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Objective: The aim of this study is to develop and validate a deep-learning radiomics model for predicting surgical risk factors for 
lumbar disc herniation (LDH) in young patients to assist clinicians in identifying surgical candidates, alleviating symptoms, and 
improving prognosis.
Methods: A retrospective analysis of patients from two medical centers was conducted. From sagittal and axial MR images, the 
regions of interest were handcrafted to extract radiomics features. Various machine-learning algorithms were employed and combined 
with clinical features, resulting in the development of a deep-learning radiomics nomogram (DLRN) to predict surgical risk factors for 
LDH in young adults. The efficacy of the different models and the clinical benefits of the model were compared.
Results: We derived six sets of features, including clinical features, radiomics features (Rad_SAG and Rad_AXI) and deep learning 
features (DL_SAG and DL_AXI) from sagittal and axial MR images, as well as fused deep-learning radiomics (DLR) features. The 
support vector machine(SVM) algorithm exhibited the best performance. The area under the curve (AUC) of DLR in the training and 
testing cohorts of 0.991 and 0.939, respectively, were significantly better than those of the models developed with radiomics 
(Rad_SAG=0.914 and 0.863, Rad_AXI=0.927 and 0.85) and deep-learning features(DL_SAG=0.959 and 0.818, DL_AXI=0.960 
and 0.811). The AUC of DLRN coupled with clinical features(ODI, Pfirrmann grade, SLRT, MMFI, and MSU classification) were 
0.994 and 0.941 in the training and testing cohorts, respectively. Analysis of the calibration and decision curves demonstrated good 
agreement between the predicted and observed outcomes, and the use of the DLRN to predict the need for surgical treatment of LDH 
demonstrated significant clinical benefits.
Conclusion: The DLRN established based on clinical and DLR features effectively predicts surgical risk factors for LDH in young 
adults, offering valuable insights for diagnosis and treatment.
Keywords: deep learning, radiomics, nomogram, lumbar disc herniation, surgical treatment, young adults

Introduction
Low back pain (LBP) is one of the most disabling musculoskeletal conditions globally.1,2 Various factors contribute to 
LBP, with lumbar disc herniation (LDH) being the most common.3 LDH can compress the spinal nerve roots, resulting in 
radiculopathy, which is often accompanied by severe lower limb pain, numbness, and diminished muscle strength.4 

Although most patients with LDH experience symptomatic relief after conservative treatment, some experience pro-
gressive neurological dysfunction, necessitating early surgical intervention to reduce short-term symptoms and improve 
long-term outcomes. LDH often affects working adults aged 20–40, and the burden on families and society caused by 
prolonged activity restrictions or disabilities is a significant issue.5,6 The assessment of medical history and clinical signs 
for surgical risk, along with the interpretation of lumbar MRI findings, is a complex and labor-intensive process. With the 
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increasing number of young patients with LDH, there is an urgent need to devise methods for the swift and accurate 
identification of patients suitable for surgical treatment.

LDH diagnosis requires a comprehensive assessment of the patient’s medical history, clinical signs, and imaging 
findings. Lumbar MRI plays a crucial role in evaluating the location, size, direction, and free nucleus of the disc, and 
provides essential information for surgical decision making. The Philips mDixon sequence is a rapid and noninvasive 
technique that can generate four images in a one-stop scan (water, fat, in-phase, and out-of-phase images), significantly 
reducing scanning time and simultaneously improving image quality through water–fat separation and B0 correction, and 
has been widely applied in clinical practice.7

Radiomics extracts numerous quantitative features from regions of interest (ROIs) within medical images and 
correlates them with clinical conclusions using machine learning (ML). Radiomics utilizes not only the shape, intensity 
(first-order), and texture (second-order) features of the original images, but also more advanced and abstract features such 
as wavelets.8,9 Radiomics is widely employed in spinal disease diagnosis, including in the differential diagnosis of 
metastatic tumors and osteoporosis.10

Deep learning, which is a subset of artificial intelligence (AI) algorithms, offers techniques for extracting features 
from images to detect and classify objects. Neural networks are particularly well suited for medical imaging problems.11 

Moreover, ChatGPT demonstrates the potential to supplement and enhance neurosurgical practices.12 In a deep-learning 
system, vertebrae and intervertebral discs can be detected by training a neural network, including feature extraction and 
image segmentation. The deep-learning radiomics nomogram (DLRN) is a graphical representation of a model that 
integrates radiomic and clinical features, enhancing the predictive efficiency for disease diagnosis. It can also incorporate 
deep-learning features autonomously learned from a convolutional neural network (CNN), thereby further improving the 
efficacy of the model.13 Zhao et al7 developed a deep-learning radiomics (DLR) model based on 222 radiomics features 
extracted from lumbar MR mDixon images for predicting vertebral osteoporosis; their results demonstrated the DLR 
model had excellent efficacy. Zhang et al14 also reported on the efficacy of a model that combines CT-derived DLR 
features with traditional radiomics features in distinguishing acute and chronic vertebral compression fractures. The 
results showed that the DLRN model significantly outperformed traditional radiomics models.

The evaluation process for the indications for LDH surgery is complex. To date, the application of radiomics and 
deep-learning fusion technology to assess the surgical risk factors for LDH in young patients has not been explored. 
Therefore, in this study, the extraction and fusion of radiomics and deep-learning features from sagittal and axial lumbar 
MR mDxion sequences was combined with clinical features to develop a DLRN, followed by external validation to 
swiftly and precisely identify young adult patients suitable for surgical treatment.

Material and Methods
Patients
A retrospective cohort of 1066 patients aged 16–44 with LBP, treated at Shengjing Hospital of China Medical University 
from January 1, 2022, to January 1, 2024, was used as the training cohort, including 404 patients diagnosed with LDH 
who underwent surgery. Additionally, 191 patients with LBP treated at the China Medical University Shenyang Fourth 
People’s Hospital were selected as the test cohort, with 47 patients diagnosed with LDH who underwent surgery. The 
inclusion criteria were as follows: (1) age 16–44 years and (2) availability of complete clinical data or ability to 
supplement by telephone follow-up. The exclusion criteria were (1) blurred lumbar MR (n = 28); (2) congenital diseases 
or spinal deformities (n = 22); (3) history of spinal fractures, tuberculosis, or metastatic spinal tumors (n = 21); and (4) 
previous spinal surgery (n = 9). The workflow of this study is illustrated in Figure 1. This study was approved by the 
Shengjing Hospital Ethics Committee (approval number KYCS2024040), and a waiver of informed consent was granted 
given the retrospective nature of the study and the minimal risk involved.

