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A B S T R A C T   

Across the United States public health community in 2020, in the midst of a pandemic and increased concern 
regarding racial/ethnic health disparities, there is widespread concern about our ability to accurately estimate 
small-area disease incidence rates due to the absence of a recent census to obtain reliable population de
nominators. 2010 decennial census data are likely outdated, and intercensal population estimates from the 
Census Bureau, which are less temporally misaligned with real-time disease incidence data, are not recom
mended for use with small areas. Machine learning-based population estimates are an attractive option but have 
not been validated for use in epidemiologic studies. Treating 2010 decennial census counts as a “ground truth”, 
we conduct a case study to compare the performance of alternative small-area population denominator estimates 
from surrounding years for modeling real-time disease incidence rates. Our case study focuses on modeling 
health disparities in census tract incidence rates in Massachusetts, using population size estimates from the 
American Community Survey (ACS), the most commonly-used intercensal small-area population data in epide
miology, and WorldPop, a machine learning model for high-resolution population size estimation. Through 
simulation studies and an analysis of real premature mortality data, we evaluate whether WorldPop de
nominators can provide improved performance relative to ACS for quantifying disparities using both census 
tract-aggregate and race-stratified modeling approaches. We find that biases induced in parameter estimates due 
to temporally incompatible incidence and denominator data tend to be larger for race-stratified models than for 
area-aggregate models. In most scenarios considered here, WorldPop denominators lead to greater bias in esti
mates of health disparities than ACS denominators. These insights will assist researchers in intercensal years to 
select appropriate population size estimates for modeling disparities in real-time disease incidence. We highlight 
implications for health disparity studies in the coming decade, as 2020 census counts may introduce new sources 
of error.   

1. Introduction 

Public health researchers regularly confront the need for near real- 
time, small-area population estimates to serve as population de
nominators in epidemiologic studies. These studies often utilize present 
day disease incidence information, and seek to create incidence rates 
over small areas to properly characterize spatial patterns and dynamics 
of disease incidence. The calculation of reliable small-area incidence 
rates requires accurate estimates of the at-risk population size for areas 

and time periods coinciding with the incidence data. To investigate 
disparities in disease incidence across groups, demographically- 
stratified population size data are also needed. Public health research 
during the COVID-19 crisis has exemplified these challenges. In the 
United States in 2020, COVID-19 incidence data are available in near 
real time, but this is not the case for the population data, particularly for 
small areas. 

US Census Bureau (USCB) products are the default for public health 
researchers seeking intercensal population estimates. Products from the 
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USCB have the advantage of coming from a credentialed government 
agency, being aggregated by default to commonly-used geographies, 
and having detailed stratification (e.g., by age, racial/ethnic group, and 
sex). Systematic undercount of some racial and ethnic minority groups 
in USCB products is well-documented (Robinson, 2011; Robinson et al., 
1993) and poses threats to the accuracy of disparity analyses employing 
population estimates stratified by racial/ethnic group. However, 
because more reliable data are rarely available for this purpose, USCB 
products remain the primary source of population denominator data for 
these analyses. 

Likely the most commonly-used source of intercensal small-area 
population estimates today is the USCB’s American Community Sur
vey (ACS) 5-year estimates, which are based on a rolling 5-year sample 
survey. ACS 5-year estimates are appealing due to their high spatial 
resolution– they are available for all census geographies larger than 
census blocks– and their rich demographic stratification. However, ACS 
data are released on a substantial delay, so that the most recent esti
mates available at any given time typically represent population sizes for 
the 5-year interval ending two years prior. The USCB also provides 
yearly population size estimates through its Population Estimates Pro
gram (PEP), which combines the decennial census with birth, death, and 
migration data (United States Census Bureau, 2020). Annual PEP esti
mates are available by racial/ethnic group, sex, and age at the national, 
state, and county level. For minor civil divisions and incorporated pla
ces, PEP provides total population estimates only. 

Formally, the USCB recommends the use of PEP or decennial census 
counts as population size estimates in intercensal years, while using ACS 
for information about changing socioeconomic and demographic fea
tures (United States Census Bureau, 2019). However, decennial census 
counts are often outdated, and PEP estimates are unavailable for 
commonly-used small census geographies such as census tracts and 
census block groups. In many epidemiologic contexts, such as studies of 
health disparities, a focus on these smaller geographies has been shown 
to be advantageous (Krieger et al., 2003). This creates confusion about 
the appropriate source of population estimates to use, and in practice 
many studies rely on ACS small-area estimates (Krieger, Waterman, & 
Chen, 2020; Millett et al., 2020). 

