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Gastrointestinal diseases are complex diseases that occur in the gastrointestinal tract. Common gastroin-
testinal diseases include chronic gastritis, peptic ulcers, inflammatory bowel disease, and gastrointestinal
tumors. These diseases may manifest a long course, difficult treatment, and repeated attacks.
Gastroscopy and mucosal biopsy are the gold standard methods for diagnosing gastric and duodenal

diseases, but they are invasive procedures and carry risks due to the necessity of sedation and anesthesia.
Recently, several new approaches have been developed, including serological examination and magnet-
ically controlled capsule endoscopy (MGCE). However, serological markers lack lesion information, while
MGCE images lack molecular information.
This study proposes combining these two technologies in a collaborative noninvasive diagnostic

scheme as an alternative to the standard procedures. We introduce an interpretable framework for the
clinical diagnosis of gastrointestinal diseases. Based on collected blood samples and MGCE records of
patients with gastrointestinal diseases and comparisons with normal individuals, we selected serum
metabolite signatures by bioinformatic analysis, captured image embedding signatures by convolutional
neural networks, and inferred the location-specific associations between these signatures.
Our study successfully identified five key metabolite signatures with functional relevance to gastroin-

testinal disease. The combined signatures achieved discrimination AUC of 0.88. Meanwhile, the image
embedding signatures showed different levels of validation and testing accuracy ranging from 0.7 to
0.9 according to different locations in the gastrointestinal tract as explained by their specific associations
with metabolite signatures. Overall, our work provides a new collaborative noninvasive identification
pipeline and candidate metabolite biomarkers for image auxiliary diagnosis. This method should be valu-
able for the noninvasive detection and interpretation of gastrointestinal and other complex diseases.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Gastrointestinal diseases occur in various parts of the gastroin-
testinal tract. Common gastrointestinal diseases include chronic
gastritis, peptic ulcers, inflammatory bowel disease, and gastroin-
testinal tumors. Gastrointestinal diseases often are associated with
abdominal pain, diarrhea, hematochezia, changes in stool charac-
teristics, and other symptoms, and there are often varying degrees
of congestion, erosion, ulcers, bleeding, and other manifestations
under endoscopy. Genetic susceptibility, epithelial barrier defects,
immune response disorders, and environmental factors play
important roles in the pathogenesis of the gastrointestinal tract
[1,2]. Gastrointestinal diseases may manifest a long course, diffi-
cult treatment, and repeated attacks. Chronic atrophic gastritis
(CAG) is an established precursor of gastric cancer (GC), which
has high morbidity [3]. The stages in the progression of gastric can-
cer include CAG, intestinal metaplasia (IM), and dysplasia [4]. The
small intestine includes the duodenum, jejunum, and ileum. Dis-
eases of the small intestine are important components of digestive
tract diseases [5]. Inflammatory bowel disease (IBD) is a set of
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chronic relapsing diseases that includes Crohn’s disease (CD, affect-
ing the terminal ileum) and ulcerative colitis (UC, affecting the
colon and rectum). The prevalence of IBD has steadily increased
in newly industrialized countries and Western countries [6,7].

Gastroscopy and mucosal biopsy are the gold standard methods
for diagnosing these gastric and duodenal diseases, but they are
invasive procedures and carry risks of sedation and anesthesia
[8]. The accuracy of such tests largely depends on the physician’s
skill in obtaining biopsy samples [3,9]. Meanwhile, double balloon
enteroscopy (DBE) allows complete visualization, biopsy, and
treatment of the small bowel [10]. However, this technology is
time-consuming and also carries the risk of small intestinal perfo-
ration [11]. Therefore, noninvasive diagnoses are desirable for clin-
ical practice, and they have played an increasingly important role
in the diagnosis and treatment of gastrointestinal diseases in
recent years. In particular, the development and application of
new noninvasive technologies for early diagnosis of gastrointesti-
nal diseases presents a serious challenge, one that needs to be
solved with the help of biological and computational methods.