Dataset Collection
The clinical data of surgical inpatients and outpatients were extracted from the Neusoft Hospital Information 
Management System (HIS, version 5.0), and the integrity of the clinical information was ensured through telephone 
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Figure 1 (A) Flowchart of this multicenter study and (B) workflow of deep learning radiomic nomogram (DLRN) modeling; MR: magnetic resonance.
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follow-up. Image data were extracted using a picture archiving and communication system (PACS, version 5.5.0.20072). 
The two hospitals used the same Ingenia 3.0-T MR system (Philips Healthcare, Netherlands) with a spine coil. The MRI 
sequences are listed in Table 1.

ROI Segmentation
The lumbar MR images were imported into ITK-SNAP software (version 3.8.0, www.itksnap.org). Two senior radi-
ologists and one experienced spine surgeon (with over 10 years of experience) separately outlined the intervertebral disc 
of the surgical segment on the sagittal plane, and the axial lumbar spinal canal included the intervertebral disc or nucleus 
pulposus tissue and dura mater. The non-surgical group was selected on the basis of the most evident LDH levels. 
Disagreements, if any, were resolved through discussion, and intra-and interobserver consistency was assessed using 
intraclass correlation coefficients (ICCs). Features with an ICC value greater than 0.75 were considered to have good 
consistency.

Radiomics and Deep-Learning Feature Extraction
The feature extraction in this study encompassed traditional handcrafted features, including geometric shape, intensity, 
and texture, along with deep-learning features that were transferred from the ImageNet database using CNNs.

All handcrafted features were extracted using Pyradiomics (http://pyradiomics.readthedocs.io) to implement an 
internal feature analysis program. The software processes both the original images and ROIs, categorizing the features 
into three groups: (I) geometric shape, (II) intensity, and (III) texture. Geometric shape features characterize the three- 
dimensional form of the ROI. The intensity features depict the primary statistical distribution of voxel intensities within 
the ROI. Texture features illustrate the spatial distribution of patterns or intensities in the second and higher orders. 
Various techniques have been utilized to extract texture features, including the gray-level co-occurrence matrix (GLCM), 
gray-level difference method (GLDM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), 
and neighborhood gray-tone difference matrix (NGTDM).

We used Resnext50_ 32 × 4d as the CNN framework to extract the deep-learning features. Initially, the model was 
pretrained on the ImageNet database. Subsequently, we extracted the ROIs, fed them into Resnext50_32×4d, and 
employed the model’s penultimate average pooling layer for transfer learning, thereby extracting features.

Feature Selection and Fusion
We conducted the Mann–Whitney U-test and feature screening for all features, with P < 0.05. For features with high 
repeatability, Spearman correlation coefficient was also used, and one of the features with a correlation coefficient greater 
than 0.9 was retained. To retain the ability to depict features as much as possible, we used a greedy recursive deletion 
strategy for feature filtering; that is, the feature with the greatest redundancy in the current set was deleted each time.

The least absolute shrinkage and selection operator (LASSO) regression model was used for signature construction. 
Depending on the regulation weight λ, LASSO shrinks all regression coefficients towards zero and sets the coefficients of 
many irrelevant features exactly to zero. To find an optimal λ value, 10-fold cross validation with minimum criteria was 

Table 1 Parameters of MRI mDxion Sequences Corresponding to the Patient

Parameters T1W_mDixon_TSE 
Sagittal

T2W_mDixon_TSE 
Sagittal

T2W_mDixon_TSE 
Coronal

T2W_TSE_DRIVE

Flip Angle° 10 90 90 90

Repetition time (ms) 6.61 2500 3000 3112.5
Echo time (ms) 1.03 103 100 120

Section thickness/Intersection gap (mm) 4/2.0 4/4.4 4/4.8 4/4.4

Field of view (mm) 320 309 180 173
Matrix number 640×640 432×432 432×432 480×480

Number of excitation 2 2 2 1
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employed, where the final value of λ yielded the minimum cross-validation error. The retained features with nonzero 
coefficients were used for regression model fitting and were combined into a radiomics signature. Subsequently, we 
obtained a radiomics score (rad-score) for each patient using a linear combination of the retained features weighted by 
their model coefficients. The Python scikit-learn package was used for the LASSO regression modeling.

Owing to the characteristics of the deep-learning dimension of 2048, we adopted principal component analysis (PCA) 
to balance and reduce its dimensions to 32, simultaneously improving the model’s generalization and reducing the risk of 
overfitting. Subsequently, the radiomics features extracted from the ROI and deep-learning features selected by the model 
were initially fused. The Z-score method was used to standardize and calculate the mean and variance of each feature. 
Each feature column was transformed into a standard normal distribution by subtracting the mean, dividing it by the 
variance, and constructing the DLR features. Subsequently, feature selection was performed using the same process as for 
the radiomics features to achieve the optimal subset of fusion features.

The screening of clinical features began with baseline statistical analysis, employing univariate and multivariate 
logistic regression to identify significantly different variables and extracting features with P < 0.05. The feature selection 
process mirrored that of radiomics. To select the optimal clinical features, a receiver operating characteristic (ROC) curve 
was drawn and the top five features with the best area under the curve (AUC) values were included in the final model.