Private companies and academic groups have also begun to produce 
high-resolution gridded population estimates. These estimates are based 
on machine learning models that often combine census, remote sensing, 
land use, and other information to estimate population sizes at very 
small geographies in near real-time. One of the most popular products of 
this type is WorldPop, which utilizes an open-source algorithm and 
provides yearly global high-resolution population estimates (Stevens 
et al., 2015; Tatem, 2017). Advantages of WorldPop include its 
contemporaneous nature (available for the current year) and high 
spatial resolution. However, their estimates have undergone little vali
dation, have not received wide acceptance in epidemiology, and are 
only stratified by age and sex. 

Each source of population size data brings its own types of bias and 
uncertainty. To our knowledge, no studies have yet compared the per
formance of these data sources as denominators in the context of real- 
time statistical modeling of disease rates. In this paper, we describe 
the methods used to produce ACS and WorldPop population estimates 
relevant to disease mapping models. Then, we conduct a study in which 
2010 small-area disease incidence rates are created using 2010 decen
nial census population counts, and we evaluate the bias induced when 
ACS and WorldPop data from 2010 and from one to two years prior are 
used instead as the denominator in classic health disparity models. 
These potential biases are illustrated using both a simulation study and a 
real case study of racial disparities in premature mortality in Massa
chusetts (MA). Throughout this paper, we aim to evaluate the perfor
mance of population denominator data sources when employed as we 
have observed them being used in epidemiologic practice (or as we 
anticipate they would be used in practice), and we do not intend to 
recommend that the data be used in each of the ways considered here. 

Our findings may assist epidemiologic researchers in assessing the biases 
that arise due to imperfectly measured population denominators and in 
determining whether novel high-resolution population estimate prod
ucts like WorldPop can improve on default USCB products for modeling 
real-time small-area disease incidence rates. 

2. Methods 

2.1. ACS methodology 

Since 2005 when ACS replaced the long-form decennial census, ACS 
continually collects US demographic data using a sophisticated sampling 
survey design. Briefly, within each county, ACS samples housing facil
ities from census blocks, the smallest unit of geography used by the 
USCB (600–3000 residents). Each block is assigned a sampling rate that 
is inversely related to its population size. Sampling is structured so that 
no address will be selected more than once in a 5-year period (United 
States Census Bureau, 2014). For more detail, see Section S.1. 

ACS employs four modes of data collection: internet, mail, telephone, 
and in-person visit. A complex survey weighting scheme is applied to 
adjust for sampling rates, to make estimates representative of larger area 
demographic characteristics (i.e., to conform to PEP estimates), to ac
count for differential non-response by demographic group, to adjust for 
differences by data collection mode and seasonal population shifts, and 
more (Spielman et al., 2014). On the basis of these weighted data, ACS 
compiles 1-year, 3-year, and 5-year estimates. To achieve reliable esti
mates for small areas, ACS must pool multiple years of data (Spielman 
et al., 2014). 1-year and 3-year population estimates are available only 
for geographies with populations of 65,000+ and 20,000+, respectively. 
The 3-year estimates were only produced from 2007 to 2013. The 5-year 
estimates are produced for all census geographies except census blocks, 
and they are available beginning with the 2005–2009 interval (United 
States Census Bureau, 2014). ACS 5-year population estimates are 
stratified by age, sex, and racial/ethnic group (see Section S.2 for more 
detail). ACS population estimates are also accompanied by margins of 
error. Following current practice in the disease mapping literature, we 
do not utilize these uncertainty measures in our analyses. We focus 
instead on the biases arising from the issue of temporal mismatch of 
incidence and denominator data in standard epidemiologic models. 

The USCB references each ACS 5-year release by the final year 
covered by the interval, e.g., ACS 2008–2012 estimates are referred to as 
the ACS 2012 release. The USCB discourages the use of 5-year ACS es
timates to represent the population size in the center year of the interval, 
yet in practice this is routinely done in the epidemiologic literature 
(Krieger, Wright, et al., 2020; Leas et al., 2019). Although we recognize 
this disclaimer by the USCB, throughout this paper we refer to ACS 
5-year releases by their center year, to correspond to how they are 
largely used in practice, e.g., ACS 2008–2012 will be referred to as ACS 
2010. USCB also cautions against comparing ACS 5-year estimates that 
contain overlapping years (United States Census Bureau, 2019). In spite 
of this guidance, USCB does provide documentation explaining how to 
assess trends over time using overlapping ACS data (with caveats) 
(United States Census Bureau, 2009). Moreover, we have also noted in 
longitudinal studies that ACS population size estimates from over
lapping years are used to track population changes over time (Hunt & 
Hurlbert, 2016; Krieger, Wright, et al., 2020; Mooney et al., 2018). Thus 
we will investigate the utility of time trends in population size estimates 
captured by overlapping consecutive ACS releases. 

