®, an MF59-adjuvanted

seasonal influenza vaccine, was first licensed for the elderly in

1997 and has since been approved for use in human vaccines in

over 30 countries, including the United States (148). In contrast

to Alum, MF59 induces a relatively balanced TH1/TH2 immune

responses by forming inflammatory conditions without forming

antigen depot (149–151). The mechanism of MF59 has been

reviewed elsewhere (152). Briefly, MF59-adjuvanted vaccines

augment the production of chemokines and inflammatory

cytokines (CCL2, CCL3, CCL4, and IL-8), recruit innate

immune cells, such as monocytes and neutrophils, trigger

production of DAMPs such as uric acid, ATP, and induce

apoptosis of innate immune cells at the injection site (148,

153–157). Recruitment and activation of innate cells, along

with DAMPs, will then occur in the vaccine-draining lymph

nodes to amplify humoral and cell-mediated immune responses
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to the vaccine antigens. Unlike Alum, MF59 does not potently

induce inflammasome activity in BMDC in vitro (158). MF59

does not engage NLRP3, but instead requires MyD88 to enhance

bactericidal antibody-based responses (158). Because MF59 does

not activate TLR-dependent signaling in DCs in vitro, MF59-

mediated adjuvanticity likely requires MyD88 for TLR-

independent signaling pathways. In contrast to this, Ellebedy

et al. has shown that ASC is crucial for adjuvanticity of MF59,

but not NLRP3 or caspase-1 (159); this study found that antigen-

specific IgG antibody responses were significantly impaired in

the absence of ASC. Hence, ASC plays an indispensable role in

the induction of humoral immunity that is independent of

NLRP3-dependent inflammasome activation.

Kim et al. discovered that MF59 elicits potent humoral and

CD8 T cell responses in mice. They also identified the RIPK3-

dependent necroptotic death of lymph node resident

macrophages as a key mechanism by which squalene-based

adjuvants elicit CD8 T cell immunity (160). The authors

showed that mice deficient in RIP3 were unable to mount

antigen-specific CD8 T cell responses in the liver and lung
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when they are subcutaneously immunized with MF59-

adjuvanted vaccines. In contrast, mice deficient in MLKL (a

downstream gene of necroptosis) mounted normal antigen-

specific CD8 T cell responses in vivo. This suggests that the

adjuvant effects mediated by MF59 requires RIPK3 that is

independent of necroptosis, as they do not require MLKL.

Antibody responses mediated by MF59 occur normally in

mice deficient in RIPK3 or caspase-1. However, in vivo

administration of pan-caspase inhibitors abrogated antibody-

based responses elicited by MF59, suggesting that apoptotic

caspases are required for MF-59 mediated antibody responses.

Hence, MF59 may be used as an immune adjuvant that can be

incorporated to elicit both humoral and cell-mediated

immunity. Future studies are warranted to examine whether

MF59-based vaccines confer T cell-based protection to

pathogens and how long memory CD8 T cells induced by

MF59-based vaccines persist in lymphoid organs. Further, it

will be important to determine whether MF59-based adjuvants

engage vacuolar or cytosolic pathway of DC-cross presentation,

as this has not been investigated yet.
FIGURE 3

Mechanisms of Adjuvant-mediated Cross-presentation in DCs. I. Alum-based nanoparticles: Antigens that are coupled with Alum-based
nanoparticles are taken up by scavenger receptor A. Antigens are translocated from phagosomes-to-cytosol, further processed by cytosolic
proteasomes, and loaded onto MHC-I molecules by TAP-dependent mechanism. II. Saponin-based adjuvants: Saponin-based adjuvants induce
the formation of intracellular lipid bodies (LB). Internalized antigens are localized in the phagosomes, which are released into cytosol facilitated
by lysosomal proteases, and degraded by cytosolic proteasomes. The digested peptides are translocated back to ER by TAP transporters and
loaded onto MHC I molecules. III. TLR-based adjuvants: Ligation of TLR agonist induces phagocytosis of antigen mediated by Myd88-IKK2-
SNAP23 and recruitment of endosomal recycling complex, marked by Rab11a and VAMP 3/8. TLR-based adjuvants also elicit the formation of
perinuclear clustering of lysosomes, which leads to delayed fusion of phagolysosomes. IV. Carbomer-based adjuvants: Carbomer-based
adjuvants induce the formation of intracellular lipid bodies. Carbomer-based adjuvants also induce the production of ROS in the phagosomes.
The internalized antigens escape from phagosomes to cytosol, which are subsequently processed by cytosolic proteasomes, translocated using
TAP transporters, and loaded onto MHC-I molecules.
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c) Lipid nanoparticles (LNP)-mRNA
vaccines