Model Construction and Validation
After feature screening and fusion, we obtained the Clinic, Rad_SAG, Rad_AXI, DL_SAG, DL_AXI, and DLR features, 
a total of 6 sets of features. These features were input into machine-learning models such as logistic regression (LR), 
support vector machine (SVM), k-nearest neighbor (KNN), decision trees, random forest (RF), extremely randomized 
trees, eXtreme gradient boosting (XGBoost), multi-layer perceptron (MLP), and light gradient boosting machine 
(LGBM), to construct the risk model. We compared the performance of the different models, and to prevent overfitting, 
a five-fold cross test was used to obtain the final DLR model. According to the performance of the model, the optimal 
rad-score was selected and fused with clinical features to construct a nomogram. The efficacy of the model was assessed 
by plotting the ROC curves and calculating the AUC, precision, sensitivity, and specificity. The DeLong test was 
employed to compare the performance of different models. Decision curve analysis (DCA) was used to evaluate clinical 
utility.

Statistical Analysis
Statistical analyses were conducted using SPSS (version 26.0; SPSS Inc., Armonk, NY, USA), R language (version 
4.2.0), and GraphPad Prism V.8.2 (GraphPad Software Inc., San Diego, CA, USA). The Mann–Whitney U-test and 
Kruskal–Wallis test were used to compare non-normally distributed data, whereas the T-test or Fisher’s exact test was 
used for normally distributed data. The X2 test was employed for comparing counting data. Univariate and multivariate 
logistic regression analyses were conducted to determine the clinical parameters. ROC curves were generated to compare 
the predictive performance (including sensitivity and specificity), with the Yoden index set as the highest performance 
threshold. A nomogram combining radiomics and clinical features was developed. The ROC curves were plotted, 
calibration curves were used to evaluate calibration efficiency, and Hosmer–Lemeshow analytical fit was applied to 
assess its calibration capability. Statistical significance was defined as P < 0.05.

Results
Clinical Baseline Characteristics
The data of 1257 patients were included in this study; 1066 patient datasets were used for internal training, and 191 
patient datasets were used for external testing. There was no significant difference between the two groups in gender, age, 
body mass index (BMI), occupation, anxiety score and LBP (all P > 0.05). Significant differences were found in visual 
analogue scale (VAS), Oswestry Disability Index (ODI), lower limb muscle strength, reflex, straight-leg raising test 
(SLRT), Michigan State University (MSU) classification of intervertebral disc, Pfirrmann grade, and fat infiltration of 
multifidus muscle (MMFI) (all P < 0.05); see Table 2. After univariate and multivariate logistic regression analyses were 
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Table 2 Clinical Characteristics and Lumbar MR Imaging Parameters (Baseline Analysis)

Variables Training Non-surgical Surgical P Test Non-surgical Surgical P

Sex 0.561 0.988

Male 528(49.53) 333(50.30) 195(48.27) 116(60.73) 88(61.11) 28(59.57)

Female 538(50.47) 329(49.70) 209(51.73) 75(39.27) 56(38.89) 19(40.43)

Age 33.23±7.38 33.09±6.99 33.45±7.99 0.156 33.10±6.90 33.49±6.84 31.91±7.02 0.196

BMI 23.59±3.58 23.56±3.26 23.62±4.05 0.924 23.37±3.25 23.11±2.77 24.17±4.35 0.33

Labor 0.872 0.078

Mild 626(58.72) 387(58.46) 239(59.16) 160(83.77) 125(86.81) 35(74.47)

Heavy 440(41.28) 275(41.54) 165(40.84) 31(16.23) 19(13.19) 12(25.53)

Smoke 0.953 0.314

No 924(86.68) 573(86.56) 351(86.88) 169(88.48) 125(86.81) 44(93.62)

Yes 142(13.32) 89(13.44) 53(13.12) 22(11.52) 19(13.19) 3(6.38)

Alcoholism 0.001 0.964

No 985(92.40) 626(94.56) 359(88.86) 169(88.48) 128(88.89) 41(87.23)

Yes 81(7.60) 36(5.44) 45(11.14) 22(11.52) 16(11.11) 6(12.77)

Duration <0.001 0.01

<3 months 433(40.62) 296(44.71) 137(33.91) 105(54.97) 71(49.31) 34(72.34)

>3 months 633(59.38) 366(55.29) 267(66.09) 86(45.03) 73(50.69) 13(27.66)

Special diet 1.000 1.000

No 1065(99.91) 661(99.85) 404(100.00) 190(99.48) 143(99.31) 47(100.00)

Yes 1(0.09) 1(0.15) - 1(0.52) 1(0.69) –

Drug abuse 0.003 1.000

No 1054(98.87) 660(99.70) 394(97.52) 190(99.48) 143(99.31) 47(100.00)

Yes 12(1.13) 2(0.30) 10(2.48) 1(0.52) 1(0.69) –

Education 0.02 <0.001

high 788(73.92) 506(76.44) 282(69.80) 152(79.58) 123(85.42) 29(61.70)

low 278(26.08) 156(23.56) 122(30.20) 39(20.42) 21(14.58) 18(38.30)

Income 0.235 <0.001

Above average 860(80.68) 542(81.87) 318(78.71) 149(78.01) 122(84.72) 27(57.45)

Below average 206(19.32) 120(18.13) 86(21.29) 42(21.99) 22(15.28) 20(42.55)

Diabetes <0.001 0.324

No 1020(95.68) 647(97.73) 373(92.33) 185(96.86) 141(97.92) 44(93.62)

Yes 46(4.32) 15(2.27) 31(7.67) 6(3.14) 3(2.08) 3(6.38)

Hypertension <0.001 0.303

No 1047(98.22) 659(99.55) 388(96.04) 188(98.43) 143(99.31) 45(95.74)

Yes 19(1.78) 3(0.45) 16(3.96) 3(1.57) 1(0.69) 2(4.26)

APSH 0.02 1.000

No 926(86.87) 588(88.82) 338(83.66) 177(92.67) 133(92.36) 44(93.62)

Yes 140(13.13) 74(11.18) 66(16.34) 14(7.33) 11(7.64) 3(6.38)

Depression score 40.78±9.70 40.08±10.31 41.92±8.50 0.012 39.92±10.58 39.28±11.17 41.87±8.32 0.085

Anxiety score 38.76±8.73 38.54±8.71 39.13±8.77 0.298 40.65±10.74 41.17±11.33 39.06±8.59 0.264