Serological examinations can provide effective indicators of
gastrointestinal diseases. They are noninvasive and relatively con-
venient compared to markers in mucosal biopsies and in body flu-
ids. Markers of gastric function such as PG-I, PG-II, PG-I/PG-II ratio
(PGR), gastrin 17 (G-17), anti-Helicobacter pylori antibodies (HP-
IgG) are used to jointly diagnose chronic atrophic gastritis [9,12].
PGR � 3 and PG-I � 70 ng/ml have been widely applied for CAG
and GC prediction [13,14]. Reese et al. found that the combination
of ASCA+/pANCA� had a specificity of 92.8 % and a sensitivity of
54.6 % for CD [15]. Pavlidis et al. illustrated that anti-MZGP2 anti-
bodies were detected in 31 % of CD patients and that they had a
high specificity for CD (96 %) [16,17]. In addition, studies have
found that anti-granulocyte macrophage colony-stimulating factor
(antiGM-CSF) antibodies also have higher concentrations in CD
patients compared with healthy people [18]. The metabolites in
serum have important effects on host physiology and can also be
detected in many biological samples, including feces, urine, and
cerebrospinal fluid [19,20]. The 1H NMR-based metabolomics with
correlative analysis was recently developed to analyze the meta-
bolic features of CAG. Cui et al. found that three plasma biomarkers
(arginine, succinate, and 3-hydroxybutyrate) had the potential to
indicate risks of CAG [21]. Several metabolites are associated with
IBD and intestinal inflammation. For example, bile acid derivatives,
short-chain fatty acids (SCFAs), and tryptophan metabolites are the
focus of intense research [22]. Thus, serum metabolites should
have generality for detecting early-warning signals of gastroin-
testinal disease.

Magnetically controlled capsule endoscopy (MGCE) is a nonin-
vasive and safe technology with high clinical application value
[23]. MGCE can be used for a complete examination of the entire
stomach by actively controlling the movement of the capsule in
the stomach through an external magnetic field. This also achieves
highly accurate detection rate in the diagnosis of small intestine
disease in patients who cannot undergo small intestine endoscopic
examination. For example, MGCE has improved the clinical diagno-
sis of gastrointestinal diseases such as CG and small-bowel erosion
[24], and it has diagnosed >60 % of cases of CG and small-bowel
erosion in China [25]. Therefore, MGCE is capable of capturing
the disease signals across the entire gastrointestinal tract.

Compared to the standards of gastroscopy and mucosal biopsy,
serological markers lack lesion information, and MGCE images lack
molecular information. Clearly, the combination of these two tech-
nologies would provide a more suitable collaborative diagnostic
scheme as an alternative noninvasive method. Thus, this work
introduces an interpretable framework for the clinical diagnosis
of gastrointestinal diseases (Fig. 1). Based on our study enrollment,
we collected blood samples (Fig. 1A) and MGCE records (Fig. 1B)
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from patients with gastrointestinal diseases and compared these
with normal individuals. The study workflow includes several
steps (Fig. 1C): (i) detecting the serum metabolites from blood
samples and selecting metabolite signatures related to gastroin-
testinal diseases by bioinformatic analysis; (ii) extracting the
image features from MGCE records and capturing embedding sig-
natures associated with gastrointestinal diseases by machine
learning models based on convolutional neural networks; and
(iii) inferring the location-specific association between serum
metabolite signatures and MGCE image embedding signatures.
Our study successfully identified five key metabolite signatures,
i.e., Biliverdin, Estrone glucuronide, Tetrahydrocortisone, Jaceidin
40-glucuronide, and PC (20:4(8Z,11Z,14Z,17Z)/14:0), whose combi-
nation achieved a discrimination AUC of 0.88. Meanwhile, the
image embedding signatures showed different levels of validation
and test accuracy ranging from 0.7 to 0.9 at different locations in
the gastrointestinal tract. The results may be explained by their
specific associations with key metabolite signatures. Collectively,
our work provides a new collaborative noninvasive identification
pipeline and identifies candidate metabolite biomarkers with
image auxiliary diagnosis; the method should be valuable in the
fight against gastrointestinal and other complex diseases.
2. Methods

2.1. Ethical approval of the study protocol

This study protocol was approved by the Ethics Committee of
Sixth People’s Hospital affiliated with Shanghai Jiao Tong Univer-
sity (Shanghai, China). Written informed consent was obtained
from all individuals. The personal data were anonymized and
omitted.