Lipid nanoparticles (LNPs) are composed of PEGylated

lipids that encapsulate mRNA as delivery vehicle, which has

been successfully used for some COVID-19 vaccines (161, 162).

Such delivery system increases the stability of mRNA, because

mRNA can be protected from enzymatic degradation. The

cellular mechanism of antigen presentation mediated by LNP-

mRNA vaccines has been described extensively elsewhere (161,

163, 164). Briefly, mRNA encapsulated with LNPs can be

endocytosed into the dendritic cell; mRNA will need to escape

from LNP and endosome for subsequent translation of the target

antigens by ER and Golgi apparatus (165). Translated proteins

will be further processed by cytosolic proteasomes, loaded on

ER, and presented to MHC-I molecules to potentiate both

humoral and cell-mediated responses. Hence, the cellular

mechanism of LNP-mRNA vaccine is similar to the processing

of endogenous antigens for eliciting T cell-mediated responses.

For LNP-mRNA-based vaccines, the encapsulated mRNA

itself can serve as both immunogen and adjuvant, because of

intrinsic immunostimulatory properties of RNA. The current

LNP-mRNA vaccines consist of purified, in vitro-transcribed

single-stranded mRNA (ssRNA) with modified nucleotides to

reduce binding to various pathogen recognition receptors, such

as TLR and inflammasomes (166). However, ssRNA derived

from vaccines can be recognized by endosomal TLRs (TLR3 and

TLR7). Different components of inflammasome activation,

including NOD2 and MDA5, can also bind to cytosolic ssRNA

derived from LNP-mRNA vaccines. Consequently, binding of

ssRNA derived from LNP-mRNA vaccines can lead to vaccine-

induced systemic inflammation, leading to cellular recruitment

of various innate and adaptive immune cells and establishment

of inflammatory milieu, like other vaccine adjuvants.
d) Saponin-based adjuvants

Saponins are triterpene glycosides obtained from the bark of

the South American soap bark Quillaja saponaria. Among

several classes of saponins, QS-21 (Matrix-M) is the active

purified fraction of Quillaja saponaria that has been evaluated

for adjuvant properties. QS-21-adjuvanted vaccines activate

both TH1 and CD8 T-cells, leading to a robust, balanced

antibody and cell-mediated responses with minimal

reactogenicity (167, 168). Matrix-M™ 40 nm nanoparticles are

composed of different fractions of Quillaja saponins,

phospholipid, and cholesterol. Reimer et al. demonstrated that

Matrix-M adjuvant recruits and activate innate and adaptive

immune cells, including granulocytes, dendritic cells, and

macrophages in vaccine-draining lymph nodes within 48

hours of immunization (169).
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Unlike Alum, QS-21 does not promote antigen depot to

effect slow release of antigen from injection site (170). However,

Marty-Roix et al. reported that QS-21 coupled with MPLA elicits

NLRP3-dependent inflammasome activation, leading to the

production of IL-1b and IL-18 secretion in both dendritic cells

and macrophages in vitro (171). IL-1b and IL-18 promote TH17

cell maturation or drive INF-g-mediated TH1 responses;

inflammasome activation mediated by QS-21 might be critical

for development of helper T cells for antibody production. In the

same study, however, NLRP3-deficient mice immunized with

gp120 proteins adjuvanted with QS-21 showed higher levels of

TH1 and TH2 T-cell responses, and increased IgG1 and IgG2c,

indicating that NLRP3-dependent inflammasome may have a

negative regulatory role in humoral and cell-mediated

immune responses.