VAS 3.51±1.03 3.11±0.99 4.17±0.71 <0.001 3.32±1.03 3.03±0.97 4.23±0.56 <0.001

ODI 31.42±9.31 29.71±8.20 34.22±10.29 <0.001 30.03±8.57 28.30±7.64 35.34±9.16 <0.001

LLA(°) 28.41±10.47 28.05±10.79 29.01±9.89 0.143 25.21±9.99 24.34±9.81 27.87±10.17 0.035

LSA(°) 29.22±7.59 30.52±7.29 27.07±7.60 <0.001 28.94±7.30 30.06±7.25 25.49±6.35 <0.001

SSA(°) 42.96±7.92 43.43±7.49 42.18±8.53 0.012 42.30±7.44 43.19±7.00 39.57±8.14 0.004

PMMCSA(mm2) 1315.55±409.36 1284.72±399.56 1366.08±420.57 0.002 1320.55±398.45 1285.68±391.81 1427.40±403.78 0.062

QLMCSA(mm2) 495.96±152.68 474.41±141.49 531.27±163.58 <0.001 480.72±154.55 462.36±139.07 536.96±185.06 0.029

MMCSA(mm2) 685.43±177.92 685.98±170.76 684.52±189.29 0.95 671.31±168.05 665.51±158.58 689.09±195.06 0.327

ESMCSA(mm2) 1260.85±355.02 1260.85±345.07 1260.85±371.19 0.925 1270.05±362.59 1266.92±373.08 1279.62±331.96 0.536

L1/2SFTT(mm) 13.15±6.96 12.13±6.35 14.81±7.58 <0.001 11.98±6.30 10.95±4.89 15.16±8.71 <0.001

(Continued)
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Table 2 (Continued). 

Variables Training Non-surgical Surgical P Test Non-surgical Surgical P

LBP 0.444 0.371

No 298(27.95) 191(28.85) 107(26.49) 27(14.14) 18(12.50) 9(19.15)

Yes 768(72.05) 471(71.15) 297(73.51) 164(85.86) 126(87.50) 38(80.85)

Sciatica <0.001 <0.001

No 597(56.00) 343(51.81) 254(62.87) 169(88.48) 144(100.00) 25(53.19)

Yes 469(44.00) 319(48.19) 150(37.13) 22(11.52) – 22(46.81)

Conservative treatment 0.786 0.783

No 598(56.10) 374(56.50) 224(55.45) 158(82.72) 118(81.94) 40(85.11)

Yes 468(43.90) 288(43.50) 180(44.55) 33(17.28) 26(18.06) 7(14.89)

Superficial sensation 0.045 <0.001

No 1012(94.93) 621(93.81) 391(96.78) 173(90.58) 137(95.14) 36(76.60)

Yes 54(5.07) 41(6.19) 13(3.22) 18(9.42) 7(4.86) 11(23.40)

Reflex <0.001 0.481

No 746(69.98) 510(77.04) 236(58.42) 155(81.15) 119(82.64) 36(76.60)

Yes 320(30.02) 152(22.96) 168(41.58) 36(18.85) 25(17.36) 11(23.40)

Weakened Strength <0.001 <0.001

No 862(80.86) 597(90.18) 265(65.59) 169(88.48) 144(100.00) 25(53.19)

Yes 204(19.14) 65(9.82) 139(34.41) 22(11.52) – 22(46.81)

SLRT <0.001 <0.001

No 1022(95.87) 649(98.04) 373(92.33) 182(95.29) 142(98.61) 40(85.11)

Yes 44(4.13) 13(1.96) 31(7.67) 9(4.71) 2(1.39) 7(14.89)

MSU classification <0.001 <0.001

1A 137(12.76) 136(20.54) – 25(13.09) 25(17.36) –

1B 62(5.82) 59(8.91) 3(0.74) 9(4.71) 9(6.25) –

1C 22(2.06) 21(3.17) 1(0.25) 7(3.66) 6(4.17) 1(2.13)

2A 260(24.39) 236(35.65) 24(5.94) 54(28.27) 52(36.11) 2(4.26)

2B 220(20.17) 121(17.98) 99(23.76) 49(25.65) 34(23.61) 15(31.91)

2C 8(0.75) 2(0.30) 6(1.49) 0(0.00) – –

3A 86(8.07) 31(4.68) 55(13.61) 14(7.33) 8(5.56) 6(12.77)

3B 141(13.23) 12(1.81) 129(31.93) 16(8.38) – 16(34.04)

2AB 72(6.75) 43(6.50) 29(7.18) 11(5.76) 10(6.94) 1(2.13)

3AB 58(5.44) 2(0.30) 56(13.86) 6(3.14) – 6(12.77)

Pfirrmann grade <0.001 0.011

Mild 716(67.17) 500(75.53) 216(53.47) 139(72.77) 112(77.78) 27(57.45)

Severe 350(32.83) 162(24.47) 188(46.53) 52(27.23) 32(22.22) 20(42.55)

Modic change <0.001 <0.001

No 897(84.15) 588(88.82) 309(76.49) 160(83.77) 132(91.67) 28(59.57)

Yes 169(15.85) 74(11.18) 95(23.51) 31(16.23) 12(8.33) 19(40.43)

Annulus fibrosus tear 0.001 <0.001

No 723(67.82) 425(64.20) 298(73.76) 133(69.63) 115(79.86) 18(38.30)

Yes 343(32.18) 237(35.80) 106(26.24) 58(30.37) 29(20.14) 29(61.70)

Lumbodorsal myofascitis 0.943 0.075

No 939(88.09) 584(88.22) 355(87.87) 187(97.91) 143(99.31) 44(93.62)

Yes 127(11.91) 78(11.78) 49(12.13) 4(2.09) 1(0.69) 3(6.38)

PMMFI 1.000 1.000

Mild 1065(99.91) 661(99.85) 404(100.00) 191(100.00) 144(100.00) 47(100.00)

Severe 1(0.09) 1(0.15) – 0(0.00) – –

QLMFI 0.059 0.347

Mild 1029(96.53) 645(97.43) 384(95.05) 185(96.86) 138(95.83) 47(100.00)

Severe 37(3.47) 17(2.57) 20(4.95) 6(3.14) 6(4.17) –

(Continued)
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performed, some factors that may cause bias due to the small sample size, such as diabetes, hypertension, adverse drug 
use, alcohol abuse, and education, were excluded. The remaining factors are drawn to ROC, and the top five features with 
the highest AUC values (ODI, Pfirrmann grade, SLRT, MMFI, and MSU classification) were included in the final clinical 
model (Table 3 and Figure 2).