2.2. Study enrollment

This study ran at the Sixth People’s Hospital from October 2020
to October 2021. Individuals who agreed to complete metabolite
examination of serum samples and MGCE examination were
recruited. The procedures of enrollment, serum metabolism, and
MGCE classification were completed independently by different
investigators who were blind to the results of each other’s
examinations.

2.3. Sample collection

Age and sex were recorded for every participant (Table S1).
Serum samples were collected from each eligible individual and
stored at �80 �C until analysis. The matched clinical diagnosis
information was collected from the corresponding medical records
in the hospital and included gastroscopic diagnosis, pathological
diagnosis of gastroscopic biopsy, colonoscopic diagnosis, patholog-
ical diagnosis of colonoscopic biopsy, and capsule endoscopic diag-
nosis. The gastroscopic diagnosis that is the current standard was
used to classify individuals into a normal group (NL group with
seven samples) and a gastric and duodenal disease group (GD
group with seven samples).

2.4. Metabolism

First, the metabolite extraction from our collected serum sam-
ples was carried out according to the following protocol: (i)
50 lL of each sample was transferred to an EP tube; (ii) 200 lL
of extract solution was added (acetonitrile:methanol = 1:1, con-
taining isotopically labeled internal standard mixture); (iii) sam-
ples were vortexed for 30 s, sonicated for 10 min in an ice-water



Fig. 1. Workflow of collaborative noninvasive detection for gastrointestinal diseases. A. The study enrollment designed in this study. B. Images and annotations from
magnetically controlled capsule endoscopy. C. Study and analysis workflow used in this study, including (i) Blood sample collection and detection of serum metabolites,
which supply metabolite signatures representing the molecular information related to GD; (ii) MGCE record collection and learning of image features, which produce
embedding signatures representing focus information associated with GD; (iii) the inference of correlations between serum metabolite signatures and image embedding
signatures, which support the collaborative noninvasive detection of GD.
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bath, and incubated for one hour at �40 �C to precipitate proteins;
(iv) each sample was centrifuged at 12000 rpm (RCF = 13800 � g,
R = 8.6 cm) for 15 min at 4 �C; (v) the resulting supernatant was
transferred to a fresh glass vial for analysis; and (vi) additional
quality control (QC) samples were prepared by mixing equal ali-
quots of the supernatants from all samples.

Next, LC-MS/MS detection was executed on a UHPLC system
(Vanquish, Thermo Fisher Scientific) with a UPLC BEH Amide col-
umn (Waters, Massachusetts, USA; 2.1 mm � 100 mm, 1.7 lm)
that was coupled to a Q Exactive HFX mass spectrometer (Orbitrap
MS, Thermo). In this study, the mobile phase consisted of 25
ammonia hydroxide (mmol/L) in water (pH = 9.75) (A) and acetoni-
trile (B), and 25 mmol/L ammonium acetate. The auto-sampler
temperature was 4 �C, and the injection volume was 3 lL. Here,
the QE HFX mass spectrometer was adopted because it can acquire
MS/MS spectra in information-dependent acquisition (IDA) mode
in the control of the acquisition software (Xcalibur, Thermo),
where the acquisition software continuously evaluated the full
scan MS spectrum. The ESI source conditions were set at a capillary
temperature of 350 �C, a sheath gas flow rate of 30 Arb, collision
energy as 10/30/60 in NCE (Normalized Collision Energy) mode,
spray voltage as 3.6 kV (positive) or �3.2 kV (negative), auxiliary
gas flow rate as 25 Arb, full MS resolution as 60000, and MS/MS
resolution as 7500.
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The raw data from the above detection were converted to the
mzXML format using ProteoWizard. These data were further pro-
cessed with an in-house program developed using R and based
on XCMS that featured peak extraction, alignment, and integration.
The metabolite annotation was applied to an in-house MS2 data-
base (BiotreeDB) where the cutoff for annotation was set at 0.3.
2.5. Magnetically guided capsule endoscopy

All individuals (14 individuals involved in the above serum
metabolite analysis and an additional 10 individuals involved in
the MGCE analysis) underwent intestinal preparation with an elec-
trolyte solution of polyethylene glycol, fasted all night, and com-
pleted MGCE examination (Ankon Medical Technologies,
Shanghai, China) in the morning.