Several studies have examined the mechanism of saponin-

based adjuvant-aided cross-presentation in human and murine

DCs. Initially, studies by Schnurr et al. showed that

ISCOMATRIX generates specific class I epitopes of the cancer

antigen (NY-ESO-1) by an alternative, proteasome-dependent

processing pathway in human DCs (172). The authors also

discovered that lysosomal leakage of antigens is driven by

lysosomal proton pumps and such antigen translocation is

restricted to myeloid DCs. Likewise, Welsby et al. showed that

QS-21 promotes the activation and maturation of human

monocyte-derived DCs, as indicated by increased levels of IL-

6, TNF-a, IL-6, CD86, and HLA-DR (173). Further analysis

demonstrated that QS-21 is taken up by human monocyte-

derived DCs via cholesterol-dependent endocytosis leading to

lysosomal destabilization and formation of pores in the

lysosomes (174). Such destabilization of lysosomes is critical,

as this will allow the exogenous antigens to be released into

cytosol for further processing for efficient cross-presentation.

The authors have since illustrated that mice deficient in

lysosomal proteases (cathepsin B) immunized with QS21-

adjuvanted vaccines had fewer antigen-specific CD4 and CD8

T cells (173). Cathepsin B deficiency also negatively affected the

polyfunctionality of antigen-specific effector CD4/8 T cells, as

measured by their ability to coproduce IFN-g, IL-2, and TNF-a,
suggesting that QS21-mediated adjuvanticity likely requires

lysosomes as a part of effective DC cross-presentation.

Using Immune stimulating complexes (ISCOM), which

contains QS-21, den Brok et al. demonstrated that saponin-

based adjuvant (SBA)-induced cross presentation in murine

BMDCs by mechanisms independent of co-stimulatory

molecules, CD80 and CD86 (175). Instead, the accumulation

of lipid bodies, presumably derived from the adjuvant itself, is

associated with enhanced DC cross-presentation by murine

monocyte-derived CD11b+ DCs both in vivo and in vitro, as

shown in Figure 3. Consistent with this finding, pharmacological

inhibition of lipid body formation abrogated saponin-induced

antigen cross-presentation both in vivo and in vitro in mice.

Mechanistically, SBA-induced DC-cross-presentation engages
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cytosolic pathway, as evidenced by enhanced antigen escape

from endosomes. However, SBA-induced DC-cross presentation

did not entail ROS production nor require NOX2 complex,

unlike the conventional cytosolic pathway. Therefore, SBA-

mediated antigen escape from endosomes likely does not

involve disruption of cellular membranes from ROS-induced

damage. Moreover, recent work suggests that SBA-aided cross-

presentation requires PERK activation for potentiating CD8 T

cell responses, but PERK activation was not required for SBA-

mediated LB formation (176). Future studies should elucidate

the cellular determinants of SBA-induced LB formation and the

functional role of SBA-induced lipid bodies in regulating

cytosolic pathway of SBA-mediated DC cross-presentation.
E) TLR adjuvants

The ligation of TLR ligands to the corresponding receptors

induces DC maturation, leading to increased expression of co-

stimulatory molecules and production of pro-inflammatory

cytokines. The first TLR agonist that was clinically approved

for human use as a vaccine adjuvant was Monophosphoryl lipid

A (MPL-A), which is a detoxified version of LPS that lacks lipid

A. TLR4 agonists are already incorporated into licensed vaccines

against human papilloma virus (HPV; Cervarix®), hepatitis B

virus (HBV; Fendrix®, Supervax®) and melanoma (Melacine®)

(177–181). Recent clinical trials on Shingrix also demonstrate

the feasibility of MPL as an adjuvant, as evidenced by robust

protection against herpes zoster in older adults and efficacy in

immunocompromised individuals (182).