Table 2 (Continued). 

Variables Training Non-surgical Surgical P Test Non-surgical Surgical P

ESMFI <0.001 0.129

Mild 961(90.15) 622(93.96) 339(83.91) 165(86.39) 128(88.89) 37(78.72)

Severe 105(9.85) 40(6.04) 65(16.09) 26(13.61) 16(11.11) 10(21.28)

MMFI <0.001 0.044

Mild 922(86.49) 598(90.33) 324(80.20) 180(94.24) 139(96.53) 41(87.23)

Severe 144(13.51) 64(9.67) 80(19.80) 11(5.76) 5(3.47) 6(12.77)

Abbreviations: BMI, body Mass Index; APSP, history of abdominal or pelvic surgery; VAS, visual analogue scale; ODI, Oswestry disability index; LLA, lumbar lordosis angle; 
LSA, lumbosacral angle; SSA, sacrum slant angle; PMMCSA, cross sectional area of the psoas major muscle; QLMCSA, cross sectional area of quadratus lumbosae muscle; 
MMCSA, cross sectional area of multifidus muscle; ESMCSA, cross sectional area of erector spinae muscle; PMMFI, fat infiltration in the psoas major muscle; QLMFI, fat 
infiltration in the quadratus lumbosae muscle; MMFI, fat infiltration in the multifidus muscle; ESMFI, fat infiltration in the erector spinae muscle; L1/2SFTT, Subcutaneous fat 
tissue thickness at L1-2 level; MSU classification, Michigan State University (MSU) classification of intervertebral disc; SLRT, straight leg raising test.

Table 3 Univariate and Multivariate Analysis of Clinical Features and Lumbar MR Imaging 
Parameters

Variables Univariate Analysis Multivariate Analysis

OR (95% CI) P OR (95% CI) P

L1/2SFTT 1.057(1.038–1.077) <0.001 1.042 (1.016–1.069) 0.001

ESMFI 2.307(1.619–3.3) <0.001 1.674 (1.025–2.738) 0.039
MMFI 2.982(1.977–4.548) <0.001 3.114 (1.778–5.533) <0.001

QLMFI 1.976(1.023–3.861) 0.043

PMMFI 0(NA-3.165) 0.97
ESMCSA 1 (0.998–1.002) <0.001 1 (0.999–1.002) 0.266

MMCSA 1(0.999–1.001) 0.896

QLMCSA 1.002(1.002–1.003) <0.001 1.002 (1.001–1.003) <0.001
PMMCSA 1 (1–1.001) 0.002

Lumbodorsal myofascitis 1.033(0.703–1.507) 0.866

Annulus fibrosus tear 0.638(0.484–0.836) 0.001 0.508 (0.342–0.746) 0.001
Modic change 2.443(1.752–3.418) <0.001 1.388 (0.882–2.188) 0.156

Pfirrmann grade 2.686(2.065–3.501) <0.001 1.986 (1.381–2.864) <0.001

MSU classification 1.003(1.001–1.006) <0.001 1.007 (1.005–1.009) <0.001
LSA 0.98(0.965–0.996) 0.012 1.033 (1.004–1.063) 0.025

LLA 0.939(0.922–0.955) <0.001 0.918 (0.889–0.946) <0.001

SSA 1.009(0.997–1.021) 0.144
Weakened Strength 4.818(3.484–6.722) <0.001 3.773 (2.422–5.945) <0.001

SLRT 2.388(1.828–3.126) <0.001 3.322 (2.251–4.943) <0.001

Reflex 4.149(2.192–8.302) <0.001 7.266 (3.192–17.46) <0.001
Superficial sensation 0.504(0.257–0.926) 0.035

Conservative treatment 1.044(0.813–1.339) 0.738

ODI 1.056(1.041–1.072) <0.001 1.030 (1.010–1.050) 0.003
VAS 3.591(3.031–4.295) <0.001 3.477 (2.842–4.303) <0.001

Sciatica 0.635(0.492–0.817) <0.001 0.438 (0.301–0.634) <0.001

Duration 1.576(1.221–2.04) 0.001 1.126 (0.811–1.562) 0.551

(Continued)
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Features Selection
A total of 107 radiomics features were initially extracted from the T2W_mDixon_TSE sagittal images. After screening 
by LASSO and 10-fold cross testing, the penalty coefficient (λ = 0.0015) was determined, and 35 features were obtained. 
Similarly, 95 radiomics features were initially extracted from the T2W_mDixon_TSE axial images. Using the same 
method, the penalty coefficient was determined (λ = 0.0063), and 18 features were obtained.

By using the Resnext50_32x4d model architecture, the network was initially pretrained on the ImageNet database and 
then fed with the maximum-level ROIs, resulting in deep-learning features with 2040 dimensions. After PCA reduced the 
dimensions to 32, using LASSO and 10-fold cross-validation testing, the sagittal penalty coefficient (λ = 0.0020) and 
axial penalty coefficient (λ = 0.0036) were determined, and finally 31 sagittal and 30 axial deep-learning features were 
extracted (Figure 3 and Supplementary Figure 1).

DLR was obtained by fusion of these features after LASSO and a 10-fold cross-validation test, with a penalty 
coefficient λ of 0.0041, yielding 114 feature parameters (Figure 4 and Supplementary Figure 2).