Gastric inflammation based on MGCE of each individual was
identified based on the Updated Sydney System (Dixon et al.,
1996). Each MGCE report recorded: (i) mucosal lesions such as ero-
sions; (ii) changes of villi (flat mucosa, coarsened villi); (iii)
lymphangiectasias/lymphocellular infiltrates; (iv) capillary lesions
(angiodysplasias, petechiae); and (v) mucosal changes (erythema,
edema, prominent mucosal folds). The collected medical images
from each MGCE report were annotated with location information,
including the esophagus, body of the stomach, angle of the stom-
ach, antrum and pylorus, duodenum, jejunum, and ileum. Thus,
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the entire MGCE image dataset could also be reorganized as seven
location-specific image datasets for detailed analysis and discus-
sion of potential tissue/lesion specificity of gastrointestinal
diseases.

2.6. Bioinformatic analysis for serum metabolite signatures

For the two groups of participants, the clinical characteristics
were analyzed between NL and GD groups (Table S1). The compar-
ison of these clinical characteristics included signed-rank tests for
continuous variables and chi-square tests for categorical variables;
these were carried out in SAS 9.3 (SAS Institute, Cary, NC, USA). The
clinical data were presented as mean ± standard deviation (SD) or
median (interquartile range) after normality testing for continuous
variables. The level of significance was set at P < 0.05.

To analyze changes in metabolism between NL and GD groups,
univariate and multivariate analyses were conducted, including
differential expression analysis using a t-test, fold-change with a
volcano plot, principal component analysis (PCA), partial least
square discriminant analysis (PLS-DA), and orthogonal partial least
square discriminant analysis (OPLS-DA). For screening differen-
tially expressed metabolites (DEMs), the univariate analysis used
the standards of P < 0.05 and |log2FC| > 0, and the multivariate
analysis used a standard of variable importance in the projection
(VIP) > 1. Combining the assessments from the t-test, fold-
change, and VIP score, a set of key DEMs were selected as metabo-
lite signatures for discriminating GD samples from NL samples.
Then, according to the co-expression network, the local network
(i.e., neighboring pattern) of each key DEM was identified as a
key DEM module. For evaluating the biological significance of
DEMs and DEM modules, an enrichment analysis was performed
in the small molecule pathway database (SMPDB) and the Kyoto
Encyclopedia of Genes and Genomes database (KEGG), with
P < 0.05 regarded as the significance level. Finally, the predictive
efficiency of the selected key DEMs was analyzed using random
forest (RF), and the area under the curve (AUC) for receiver operat-
ing characteristic (ROC) curves was used for assessing the RF per-
formance. All metabolite data processing and analysis were
performed using MetaboAnalyst [26].

2.7. Convolutional neural network analysis for image embedding
signatures

As an unsupervised artificial neural network, autoencoder (AE)
applies back-propagation by setting the output values equal to
the input values. AE can nonlinearly transform the data into a
low-dimensional latent space, as AE can force the neural networks
to compress the high-dimensional data into a low-dimensional
representation that captures the nonlinear relationships in the
original data [27,28]. The hidden layers of AE can be thought of
as some abstract representation of the input (e.g., image) [29].
For image data such as MGCE reported in this study, a convolu-
tional autoencoder (CAE) is widely used in the feature extraction
of images, being a special variant of basic AE [30]. Here, a CAE
was implemented and applied in PyTorch. The CAE consisted of
an input layer, a convolutional layer, a flattening layer, a de-
convolutional layer, and an output layer (the structures are shown
below). The internal output of flattening layers was used as the
embedding features of input images from such unsupervised
learning.