2.2. WorldPop methodology 

WorldPop was created to generate accurate population counts that 
could be used to track the 2015 United Nations Sustainable Develop
ment Goals, with a focus on countries without timely and comprehen
sive census counts. WorldPop population size estimates are created by 
combining census counts with geospatial covariates (e.g. land cover and 
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night lights) for a given year to produce gridded population estimates 
that are at a finer scale than typical administrative units (Stevens et al., 
2015; Tatem, 2017). This process is often called “downscaling” of census 
counts (Mennis, 2009). For years 2010, 2015 and 2020, WorldPop uses 
random forest algorithms to weight and disaggregate the census data 
onto a roughly 100 m grid (referred to as a “top-down” modeling 
approach). For other years, gridded population counts are interpolated 
from these three years by applying a linear growth rate (Stevens et al., 
2015). For countries without recent or reliable census data, they also 
conduct a second modeling step that incorporates reliable survey data 
(referred to as a “bottom-up” approach). For our analyses, we use US 
WorldPop estimates produced using a top-down, unconstrained esti
mation method (WorldPop, 2021). More details and justification are 
provided in Section S.3. 

More detail about the geospatial covariates used in the US WorldPop 
models is provided in Section S.3. WorldPop also releases age- and sex- 
specific population counts produced by applying census age and sex 
proportions from larger geographies to the population estimate in each 
nested grid (for the US, WorldPop utilizes county-level age and sex 
proportions). WorldPop population datasets are available annually 
beginning in 2000 through the current year (Tatem, 2017; Stevens et al., 
2015; WorldPop, 2020). 

2.3. Data collection and alignment 

Using the tidycensus R package (Walker, 2020), we extract census 
tract (CT) population counts stratified by age, sex, and racial/ethnic 
group from the 2010 decennial census for the state of MA. Throughout 
our analyses, we consider these to be “ground truth” population counts, 
while acknowledging concerns about differential biases leading to both 
under- and over-counts (see Section 4). We collect ACS 5-year popula
tion size estimates stratified by age, sex and racial/ethnic group, for each 
CT for each year 2008–2010 (center years of ACS). 

WorldPop population size estimates are available on a three arc- 
second grid (corresponding to 100 m grids at the equator). We extract 
age- and sex-stratified gridded estimates for MA in each year 2008–2010 
(WorldPop, 2018). We generate CT-aggregate population counts for 
each age and sex stratum by assigning each grid cell to a CT determined 
by the location of its centroid, and summing the stratum-specific pop
ulation counts across grids within a CT. WorldPop does not produce 
population estimates stratified by racial/ethnic group, therefore we 
engineer them using ACS group proportions. For each age and sex 
stratum within each CT, we (1) compute the proportion of its population 
belonging to each racial/ethnic group based on the ACS and (2) multiply 
the racial/ethnic group proportions by the WorldPop stratum-specific 
estimates. This procedure yields CT-level WorldPop estimates strati
fied by racial/ethnic group, age, and sex. We use visualizations and 
summary statistics to compare decennial census, ACS, and WorldPop 
population size estimates cross-sectionally and with respect to temporal 
trends, with an eye towards understanding the effectiveness of using 
ACS and WorldPop estimates as a proxy for census counts. 

2.4. Case study of premature mortality rate modeling 

Our outcome of interest is premature mortality (death before age 
65), a common choice for studying health disparities. We investigate 
disparities in premature mortality by socioeconomic status and racial/ 
ethnic group. We primarily focus on comparisons of risk in Black and 
non-Hispanic White populations, motivated by longstanding health in
equities between these groups and sufficiently large population sizes in 
MA to support the analyses (Krieger et al., 2003, 2020b). We obtain 
2010 mortality data from the MA Department of Public Health. For each 
death certificate, the age, sex, racial/ethnic group, and location of 
residence for the deceased individual are recorded. We geocode the 
addresses and compute stratified premature mortality counts by CT (see 
Krieger et al. (2021) for more detail). 