Predictive Performance of the Models
In this study, multiple features were incorporated into various machine-learning models. External testing results show 
that, in Rad_SAG, the three models with best performance were LR (AUC = 0.879), MLP (AUC = 0.874), and SVM 
(AUC = 0.863), and the three models with the best performance in Rad_AXI were SVM (AUC = 0.85), XGBoost (AUC 
= 0.842) and MLP (AUC = 0.833). SVM (AUC = 0.818), LR (AUC = 0.8), MLP (AUC = 0.792) were the three models 
with the best performance in DL_SAG, and MLP (AUC = 0.856), LR (AUC = 0.831) and SVM (AUC = 0.811) were the 
three models with the best performance in DL_AXI. The three models with the best performance in DLR were SVM 
(AUC = 0.939), LR (AUC = 0.932) and MLP (AUC = 0.918). The three best-performing clinical models were 
LightBGM (AUC = 0.922), XGBoost (AUC = 0.914), and SVM (AUC = 0.904); see Supplementary Figure 3 and 
Supplementary Tables 1–7. According to these results, no algorithm performed the best among all the models; therefore, 
the top three results were counted and voted according to the number of times. Finally, we chose SVM as the framework 

Table 3 (Continued). 

Variables Univariate Analysis Multivariate Analysis

OR (95% CI) P OR (95% CI) P

LBP 1.126(0.854–1.489) 0.404

Anxiety score 1.008(0.994–1.022) 0.28
Depression score 1.02(1.007–1.033) 0.003 1.018 (1.000–1.038) 0.046

Alcoholism 2.18(1.383–3.46) 0.001

Smoke 0.972(0.672–1.396) 0.879
APSH 1.552(1.083–2.219) 0.016

Income 1.221(0.895–1.663) 0.205

Education 1.403(1.062–1.852) 0.017
Drug abuse 8.376(2.194–54.67) 0.006

Special diet 0(NA-3.165) 0.97

Hypertension 9.058(2.995–39.12) <0.001
Diabetes 3.585(1.942–6.906) <0.001

Labor 0.972(0.755–1.249) 0.822

Abbreviations: BMI, body Mass Index; APSP, history of abdominal or pelvic surgery; VAS, visual analogue scale; 
ODI, Oswestry disability index; LLA, lumbar lordosis angle; LSA, lumbosacral angle; SSA, sacrum slant angle; 
PMMCSA, cross sectional area of the psoas major muscle; QLMCSA, cross sectional area of quadratus lumbosae 
muscle; MMCSA, cross sectional area of multifidus muscle; ESMCSA, cross sectional area of erector spinae muscle; 
PMMFI, fat infiltration in the psoas major muscle; QLMFI, fat infiltration in the quadratus lumbosae muscle; MMFI, fat 
infiltration in the multifidus muscle; ESMFI, fat infiltration in the erector spinae muscle; L1/2SFTT, Subcutaneous fat 
tissue thickness at L1-2 level; MSU classification, Michigan State University (MSU) classification of intervertebral 
disc; SLRT, straight leg raising test.
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for model construction. The efficiency of the nomogram in the test cohort was 0.941 (95% CI 0.894–0.989), which was 
good and avoided the bias caused by the confusing algorithm (Figures 5 and 6 and Table 4).

The SVM was judged the optimal model for radiomics. Among all the models, DLR had the best performance 
(Figure 7 and Supplementary Figure 3), with an AUC of 0.991 (95% CI 0.985–0.997) in the training cohort and 0.939 
(95% CI 0.891–0.987) in the test cohort. The nomogram constructed by the fusion of clinical features had an AUC of 
0.994 (95% CI 0.989–0.999) in the training cohort and 0.941 (95% CI 0.894–0.989) in the test cohort. Analysis using the 
DeLong test found statistical differences between the radiomics, DL, and DLR models vs nomogram in the training and 
test cohort (P < 0.05). In the training cohort, the difference between the clinical model and the nomogram was 
statistically significant (P < 0.05), but not in the test cohort (P = 0.338) (Figure 8). The calibration curves showed 
close agreement between the predicted and observed values in the training and test cohorts, and the Hosmer–Lemeshow 
test (P > 0.05) showed good adaptability (Figure 9). DCA showed that the nomogram had significant clinical benefits in 
predicting probabilities over a wide range, and its efficacy was higher than that of the other models (Figure 10).

Nomogram Construction
The five selected clinical features (ODI, Pfirrmann grade, SLRT, MMFI, and MSU classification) and DLR were 
combined to construct a DLRN, which more intuitively demonstrated the efficacy of the model and was conducive to 
individualized risk prediction and clinical promotion (Figure 11).

Figure 2 ROC curves for the clinical characteristics. The final selected 5 features had the following AUC values: ModA was ODI (AUC=0.628), ModB was SLRT 
(AUC=0.593), ModC was Pfirrmann grading (AUC=0.61), ModD was MSU classification (AUC=0.894), and ModE was MMFI (AUC=0.623).
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Discussion
The aim of this study was the innovative use of lumbar MR T2W_mDxion sagittal and axial images with separately 
handcrafted ROIs to extract traditional radiomic features. The Resnext50_32x4d model architecture was pre-trained in 
the ImageNet database and used to extract deep-learning features, after which LASSO and 10-fold cross tests were used 

Figure 3 (A) Coefficient distribution and (B) mean standard error of 10-fold cross validation in the LASSO feature selection, also showing the optimal penalty coefficient λ 
of 0.0041 for deep-learning radiomics (DLR).
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for feature screening, multiple machine-learning algorithms were used for modeling, and external tests were conducted 
simultaneously to verify the model efficiency and build the DLRN. In this study, nomogram showed excellent predictive 
performance and good calibration of surgical risk factors for LDH in young adults, with an AUC of 0.994 (95% CI 
0.989–0.999) in the training cohort and 0.941 (95% CI 0.894–0.989) in the test cohort; DCA showed better clinical 
benefits.