As a supervised artificial neural network, a typical deep residual
network (ResNet) can directly infer high-level representations
from low-level data by residual learning [31–33], and it can effec-
tively solve the vanishing gradient problem. This work adopted the
pre-trained ResNet-18 model from PyTorch for transfer learning
and trained a new simplified model after network structure mod-
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ification on our MGCE datasets (the structure is shown below).
The last fully connected layer for softmax and final binary predic-
tion (i.e., normal vs gastrointestinal disease) was used to produce
the embedding signatures of each input image from such super-
vised learning. The performance evaluation of the learning model
was the average value of 100 times the accuracy (ACC) on training
data (randomly selected 60 % of the samples), validation data (ran-
domly selected 20 % of the samples), and test data (the remaining
20 % of the samples).
3. Results and discussion

3.1. Metabolite signatures associated with gastrointestinal diseases

By comparing the metabolite profiles between NL and GD
groups, the metabolite spectrum demonstrated the potential non-
linear discrimination between the two group samples in the 2D
space of the PCA (Fig. 2A). The hierarchical clustering also sug-
gested the sample clusters corresponding to two groups (Fig. 2B).
After the supervision, PLSDA improved the metabolite discrimina-
tion between NL and GD groups (Fig. 2C) based on several impor-
tant metabolites with high VIP scores (Fig. 2D). Meanwhile, the
statistical analysis of metabolite differential expression supplied
some DEMs with significant P values and large fold-changes, as
shown in the volcano plot (Fig. 2E). These DEMs showed that in
gastrointestinal diseases, many metabolites have been significantly
down-regulated (Fig. 2F), suggesting the functional loss during dis-
ease occurrence and development. Taken together, five metabolite
signatures were selected according to their contributions observed
in all analyses; these were Biliverdin, Estrone glucuronide,
Tetrahydrocortisone, Jaceidin 40-glucuronide, and PC (20:4
(8Z,11Z,14Z,17Z)/14:0). Biliverdin and bilirubin have antioxidant
properties and thus can effectively scavenge free radicals and inhi-
bit lipid peroxidation [34]; bilirubin, as a powerful antioxidant, is
oxidized to biliverdin during the cycle [35,36].

Several metabolite signatures have been reported concerning
their specific roles in gastrointestinal diseases. For example, bili-
verdin reduced cyclooxygenase 2 and the expression of the inflam-
matory factors IL-6 and IL-1b mRNA in a rat small intestine
transplantation model and reduced the infiltration of neutrophils
into jejunum muscle layer, thereby having a protective effect on
the intestine [37]. Heme oxygenase (HO) catalyzes the degradation
of toxic free heme to biliverdin and Fe2 + and also releases carbon
monoxide (CO) [38]. The Heme-Oxygenase 1 (Ho-1)/Biliverdin/CO
Pathway protected against ethanol-induced gastric injury in mice
through a co-dependent (CO) or biliverdin-independent mecha-
nism [39]. Estrone-3-glucuronide can be activated by intestinal
microbial b-glucuronidase (GUS) during the promotion and devel-
opment of cancer [40].
3.2. Functional relevance of metabolite signatures

For the above DEMs, their functional enrichments indicated cer-
tain pathogen relevance (Fig. 3A). In particular, the five metabolite
signatures were involved in co-expression modules (Fig. 3B), indi-
cating their different functional roles. For example, Biliverdin,
Jaceidin 40-glucuronide, and PC (20:4(8Z,11Z,14Z,17Z)/14:0) were
co-expressed and down-regulated in disease states (Fig. 3C). In
contrast, Estrone glucuronide and Tetrahydrocortisone were in
another co-expression module (Fig. 3B) and were up-regulated in
disease conditions (Fig. 3C). Thus, their co-expressed neighboring
patterns, i.e., DEM modules, were further captured (Fig. 3D), and
the corresponding partner metabolites were combined for func-
tional enrichment analysis (Fig. 3E).