Using the 2010 decennial census counts and each set of ACS and 
WorldPop estimates (years 2008–2010) for ages 0–64, we compute age- 
and sex-standardized 2010 premature mortality ratios (SMR) for each 
MA CT using the indirect standardization method (Chen, 2013). The 
SMRs are calculated using the CT observed count in the numerator and 
an expected count for the CT, based on its population size and age and 
sex distribution, in the denominator. This results in seven different sets 
of CT-level SMRs, each corresponding to a different set of denominator 
data. To study the impact of the different denominators in public health 
practice, we implement two modeling approaches that are commonly 
used to assess racial and socioeconomic disparities in premature 
mortality. 

First, we fit CT-aggregate models to examine the association of CT 
SMRs (outcome) with CT racial composition and socioeconomic status. 
The explanatory variables, proportion of CT residents identifying as 
Black (PropBlack) and proportion below the poverty line (PropPov), are 
both taken from ACS 2010 across all models. Using each of the seven sets 
of SMRs described above (separately), we fit a Poisson regression model 
with spatial and independent random effects, following Besag et al. 
(1991). 

As a second modeling approach, we consider a commonly-used 
variant of this model that stratifies by racial/ethnic group (hereafter 
referred to as race-stratified models for simplicity). This approach allows 
us to directly examine how within-CT Black and non-Hispanic White 
premature mortality rates differ, on average, as opposed to simply how 
the racial/ethnic composition of a CT is associated with CT premature 
mortality. Prior to model fitting, we separately age- and sex-standardize 
premature mortality within the non-Hispanic White and Black popula
tion within each CT, doing so with each of the seven sets of population 
size data. We retain these race-stratified SMRs as the outcomes in the 
modeling, and we analyze how the SMRs differ by racial/ethnic group 
(by including an indicator of Black vs. non-Hispanic White, I(Black), in 
the model) and how the SMRs are associated with the CT-aggregate 
proportion in poverty (PropPov). Again, the seven sets of SMRs are 
modeled separately, using a multi-level variant of the spatial Poisson 
regression model, following Leroux et al. (2000). 

The mathematical formulation of each set of models is provided in 
Section S.4. All models are fit using a Bayesian approach implemented in 
the CARBayes package in R (Lee, 2013). We report incidence rate ratio 
(IRR) estimates based on the relevant exponentiated coefficient 
parameter from each model. 

2.5. Simulation study 

The aim of our simulation study is to assess the magnitude of biases 
induced in estimates of health disparities by using ACS/WorldPop de
nominators in standard models when the outcomes are generated using 
2010 decennial census denominators. We conduct two sets of simula
tions, one using the age- and sex-standardized denominators described 
above and another using the crude population counts as denominators. 
Under each scenario, we simulate data from both a CT-aggregate model 
and a race-stratified model. The details of the data generation are pro
vided in Section S.5. Briefly, we employ the same real MA CT-level 
covariates used in the real data analysis, and the 2010 decennial 
census CT denominators, to generate synthetic incidence data from a 
spatial Poisson model with known parameters. We randomly generate 
100 such synthetic datasets for each of the CT-aggregate and race- 
stratified variants. We then fit models to each synthetic dataset, which 
are correctly specified except that the ACS/WorldPop denominators 
from 2008, 2009, and 2010 are used in place of the “true” 2010 census 
denominator. Bias in the resulting disparity estimates is assessed. 
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3. Results 

3.1. Cross-sectional comparison of denominators 

In Fig. 1, we map the MA CT total population sizes from ACS and 
WorldPop for each year, alongside the 2010 decennial census counts (for 
Boston alone, see Figure S.1). Across both space and time, the distri
butions of the ACS and WorldPop total CT population size estimates 
appear highly similar to the decennial census. Using year 2010 data, 
there is a correlation of > 0.99 between ACS and census and between 
WorldPop and census (see Figures S.2 and S.3 for scatterplots). 
Figure S.4 shows the distribution of the difference in CT WorldPop and 
ACS estimates separately by population density quantile (per the 2010 
census), and finds that, as CT urbanicity increases, the mean difference 
in WorldPop and ACS estimates increases (indicating higher estimates 
from WorldPop), as does the standard deviation. 

Because accurate age distributions are critical in disease mapping, 
we also investigate how CT age-stratified ACS and WorldPop estimates 
compare to those from the decennial census. As shown in Figures S.5 and 
S.6, there is considerably more noise in the relationships between the 
age-stratified ACS/WorldPop estimates (year 2010) and the decennial 
census than was observed for the total population estimates. While the 
relationship between ACS and census is stable and linear for all age 
groups, the relationship between WorldPop and census estimates for 
certain age strata is erratic and possibly non-linear. This inconsistency 
likely occurs due to WorldPop’s method of obtaining age-stratified es
timates, whereby age distributions for larger areas are projected onto 
the nested gridded high-resolution total population estimates. 