Various TLR agonists are currently being used as vaccine

adjuvants. For example, AS04 is MPL adsorbed onto aluminum

hydroxide or aluminum, which has been known to elicit strong

TH1-based immunity. MPLA triggers the production of pro-

inflammatory cytokines, including IL-6 and TNF-a, through
JNK-mTOR-NF-kB signaling pathway (183, 184). MPLA also

stimulates DC maturation and suppress immune tolerance by

inhibiting regulatory T cells. MPLA also induces TH1-skewed

immune responses by enhancing IFN-g production by antigen-

specific CD4+ T cells (185, 186). In addition to MPLA,

Glucopyranosyl Lipid A (GLA)-SE has been developed, which

is synthetic version of LPS. GLA-SE was first evaluated as a

vaccine adjuvant against influenza viruses (H5N1) in a phase II

clinical trial (187). In this trial, authors learnt that low dose

GLA-SE-adjuvanted vaccines induced both humoral and cell-

mediated immune responses. The authors also evaluated GLA-

SE as a vaccine adjuvant for tuberculosis vaccines; similarly,

GLA-SE adjuvant elicits humoral and TH1-immune responses in

vaccines against TB (188). Together, TLR4 agonists, such as

MPLA and GLA-SE, can be used as immune potentiators to elicit

potent, balanced CD8 and TH1 immune responses to vaccines

against infectious diseases.
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CpG ODNs are synthetic oligonucleotides composed of at

least two unmethylated pairs of cytosine and guanine

deoxynucleotides joined by a phosphate-containing linking

molecule. These constructs mimic unmethylated DNA

fragments from bacteria and viruses, which act as TLR 9

ligands. Like TLR4 agonists, activation of TLR9 by CpG

recruits TNF receptor-associated factor 6 (TRAF6), IL-1R

associated kinase (IRAK), and MyD88. This subsequently leads

to the activation of NF-kB and AP-1, which results in increased

secretion of inflammatory cytokines and chemokines (189). CpG

has undergone clinical testing in humans and has also completed

a phase 3 clinical trial, as an adjuvant in HBV vaccine

(Hepislav®) (190–194).

Soluble TLR ligands, such as LPS and CpG, have direct impacts

on cross-presentation of antigens in DCs, which makes them even

ideal candidates for inducing potent T-cell based immunity. Upon

DC maturation induced by TLR4 agonists, the processes associated

with cross-presentation, such as scavenger receptor-mediated

phagocytosis and phagolysosomal fusion, are enhanced within first

hours of TLR4 activation, followed by downregulation of antigen

internalization and molecular components required for cytosolic

delivery of antigen, as illustrated in Figure 3 (195, 196). Gupta et al.

discovered that MHC-I molecules are not derived from the ERGIC

upon TLR stimulation, because ERGIC components were recruited

to the phagosomes, independent of TLR signaling. However, TLR4

stimulationresults inaccumulationofMHCclass Imoleculesderived

from endocytic recycling compartment (ERC; marked by Rab11a,

VAMP3, and VAMP8) to phagosomes. Mechanistically, TLR-

mediated MyD88 dependent IKK2 phosphorylat ion

of SNAP23 mediates ERC-phagosome fusion. It was also shown

that silencingRab11a resulted indissipationofperinuclear reservesof

MHC-I and abrogated TLR-mediated cross-presentation. This

finding is consistent with the previous finding, as TLR recruitment

is not dependent onTLR-mediated signaling (197). Alloatti et al. also

showed that activation of TLR4 leads to delayed phagosomal

maturation and antigen degradation, thereby inducing the

formation of intracellular peri-nuclear clustering of lysosomes

mediated by Rab34 (198). These findings collectively suggest that

TLR-based adjuvants likely engage vacuolar pathway to potentiate

effective CD8 T cell responses. As previously described, the primary

source ofMHC-I is ERC, which suggests that peptide loading occurs

within phagosomes, rather than ER. Additionally, maturation of

phagosomes occurs rapidly within first few hours of TLR signaling

(199, 200); hence, antigens are likely to be processed within

phagosomal proteases, rather than in cytosolic proteasomes.