Fig. 2. Differential analysis of serum metabolites involved in gastrointestinal diseases. A. The PCA plot of metabolite profiles from disease and normal groups. B. Hierarchical
clustering of samples based on their metabolite abundances. C. PLSDA plot of metabolite profiles discriminating GD and NL groups. D. Important metabolites ranked by VIP
scores from PLSDA. E. Differentially expressed metabolites selected by volcano plot based on their differential significance and fold change. F. The expression heatmap of
DEMs.
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Considering the function in SMPDB as an example (Fig. 3D), B
vitamins and gene polymorphisms that encode single-carbon
metabolic enzymes may affect DNA synthesis and methylation
and thus be associated with cancer. In a case-control study of the
European Prospective Investigation into Cancer and Nutrition
cohort, vitamin B6 species were measured in plasma. The adjusted
relative risk per quartile (95 % confidence interval, P(trend)) was
0.78 (0.65–0.93, < 0.01) for vitamin B6. The relation was strong
in individuals with severe chronic atrophic gastritis. The results
showed a significant negative association between vitamin B6
and gastric cancer risk. This conclusion was clearer for atrophic
gastritis [41]. Supplementation with sodium hydroxide (NaHS)
and vitamin B6 (VB6) can partially reverse microbial dysregulation
and has therapeutic potential for stress gastritis [42]. Vitamin B6
inhibited TNF-a -induced NF-jB activation by inhibiting IjBa
degradation in human colon cancer HT-29 cells [43].

Indeed, many functions in the KEGG database were enriched in
these DEM modules (Table S2). For example, synthesis and degra-
dation of ketone bodies were enriched in the DEM module induced
by PC (20:4(8Z,11Z,14Z,17Z)/14:0). Butyric acid provides more
than 90 % of the total energy requirements of colon cells. The
energy of intestinal mucosal epithelial cells comes from bacterial
fermentation products, the most important of which is butyric
acid. Butyric acid is absorbed directly by colon epithelial cells
and rapidly forms ketone bodies for ATP synthesis. Impaired buty-
ric acid oxidation was observed in the colonic mucosa of patients
with ulcerative colitis. In addition, impaired butyric acid transport
and oxidation were evident from the gene expression levels
[44,45]. Chia et al. found that in the mammalian small intestine,
the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA syn-
thetase 2), the gene encoding the rate-limiting enzyme in the pro-
duction of ketone bodies, distinguishes self-renewing Lgr5 + stem
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cells (ISCs) from other cell types. Ketone body signal transduction
can mediate intestinal stem cell homeostasis [46]. Haruka et al.
showed that the microtubule hyperacetylation induced by ketone
bodies may be a causal factor linking diabetes to colorectal cancer
[47].

Glycerophospholipid metabolism is enriched in the DEM mod-
ule induced by Estrone glucuronide. Palmatine can restore the
body function of Chronic Atrophic Gastritis in rats and reduce gas-
tric mucosa damage. Metabolomics analysis showed that the ther-
apeutic effect of this drug on CAS was primarily realized through
the glycerophospholipid metabolic pathway [48]. Huang-Lian-Jie-
du formula (HLJDD) and its effective fraction may inhibit the
expression of COX-2 protein and the activities of PLA2 and 5-
LOx. Inhibition of the arachidonic acid metabolic pathway and
the glycerophospholipid metabolic pathway could alleviate acute
ulcerative colitis [49]. A cohort study in Italy conducted lipid and
polar profiling of plasma samples from 200 individuals with IBD
and healthy individuals. The changes in phosphatidylcholine, fatty
acids, and glycerophospholipids in pathological specimens were
significant. In addition, decreased amino acid levels suggest muco-
sal damage in IBD [50].

Linoleic acid metabolism has significant enrichment in many
DEMmodules. It was found that activation of colon PPAR G by con-
jugated linoleic acid (CLA) could mediate the protective effect
against experimental IBD in mice [51]. Under CLA treatment or a
clA-rich diet, the expression and activity of PPAR G in colon
mucosa [52] and macrophages were increased [53]. Danoyo et al.
found that linoleic acid epigenetic modification of the Farnesoid-
X-receptor (FXR) led to the activation of downstream factors
involved in bile acid homeostasis and induced epigenetic changes
related to colon inflammation and cancer [54]. Conjugated linoleic
acid (CLA) can prevent intestinal mucositis induced by 5-



Fig. 3. Functional analysis of key metabolite signatures relevant to gastrointestinal diseases. A. The functional enrichment of all DEMs. B. The co-expression pattern of serum
metabolites and five metabolite signatures. C. The detailed abundance change of metabolite signatures between disease and normal groups. D. The co-expression module of
each metabolite signature, which contains a list of neighbouring partner metabolites on co-expression network. E. The enriched functions of each DEM module. F. The
predictive performation of the combination of five metabolite signatures based on Randomforest model.
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fluorouracil, and CLA treatment maintained intestinal epithelial
integrity and a good balance between inflammatory and regulatory
cytokines [55].