Currently, the use of artificial intelligence (AI) in lumbar disease diagnosis mainly includes automatic positioning and 
sizing of the disc and positioning and measurement of the spinal canal. Zheng et al15 used BianqueNet to automatically 
segment the vertebra and disc and predict the degree of disc degeneration with an accuracy of 92%. Zhou et al16 applied a 
CNN and used a transfer-learning method to automatically locate lumbar vertebrae from L1 to S1. Its advantage was that 
it did not use labeled MR images for training, and the algorithm achieved 98.6% accuracy. Hallinan et al17 developed a 
deep-learning model using Resnet101, and found that it was reliable for diagnosing central canal stenosis (AUC = 0.82), 
lateral recess stenosis (AUC = 0.72), and foraminal stenosis (AUC = 0.75). Won et al18 reported no significant difference 
between the grading of spinal stenosis using a deep-learning model and that by spinal surgeons. However, these studies 
mainly focused on imaging, lacked clinical signs, and could not predict the risk factors for lumbar diseases.

Studies have also shown that AI can be helpful in predicting LDH prognosis. Harada et al19 developed a risk 
prediction model for preventing postoperative lumbar disc recurrence by using XGBoost, and finally included seven 
factors such as ODI, symptom duration, and BMI (AUC = 0.72); they found that young patients with LDH have a higher 
risk of postoperative recurrence, which is similar to the findings of Abdu et al, who published a study on the effect of 
surgery on recurrent lumbar discs.20 Saravi et al4 extracted the preoperative radiomics features of lumbar MR and used 
SVM, XGBoost, and random trees combined with clinical features to predict the postoperative effect of LDH; the results 
showed that the accuracy was higher than that of the clinical prediction model alone. Nevertheless, these studies mainly 
focused on clinical signs. Here, we used radiomics-DL fusion feature modeling and included the patients’ clinical 
characteristics to predict the surgical risk of young patients with LDH. We found that DLR had better prediction 

Figure 4 Histogram of the deep-learning radiomics (DLR) feature importance score.
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Figure 5 Visualization of deep-learning models: (A) DL_SAG and (D) DL_AXI showed the local entropy image; (B) DL_SAG and (E) DL_AXI showed the ROI of lumbar 
MR, (B) was the intervertebral disc, (E) including the intervertebral disc protruding into the spinal canal and the dura in the spinal canal; (C) DL_SAG and (F) DL_AXI were 
the results of the cluster showing that the model had a good fusion effect.

Figure 6 Comparison of AUC values for each group of features under the SVM algorithm in the (A) training and (B) test cohort; in both cohorts, the AUC of DLR was 
higher than any other radiomics feature models, and DLRN was the optimal model.
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performance than the above single models, and DLRN combined with clinical characteristics was more convincing in 
predicting efficiency.

In this study, after a voting process was conducted, SVM was ultimately chosen to build the model, and a nomogram 
with an AUC of 0.941 in the test cohort showed good performance. Gaonkar et al21 also used an SVM to segment the 
lumbar canal area on axial lumbar MRI images, and the Deep-U-Net model was used to segment the disc in the sagittal 
plane, which can assist in the diagnosis of spinal stenosis. Hashia et al22 reported a texture feature (GLRLM) based on 
sagittal lumbar MR and modeling by SVM to distinguish disc herniation, with an accuracy of 0.833. In summary, SVM 

Table 4 Performance of Each Model in the Training and Test Cohorts Under the SVM Algorithm

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Threshold Task

Clinic 0.825 0.906 0.8885–0.9238 0.822 0.826 0.743 0.884 0.283 train
Clinic 0.801 0.904 0.8549–0.9538 0.809 0.799 0.567 0.927 0.278 test

Rad_SAG 0.856 0.914 0.8956–0.9324 0.859 0.853 0.782 0.908 0.357 train

Rad_SAG 0.791 0.863 0.8006–0.9255 0.809 0.785 0.551 0.926 0.444 test
Rad_AXI 0.878 0.927 0.9100–0.9446 0.874 0.881 0.817 0.92 0.367 train

Rad_AXI 0.848 0.85 0.7853–0.9156 0.638 0.917 0.714 0.886 0.646 test

DL_SAG 0.888 0.959 0.9469–0.9710 0.884 0.891 0.832 0.926 0.355 train
DL_SAG 0.791 0.818 0.7431–0.8928 0.681 0.826 0.561 0.888 0.475 test

DL_AXI 0.909 0.96 0.9478–0.9720 0.918 0.903 0.853 0.948 0.378 train
DL_AXI 0.696 0.811 0.7393–0.8828 0.851 0.646 0.44 0.93 0.272 test

DLR 0.967 0.991 0.9851–0.9968 0.975 0.962 0.94 0.985 0.366 train

DLR 0.921 0.939 0.8914–0.9874 0.83 0.951 0.848 0.945 0.624 test
Nomogram 0.973 0.994 0.9894–0.9990 0.983 0.967 0.947 0.989 0.329 train

Nomogram 0.911 0.941 0.8936–0.9885 0.872 0.924 0.788 0.957 0.57 test

Figure 7 ROC curves of DLR features for different deep-learning algorithms in the test cohort; the results showed the SVM was the optimal algorithm.
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Figure 8 Delong test for the (A) training and (B) testing cohorts; (A) revealed that the nomogram outperformed models constructed with other features (P < 0.05), and 
(B)indicated that the nomogram surpassed models constructed with radiomics features, deep learning, or DLR (P < 0.05), yet its performance enhancement was not notably 
distinct when compared to clinical models (P = 0.338).