The TLRs are either located on the plasma membrane (TLRs

1, 2, 4, 5, and 6) or intracellularly (TLRs 3, 7, 8, and 9) within

endosomes, but how the location of TLRs dictates efficiency of

DC cross-presentation remains controversial. For instance,

intracellular TLRs (TLR 3,7, and 9), which are mostly found in

endosomes, require internalized ligands such as nucleic acids

(RNA and DNA) to activate downstream signaling pathways

(MyD88-IRF7 pathway or the MyD88-NFkB pathway). TLR9
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that is predominantly expressed by DCs and B cells, can potently

respond to CpG, which is known to induce Th1-based responses

and potent cytotoxic CD8+ T lymphocytes (90, 201). Therefore,

TLR9 agonists were successfully used as in both prophylactic and

therapeutic cancer vaccines against melanoma or malignant

glioma in mice (202–204). However, mice and humans express

different levels of TLR9 in DCs, which leads to reduced

inflammatory cytokines and cross-presentation in human DC

subsets (205, 206). As a result, it is difficult to use CpG-based

vaccines to potentiate anti-tumor immunity, because CpG-

mediated T cell response cannot be optimized individually

(207). Future studies need to carefully dissect whether or how

the location of TLRs can determine the efficacy of cross-

presentation in murine and human DC subsets.
F) Carbomer-based nano-emulsion
adjuvant

Carbomers are synthetic high-molecular-weight polyacrylic

acids cross-linked with allyl sucrose, which have been used

extensively as emulsifiers, gel-forming substances, stabilizers of

suspensions, and binders in tablets in pharmaceutical industry

(208, 209). Various types of carbomers (e.g. Carbomers-910,

-934, -934P, -940, and -941) have low toxicity when ingested and

caused no pathological conditions in laboratory animals such as

mice and rats. Also, clinical studies with carbomers suggest that

they do not cause skin sensitization or irritation.

Several vaccine formulations based on polyacrylic acids such

as Carbomers™ or Carbopols™, have been screened for

adjuvant activity in mice (210–212). Among them, Adjuplex®

(ADJ, Advanced Bioadjuvants) is a carbomer-based

nanoemulsion adjuvant (CBA) that consists of biodegradable

matrix of carbomer and purified soybean lecithin formulated as

submicron-sized liposomes (nanoliposomes). As a vaccine

adjuvant, ADJ has several advantages. First, purified lecithin, a

major component in ADJ, is often utilized as an emulsifier,

antioxidant, or stabilizer (213, 214). Because of its unique

biochemical properties, ADJ presumably facilitates the

formation of lecithin-derived liposomes, which improves

antigen delivery to appropriate cellular compartment in DCs

(215, 216). Also, ADJ is a versatile vaccine adjuvant that can be

used with diverse macromolecules, including DNA, proteins,

and polysaccharides. Further, ADJ can be administered by

different routes such as subcutaneous, intranasal, and

intramuscular routes (217–223). Lastly, ADJ does not contain

detergents, oil, preservatives, and substances of animal- or

microbial-origin, which reduces the reactogenicity of vaccine

formulation. As a vaccine adjuvant, ADJ has been tested

extensively using various antigens, such as Hepatitis C,

rotavirus, HIV, fungal antigens, and influenza viruses in

different animal models, including mice, rats, rabbits, pigs,
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goats, and nonhuman primates for stimulating balanced and

robust adaptive immune responses (224–229). For instance, in

mice, carbomer-based adjuvant vaccines have potent immune

activating properties and elicits protective adaptive immunity

against influenza challenge by eliciting balanced TH1 and

antibody responses (230). Also, glycoproteins of HIV proteins

or deglycosylated HIV-Env trimers or cleavage-independent

HIV-1 trimers formulated with ADJ elicited strong

neutralizing titers of antibodies compared to Alum (231).