In addition to the biological significance, the combination of the
above five metabolite signatures indicated their high efficiency and
potential in distinguishing a disease state from a normal state,
achieving an average AUC of approximately 0.94 in a cross-
validation manner and an average accuracy of approximately
0.885 in multiple replications (Fig. 3F) for the RF model calculated
in MetaboAnalyst [26].

3.3. Embedding features of MGCE and their association with
metabolite signatures

The metabolite signatures were detected in serum so that they
could be associated with the disease phenotype observed in speci-
fic tissues, e.g., images characterized by MGCE at different loca-
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tions of the gastrointestinal tract. Thus, embedding features, the
quantitative characteristics of MGCE images, were first extracted
by auto-encoder technology. The encoder network transforms or
reduces the original image data with pixel features at the input
layer into embedding data with vector features at the hidden layer
(implemented as shown in Fig. 4A). The decoder network trans-
forms or reconstructs such embedding data into recovered data
at the output layer (implemented as shown in Fig. 4B). Due to
the constraint of the auto-encoder, the recovered data will be the
same as the original data (examples are shown in Fig. 4C and D),
and thus the embedding data can represent the essential informa-
tion contained in the original data. Then, each embedding feature
will have a score vector across all samples (the scores of images
from the same individual can be averaged), so that the association
between metabolite signatures and embedding features can be
estimated. This provides a newway to explain the observed clinical
image characteristics by molecular (metabolic) features. In the



Fig. 4. Image embedding features from autoencoding model and their associations with metabolite signatures. A. The network structure of encoder produced by torchviz
package. B. The network structure of decoder produced by torchviz package. C. The learning procedure of autoencoding models corresponding to different locations in
gastrointestinal tract, measured by loss index. D. The example of input original data and output recovered data by such unsupervised learning. E. The association matrix (with
–log10(P values)) between abundance vector of serum metabolites and score vector of embedding features. F. The location specific association sub-matrix (with –log10(P
values)) for five metabolite signatures, where each row represents a key metabolite and each column represents one embedding feature.
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Fig. 5. Image embedding signatures from residue network model and their associations with metabolite signatures. A. The network structure of simplified ResNet produced
by torchviz package. B. The learning procedure of ResNet models corresponding to different locations of gastrointestinal tract. C. The performances of location specific models
evaluated by Accuracy on train, validation and test datasets respectively. D. The location specific distribution of the number of embedding signatures associated with each
metabolite signature. E. The location specific association sub-matrix (with correlation values) between embedding signatures and metabolite signatures.
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association matrix illustrated in Fig. 4E, a group of embedding fea-
tures has significant correlations with a subset of metabolites, indi-
cating the ability of molecular indicators to explain the image
characteristics.

For the above five recognized metabolite signatures, each could
be correlated with or explain several embedding features at differ-
ent locations of the gastrointestinal tract (Fig. 4F). For example,
Estrone glucuronide displayed an association with embedding fea-
tures at many locations across the gastrointestinal tract, suggesting
its potential universal participation in gastrointestinal diseases. Of
note, according to the annotation from HMDB (Table S3), Estrone
glucuronide exists in many tissues, including the intestine, kidney,
liver, and pancreas (Table S4). Thus, it is reasonable to assume that
this key metabolite has a location-specific association within the
gastrointestinal tract. In contrast, PC (20:4(8Z,11Z,14Z,17Z)/14:0)
demonstrated a certain association preference within the gastroin-
testinal tract, although it was reported to exist in all tissues by
HMDB (Table S4), indicating the potential functional tissue-
specificity of this metabolite feature. In addition, biliverdin is said
to exist in neurons and prostate by HMDB (Table S4), but a previ-
ous literature report stated that biliverdin can selectively modulate
the inflammatory cascade involved in intestinal muscularis func-
tion so as to attenuate morbidity to the intestine [56]. This sug-
gested that our study has found new evidence that biliverdin has
functional roles in the gastrointestinal tract and corresponding
dysfunction.