More problematic for disparity modeling, errors in WorldPop’s age- 
stratified estimates appear to be associated with key measures of 

disadvantage. To illustrate this phenomenon, in Fig. 2 we show the 
difference in decennial census and WorldPop 2010 age-stratified CT 
population estimates plotted against estimates of the percent of the CT in 
poverty (from the 2010 ACS). Roughly speaking, for a given age group, a 
positive relationship between these variables indicates that WorldPop 
tends to over-estimate population size (relative to census) for high- 
income CTs. Conversely, a negative relationship indicates that World
Pop tends to under-estimate population size for high-income CTs. From 
this Figure, it is clear that in high-income CTs, WorldPop tends to over- 
estimate the number of young people and under-estimate the number of 
older people. To understand why this might happen, consider projecting 
the age distribution of a large and diverse county, e.g., a county con
taining a major city, onto each nested CT, which is WorldPop’s 
approach. Because higher income neighborhoods tend to have fewer 
children and more older people (and vice-versa for low income neigh
borhoods), applying the age distributions of the whole city to a high 
income neighborhood would generally lead to over-estimation of the 
number of children in the CT and under-estimation of the number of 
older people. No such systematic biases (relative to the census) appear to 
exist in the ACS, as shown in Figure S.7. 

3.2. Temporal trends 

Fig. 3 shows the temporal changes in ACS CT population sizes, for 
both the total population and the Black population, grouped by county 
over the years 2008–2010. Figure S.8 presents the same plot for non- 
Hispanic Whites. The population size estimates for each year are 
shown as a proportion of the 2010 decennial census population count. 
For the total CT population, most of the ACS changes over time are 
within 10% of the 2010 census population size. Moreover, discrepancies 

Fig. 1. Spatial distribution of census tract-level 2010 decennial census population counts compared to 5-year ACS and WorldPop population estimates for years 
2008–2010, Massachusetts, USA. 
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in ACS and 2010 census population sizes do not, on the whole, appear to 
diminish as the ACS year approaches 2010. Many of the largest relative 
changes over time are in CTs with small populations. This suggests that 
ACS changes over time in the total CT population size may be attribut
able largely to sampling variability. For CT-level Black population size 
estimates, we tend to see (a) much larger relative discrepancies in ACS 
and decennial counts and (b) much larger relative changes over time in 
ACS. Again, the largest relative changes tend to occur in CTs with small 
Black populations. 

Using the procedures recommended by USCB for investigating time 
trends using overlapping ACS estimates (United States Census Bureau, 
2009), we compute the proportion of CTs with statistically significant 
changes in Black or non-Hispanic White population sizes for each 
combination of years. The results are shown in Table S.6. From 2008 to 
2010, the ACS Black population size estimates changed significantly for 
22% of CTs and the non-Hispanic White population size estimates 
changed significantly for 29% of CTs. 

Figure S.9 shows the time trends in WorldPop CT population sizes 
relative to the decennial census. Within each MA county, the CT popu
lation size estimates over time nearly all follow a common linear trend. 
This reflects WorldPop’s use of linear interpolation of the 2010 estimates 
to produce population size estimates for prior years. Naturally, this 
procedure leads to estimates that are highly model-dependent at fine 
levels of spatial and temporal granularity. 

3.3. Premature mortality modeling results 

IRR estimates and 95% Bayesian credible intervals from the CT- 
aggregate and race-stratified models are presented in Table 1. Because 
our aim is to understand the impact of different population de
nominators in real applications, we focus on the discrepancies in IRR 
estimates across models. For convenience, we refer to the IRR for the 
racial/ethnic group covariate in the models as the “race IRR” and to the 
IRR for the percent poverty covariate as the “poverty IRR”. For a 

discussion of the implications of our findings with regards to racial/ 
ethnic and socioeconomic disparities in premature mortality, see Section 
S.4.3. 