Carbomer-based adjuvants also have been used in

combination with MF59 to enhance antibody responses to

HIV-1 envelope glycoprotein (210). Collectively, ADJ is a non-

toxic, immunomodulatory adjuvant that can improve vaccine

potency, particularly by enhancing antigen delivery and

inducing strong CD8 and TH1 responses. Based on the

promise seen in studies with laboratory animals, ADJ is now

in phase I human clinical trials for cocaine vaccines (232, 233).

For past years, our group and others have extensively tested

the ability of ADJ to stimulate potent and durable CD4 and CD8

T-cell based immunity to viral and intracellular bacterial

infections. An initial report showed that ADJ-containing

subunit vaccine induced humoral immunity and protected

against influenza virus in mice (230). Subsequently, Gasper

et al. reported that mice mucosally immunized with subunit

antigens formulated in ADJ generated potent antigen-specific

CD8 T cell response in the lungs and airways, which engendered

protective immunity to influenza A viruses (217). Interestingly,

subcutaneous and intranasal vaccination generated systemic and

mucosal T cell memory respectively, but only mucosal T cell

memory elicited by intranasal vaccination protected against

influenza virus. Other studies from our group demonstrated

that ADJ robustly stimulates systemic antigen-specific CD4 and

CD8 T-cell responses to subunit protein antigen, and protected

against vaccinia virus , Lister ia monocytogenes (L.

monocytogenes) and respiratory fungal infections (221, 223,

234). Specifically, upon subcutaneous vaccination of mice, ADJ

elicited effector CD8 T cells that differentiated into a distinct

subset of granzyme B-expressing CD27LO ‘effector-like’memory

CD8 T cells, which provided highly effective immunity to

intracellular bacteria L. monocytogenes in spleen and liver

(222). Additionally, we have reported that ADJ, in

combination with TLR agonists CpG and GLA, stimulated

high numbers of tissue resident memory CD4 and CD8 T cells

in the respiratory tract and protected against antigenically

distinct strains of influenza viruses (218–220). Recently,

Kingstad-Bakke et al. leveraged this ADJ-based adjuvant

platform to develop broadly protective T-cell based vaccines

against SARS-CoV-2 (235). In this recent study, using a spike

protein-based subunit vaccine strategy that elicits potent T-cell-

based immunity in lungs and spleen, authors demonstrated that

both mucosal and parenteral vaccination provide effective

protection against pulmonary challenge with the homologous
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strain of SARS-CoV-2. Strikingly, systemic or mucosal T cell

memory to the spike protein of the original SARS-CoV-2

protected against the B.1.351 b variant of SARS-CoV-2, in the

absence of detectable neutralizing antibodies.

Like vaccine adjuvants, various innate immune cells,

including monocytes, neutrophils, and conventional dendritic

cells, are rapidly recruited within 24-48 hours of intradermal,

intraperitoneal, and intranasal vaccination of ADJ-containing

vaccines at the injection sites (219, 222, 230). CD8 T cell

response induced by mucosal or parenteral administration of

vaccine antigens formulated in ADJ was ablated in BATF-3-

deficient mice (220, 222). These data suggest that stimulation of

CD8 T cell responses to subunit vaccine antigens formulated in

ADJ requires cross-presentation, presumably by BATF3-

dependent conventional migratory DCs. Following intradermal

and intranasal administration of ADJ-based vaccines, there were

increased numbers of antigen-containing monocytes in DLNs of

vaccinated mice. However, unexpectedly, we found that

impaired accumulation of monocytes induced by CCR2

deficiency did not significantly affect the activation and

expansion of antigen-specific CD8 T cells in spleens or lungs.

These findings suggest that monocytes are not required for ADJ-

driven antigen cross-presentation and/or for driving the

accumulation of antigen-specific CD8 T cells in vivo (220,

222). Interestingly however, loss of pulmonary monocytes in

CCR2-/- mice led to substantive increase in the total numbers of

tissue-resident memory CD8 T cells in lungs of vaccinated mice

(220). Hence, pulmonary monocytes appear to have a negative

regulatory role in driving mucosal imprinting and development

of lung-resident CD8 T cells induced by ADJ-based vaccine.