Journal of Multidisciplinary Healthcare 2024:17                                                                                 https://doi.org/10.2147/JMDH.S493302                                                                                                                                                                                                                       

DovePress                                                                                                                       
5845

Dovepress                                                                                                                                                              Fan et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 9 Calibration curves of different models in the (A) training and (B) test cohorts; the curves demonstrated close agreement between model predictions and actual 
observations. Nomogram exhibited the best performance, with P > 0.05 obtained from the Hosmer–Lemeshow test. The horizontal axis represents the predicted 
probability, and the vertical axis represents the actual probability. The diagonal dotted line in the graph signifies perfect alignment between predicted and actual probabilities 
under ideal conditions.
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Figure 10 DCA in the (A) training and (B) test cohorts; the X-axis represents threshold probability, and the Y-axis represents net benefit. The black line represents all 
positive assumptions, and the dashed line represents negative assumptions. The results indicate that the nomogram achieved significant clinical benefit in both the training 
and testing cohorts; furthermore, when compared to clinical features or DLR, the threshold probability range of the nomogram surpassed that of other features.
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has been widely used in the diagnosis of spine diseases and has achieved good performance. We used ResNext50_32x4d 
to pretrain the model in the ImageNet database and extract DL features. ImageNet, the world’s largest image database 
with excellent generalizability, has been used extensively across clinical domains. For instance, Zhang et al23 employed 
three DL models (ResNet50, ResNet101, and DenseNet121), pre-training on ImageNet to develop a model for predicting 
sacroiliac arthritis. The test cohort achieved an AUC of 0.91, demonstrating superior performance. ResNext merges the 
Inception philosophy with ResNet, inheriting the strengths of both. It innovatively introduces the cardinality dimension, 
surpassing the classification accuracy of ResNet, and addresses the complexity inherent in Inception’s structural design. It 
enhances accuracy while maintaining model complexity, requires fewer hyperparameters for migration, and exhibits 
strong scalability.24

Our results showed that clinical factors including ODI, Pfirrmann grade, MSU classification, SLRT, and MMFI 
objectively reflect the LDH severity. ODI can comprehensively assess the patient’s pain, life self-care ability, and other 
factors; and VAS is less effective than ODI.25 The Pfirrmann grade is widely used to clinically assess disc degeneration. 
This system categorizes the disc degeneration process into five levels, with Grades I–III indicating mild degeneration and 
normal disc height and Grades IV and V indicating severe degeneration and collapse of the disc height. Diverse research 
has employed radiomics or DL to automate the identification of disc degeneration, emphasizing the critical role of the 
Pfirrmann grade in disc disorders; the MSU classification of discs on axial MRI images is regarded a crucial indicator for 
surgical indications. This method divides disc herniation (degree and size) into categories 1-2-3, and the protrusion site 
(location) into A-B-C regions. Surgical validation showed 98% reliability with postoperative ODI improvement, 
indicating the widespread clinical applicability of this method.26 Zhang et al27 categorized the MSU classification into 
grades 0, I, II, and III by employing faster R-CNN localization to identify the effective LDH area. Subsequently, a 
prediction model was developed using ResNext101, which demonstrated effective performance. The straight-leg raise 
and strengthening tests, particularly the contralateral versions, are critical indicators of LDH severity. For patients with 
progressive neurological dysfunction, early surgery is advised,28 with greater functional recovery than that in the non- 
surgical group; six months may serve as a threshold.29,30 The paraspinal muscles play a key role in maintaining the 
stability and dynamic regulation of the spine, with the multifidus muscle located on the innermost side having a 
prominent effect.31 Current research indicates that MMFI is associated with LBP in young patients.32,33 Additionally, 

Figure 11 Constructing the deep learning radiomics nomogram: In the nomogram, a vertical line was drawn on the point axis to obtain the individual points corresponding 
to each model under different values. The scores of all features were added together to obtain the total points of the patient, and then a vertical line was drawn downward at 
the position of the total score to finally obtain the prediction probability.
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studies have demonstrated a correlation between the MMFI and lumbar disc degeneration (LDD). Faur et al34 assessed 
the degree of LDD at L4/5 and L5/S1 by analyzing lumbar MRI from 35 patients with CLBP and found a strong 
correlation between LDD and MMFI. In this study, we qualitatively analyzed MMFI using the Goutallier grading system, 
a widely accepted standard for evaluating fat infiltration in paraspinal muscles. The criteria were as follows: 0 points for 
almost no fat in the muscle, 1 point for fat stripes, 2 points for less fat than muscle, 3 points for roughly equal amounts of 
muscle and fat, and 4 points for more fat than muscle tissue.35,36 We further classified 0–2 points as mild and 3–4 points 
as severe. The results confirmed that the MMFI grade in patients undergoing surgery for LDH was higher than that in the 
non-surgery group, which also indicated that the MMFI was correlated with the severity of LDH. In summary, we 
included ODI, which represents patients’ subjective feelings; SLRT, which represents patients’ clinical signs; lumbar MR 
parameters such as Pfirrmann grade, MSU classification, and MMFI; and combined DLR to construct a nomogram.

MR mDixon is a technique that utilizes the chemical shift effect to perform water-fat separation through in-phase and 
anti-phase imaging. This enables quantitative fat analysis, which has demonstrated exceptional efficacy.37 Currently, the 
use of mDixon is expanding in the assessment of lumbar paraspinal muscle fat infiltration and sarcopenia. Khil et al35 

reported the use of mDixon to evaluate lumbar and dorsal muscle fat infiltration in asymptomatic volunteers and yielded 
promising results. Chen et al38 reported that fat infiltration in the multifidus muscle increases with age. mDixonTSE 
enabled T1-, T2-, and PD-weighted imaging, offering precise water-fat separation technology that was particularly 
effective in situations involving difficult field homogenization, irregular anatomical structures, or metal implants. 
Additionally, it produces superior fat suppression images, especially suited for intricately structured areas such as the 
spine, thereby facilitating the provision of highly accurate imaging parameters that are helpful in model feature extraction 
and the improvement of model efficiency.

Limitations: 1. Despite being a multicenter trial, the target population exhibited regional characteristics and bias, 
necessitating future testing with large samples from multiple centers and ethnicities. 2. The focus of this study was young 
adults; conversely, elderly patients primarily suffer from lumbar spinal stenosis, which has a more complex etiology than 
LDH and could be a focus of future research. 3. Factors such as smoking, basic diseases, adverse medication history, 
income, and education level did not contribute to the final clinical features, owing to the limited representation of young 
patients in this study. Prospective multicenter studies are recommended to enhance the efficacy of the model.

Conclusion
The results of this study confirm that the DLR prediction model surpasses standalone clinical models in assessing 
surgical indications in young patients with LDH. Additionally, a comprehensive nomogram was developed to aid 
clinicians in better managing surgical indications, thereby guiding patients towards early treatment, symptom relief, 
and improved long-term prognosis.
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