3.4. Embedding signatures of MGCE relevant to gastrointestinal
diseases

The above embedding features obtained by the unsupervised
approach can explain the essential image information. Meanwhile,
the discriminative image information on classes/phenotypes (e.g.,
disease vs normal) is also required to further explain the clinical
diagnosis and corresponding metabolite signatures. Thus, the resi-
due network (ResNet) (implemented as displayed in Fig. 5A) was
used to learn such discriminative features, i.e., embedding signa-
tures, from the same MGCE image data with additional group
labels (i.e., GD vs NL in a binary class manner).

Similarly, at different locations across the gastrointestinal tract,
the ResNet was taught using the training data (Fig. 5B) and
assessed with validation data and test data (Fig. 5C). We could
observe tissue specificity from these supervised models. The mod-
els achieved better performance for the esophagus, the body of the
stomach, the angle of the stomach, and the antrum and pylorus.
Meanwhile, they tended to have reduced test performance for
the duodenum, jejunum, and ileum. These results supported the
finding that the pathological information captured by MGCE
indeed can match with the diagnosis from the standard gas-
troscopy and mucosal biopsy methods.

With effective learning, the embedding signatures were
extracted to quantitatively measure the images from each individ-
ual. Indeed, many embedding signatures had a remarkable similar-
ity to embedding features (Fig. S1), suggesting the consistency of
feature extraction in unsupervised and supervised manners and
the preferred features associated with targeted phenotypes (e.g.,
diseases). These embedding signatures were correlated with
metabolite signatures, thus supplying new molecular explanations
of these discriminative image characteristics.

The images and molecular associations had remarkable location
specificity. Globally, Estrone glucuronide was associated with more
embedding signatures than other signatures (Fig. 5D), indicating
again its universal participation at different locations of the gas-
trointestinal tract. Locally, Estrone glucuronide further displayed
a significant positive association with stomach-specific embedding
signatures while having negative correlations with intestine-
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specific embedding signatures, suggesting the possibility of func-
tional specificity of molecules reflected by biomedical images
(Fig. 5E).

4. Conclusions

This study aimed to propose a method for collaborative nonin-
vasive identification of gastrointestinal diseases via serummetabo-
lite signatures together with MGCE embedding signatures. The
standard methods for diagnosing gastric and duodenal diseases
in the current clinical application are gastroscopy and mucosal
biopsy, procedures that are invasive and that carry high risks of
sedation and anesthesia [8]. Thus, a new noninvasive approach or
standard is urgently required. Routine blood testing is practical in
clinics, so that blood-originated markers should be very suitable
[57]. The serum metabolites have been widely studied and are
thought to be indicative of many gastrointestinal diseases. How-
ever, with this type of method, it is difficult to identify the patho-
genic condition of on-set tissues, a general issue in current
noninvasive detection. Typical biomedical imaging technology
can help reveal the disease signals from targeted tissue locations.
In particular, the newly developed MGCE method can supply com-
plete image information for nearly the entire gastrointestinal tract
[58]. Thus, the combination of serum metabolites and MGCE imag-
ing can provide effective (complementary) noninvasive identifica-
tion of gastrointestinal diseases.

In conclusion, this work first recognized five serum metabolite
signatures for distinguishing gastrointestinal diseases from normal
controls. These metabolite signatures demonstrated their potential
correlation with MGCE images by auto-encoder learning. Further-
more, they are also associated with embedding signatures repre-
senting the active region on images responsive to gastrointestinal
disease identification, as shown by ResNet learning. The detection
framework and analysis results provide a new noninvasive identi-
fication pipeline and metabolite biomarkers with image auxiliary
diagnosis, making it possible to further collaborate with other can-
didate noninvasive approaches such as circulating cell-free DNA
[59], gut metagenomics [60], or single circulating tumor cells
[61,62] by multi-omics integration methods [63–68]. The continu-
ous clinical study and application of such approaches are worth-
while for examining a large population for gastrointestinal
diseases.
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