More mechanistic studies are warranted to determine whether or

how other innate immune cells, such as neutrophils, can dictate

the functionalities and the formation of lung-resident CD8 T

cells afforded by ADJ in the lung.

ADJ also induces moderate NLRP3-dependent inflammasome

activation in DCs in vitro, as indicated by increased IL-1b and IL-18
production in ADJ-treated DCs (221). In particular, addition of

TLR-agonist (GLA) in conjunction with ADJ, induced a strong IL-

1b response in DCs, suggesting that combination adjuvants appear

to trigger potent inflammasome activation in DCs (218). ADJ also

triggers potent inflammasome activation in vivo, because high levels

of IL-1b were detected in lungs of mice intranasally vaccinated with

ADJ+GLA within 24-48 hours (219). These collectively suggest that

ADJ-containing vaccines likely induce inflammasome activation,

regardless of the route of vaccination. However, the biological

significance of NLRP3-dependent inflammasome activation by

ADJ is unknown. For example, caspase-1-deficient mice were still

able to generate antibodies when they were immunized with

vaccines that contain Carbopol (a polyanionic carbomer) as an

adjuvant (236). Lee et al. also demonstrated that ADJ-mediated DC-

cross presentation was unaffected by DCs deficient in NLRP3-

dependent inflammasome activation both in vitro and in vivo,
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independent of NLRP3-dependent inflammasome activation

(221). How carbomer-based adjuvants trigger inflammasome

activation remains elusive, because phago-lysosomal

destabilization after adjuvant phagocytosis, such as Alum and

Carbopol, is an important step in inflammasome activation (237).

While the authors did not directly interrogate whether or how ADJ

is taken up by DCs, Lee et al. demonstrated that ADJ increased

lysosomal pH, which in turn may result in lysosomal stabilization.

Future studies are warranted to determine how and whether ADJ

triggers inflammasome activation in DCs and the role of

inflammasome activation in engendering protective cell-mediated

immunity in vivo.

To understand the molecular basis for how carbomer-based

adjuvants potentiate CD8 T cell-based immunity, Gasper et al.

initially examined whether ADJ affected antigen processing and

the ability of ADJ-treated DCs to activate naïve CD8 T cells in

vitro. The authors found that ADJ alters antigen processing and

intracellular localization of antigens in DC 2.4 cells (immature

DC-like cell lines), leading to robust proliferation of OT-I CD8 T

cells (217). Later, Lee et al. showed that ADJ-mediated cross-

presentation entailed ROS-dependent mechanisms of

endosomal alkalization and antigen escape to cytosol,

proteasomal antigen degradation and TAP-facilitated loading

of MHC I molecules, as illustrated in Figure 3 (221). Typically,

upon ligation of TLR, DCs rapidly engage both oxidative

phosphorylation and aerobic glycolysis to support the anabolic

demands required for expansion of Golgi apparatus and ER for

de novo fatty acid synthesis, and production of inflammatory

and anti-inflammatory cytokines (238, 239). Unlike this

paradigm, ADJ-mediated DC cross-presentation occurs in a

unique metabolic state, which is characterized by basal levels

of glycolysis and profound disengagement of mitochondrial

respiration. Lipidomics of ADJ-treated DCs also suggest

substantive alterations in cellular lipid composition;

pharmacological inhibition of lipid body formation markedly

abrogated ADJ-aided DC cross-presentation. Hence, carbomer-

based adjuvant aided DC cross-presentation entails endosomes-

to-cytosol pathway for mounting effective CD8 T cell responses

under a relatively low cellular metabolic state. Further studies are

needed to examine how the formation of lipid bodies, or a low

metabolic state affects different steps of ADJ-mediated DC cross-

presentation, such as antigen leakage from endosomes, MHC-I

recycling, and antigen degradation. During cytosolic pathway of

cross presentation, cytosolic antigens are degraded into peptides

by proteasomes and such peptides traffic into ER or endosomes

by mechanism(s) that are dependent upon transporters

associated with antigen processing (TAP). To reiterate, the

past studies found that TAP1 deficiency abrogated ADJ-

mediated cross presentation, but further studies will be needed

to determine whether TAP1-dependent MHC I peptide loading

occurs in ER or phagosomes in ADJ-stimulated DCs.
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Concluding remarks

As discussed in this review, enhancing the efficiency of

dendritic cell cross-presentation is a crucial bottleneck to

developing prophylactic and therapeutic vaccines that can elicit

potent CD8 T cell responses. Cross-presentation is an inherently

complicated process but consists of elaborate series of molecular

steps that can be targeted for potentiating CD8 T cell responses via

generation of alkaline phagosomal environment, promoting

antigen escape from phagosomes, and recruitment of ER

components to the phagosomes. Whether many of the current

proposed mechanisms relevant to cross-presentation are critical

for cross-priming in vivo remains elusive. It is also unknown

whether cytosolic or vacuolar pathway is utilized by distinct DC

subtypes in different lymphoid or non-lymphoid organs.

Although our current model suggests dichotomous pathways of

cross-presentation (i.e. cytosolic versus vacuolar), both pathways

are likely functional in vivo (240). Indeed, it will likely be

advantageous to engage both pathways to potentiate effective

CD8 T cell responses by harnessing different adjuvants that can

engage different modes of cross-presentation. Some adjuvants,

including saponin-based and carbomer-based adjuvants, induce

intracellular lipid body formations, which are critical for DC

cross-presentation. However, how intracellular LBs affect

different steps of DC cross-presentation remain unknown.

There is a recent growing interest in engaging DC cross-

presentation as a therapeutic cancer vaccine (241–243); various

aspects of anabolic and catabolic processes have emerged as

crucial factors that control DC effector functions, including DC

activation and migration (238, 239, 244–246). Whether or how

different steps of metabolic processes modulated by immune

adjuvants could affect different facets of DC cross-presentation

needs to be further evaluated. Lastly, whether many of these

findings can be recapitulated in different human DC subsets is

unknown. Therefore, future studies are warranted to

mechanistically dissect the pathways of cross-presentation in

different human and murine DC subsets and to solve remaining

controversies in the context of vaccine adjuvants.

An ideal adjuvant for inducing CTL immunity would target

antigen for cross-presentation and maximize the differentiation

of memory CD8 T cells. Many adjuvants act as antigen delivery

systems (e.g. Alum, MF59, QS-21) and promote DC cross-

presentation by augmenting antigen uptake and processing,

but perform poorly in enlarging the magnitude of CD8 T cell

memory. Concomitant engagement of multiple innate signaling

pathways is a prerequisite to programming durable and potent

antibody and T cell responses (247), and hence it is likely that

targeted cross-presentation need to be partnered with

appropriate innate immune signaling to elicit strong and

durable CTL immunity. For example, ASO4 (aluminum salt

plus monophosphoryl lipid A [MPL; TLR4 agonist]) in the

Cervarix human papilloma virus vaccine is a clinically

approved vaccine adjuvant that is both potent and safe. In this
Frontiers in Immunology 14
regard, ADJ is an excellent adjuvant that can enhance DC cross-

presentation, but less able to expand the pool of memory CD8 T

cells. By combining ADJ with TLR4 or 9 agonists (GLA or CpG),

we leveraged the antigen-targeting and mucosal imprinting

properties of ADJ and the immune modulatory effects of

innate immune signaling to program potent CTL memory in

mice. Subunit proteins formulated in the combination adjuvant

(ADJ+GLA or ADJ+CpG) and administered intranasally

potently elicited tissue-resident memory T cells in the

respiratory tract and provided effective and durable defense

against antigenically disparate strains of influenza A virus. By

contrast, as a component of a parenteral vaccine, ADJ alone was

more effective than the combination adjuvant (ADJ with GLA or

CpG) in eliciting systemic protective CTL memory to L.

monocytogenes. These findings suggest that the tenets for

eliciting protective CTL memory with adjuvanted subunit

vaccines are different for mucosal and parenteral vaccines.
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