In the CT-aggregate models, we observe minimal changes in the IRR 
estimates across years for a given denominator source. This suggests that 
temporal mismatch has little impact on the IRR estimates in this context. 
The use of ACS denominators induces little bias relative to the decennial 
census, with only a slight upward bias in the poverty IRR estimate. 
WorldPop denominators lead to a substantial downward bias in the 
poverty IRR estimate relative to the census, attributable to the differ
ential error in WorldPop’s age-stratified population size estimates for 
neighborhoods with different poverty levels. Underestimation of the 
number of older people and overestimation of the number of young 
people in high income CTs results in expected premature mortality 
counts (denominators) that are artificially low, and accordingly erro
neously high SMRs in high income CTs. The opposite occurs for low 
income CTs, and this produces a downward bias in the poverty IRR 
estimate. 

In the race-stratified models, temporal mismatch of incidence data 
and ACS/WorldPop denominators may lead to greater bias in disparity 
estimates. Recall that WorldPop population sizes stratified by racial/ 
ethnic group are derived from the racial/ethnic distributions in ACS, so 
we would expect to see similar trends in the race IRR estimates across 
denominator sources. Indeed, for ACS and WorldPop, the race IRR es
timates in a given year are highly similar. Relative to the 2010 census 
results, the 2008 ACS/WorldPop race IRR estimates are the most biased, 
with bias diminishing as the year of denominator data approaches 2010. 
As in the CT-aggregate models, the poverty IRR estimate is slightly up
wardly biased when using ACS denominators and substantially down
wardly biased when using WorldPop denominators. 

3.4. Simulation results 

Results for the CT-aggregate and race-stratified simulations using 

Fig. 2. Scatterplots of difference in WorldPop 2010 and decennial census age-stratified CT population estimates vs. percent of the CT in poverty.  
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standardized denominators are shown in panels A and B, respectively, of 
Fig. 4. Figure S.10 shows analogous results from the simulations using 
crude denominators. The coefficient estimates from the 100 simulated 
datasets are summarized in boxplots, with the true parameter values 
indicated by a black horizontal line. All biases in the coefficient esti
mates are assumed to be solely due to misspecification of denominators 

(covariates are correctly specified). 
The simulation results are consistent with the findings of the real 

data analysis. In the CT-aggregate models, the use of ACS or WorldPop 
denominators induces little bias in coefficient estimates, with the 
exception of the poverty coefficient. Moreover, the bias does not 
consistently diminish as the year represented by the denominator data 

Fig. 3. MA census tract ACS total population size estimates (A) and Black population size estimates (B) over time as a proportion of 2010 decennial census population 
size. Colors represent 2010 decennial census population size bins. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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approaches 2010. This suggests that, over relatively short periods, the 
time trends in ACS denominators representing the total CT population 
may be attributable more to sampling variability than to real population 
changes. Moreover, the linear interpolation of WorldPop estimates over 
time appears to have little impact on health disparity estimates in this 
context. 

In the race-stratified simulations, we generally observe more severe 
bias in all coefficient estimates. In addition to bias in the poverty coef
ficient (primarily for WorldPop), here we also observe substantial bias in 
the race coefficients in years prior to 2010, i.e., an upward bias of about 
50% for ACS 2008 and even higher for WorldPop. This suggests that 
differential biases in ACS population size estimates by racial/ethnic 
group may be more problematic for modeling disparities than the bias in 
total CT population sizes. However, bias in the race coefficient estimates 
tends to decrease as the year of the data approaches 2010. This 

improved performance suggests that changes in the racial/ethnic 
composition of a CT in ACS, even over short periods, may represent 
meaningful changes rather than sampling variability. This agrees with 
our finding above that ACS racial/ethnic group-specific population size 
estimates changed significantly for roughly 25% of CTs between 2008 
and 2010. 

In simulations using the crude denominators (Figure S.10), ACS and 
WorldPop denominators generally perform comparably well and yield 
estimates with little bias. An exception is the race coefficient in the race- 
stratified models, which is heavily biased for both ACS and WorldPop 
and across all years. This is likely a product of the small Black pop
ulations in many MA CTs, i.e., the very small crude denominators may 
cause instability in the race coefficient. In this simulation scenario, 
because we do not impose differing disease risks by age stratum and do 
not use standardized denominators, the issue of bias in the poverty 

Fig. 4. Simulation results using standardized denominators. Parameter estimates using ACS and WorldPop population size estimates in CT-aggregate (A) and race- 
stratified (B) models. Data are generated using 2010 decennial census population sizes. True values of each parameter are denoted by the black horizontal lines. 

Table 1 
Incidence rate ratio estimates (95% credible intervals) from premature mortality models. In the CT-aggregate models, the Race variable is an ecologic variable (CT 
proportion Black), while in the race-stratified models, the Race variable is a group-level binary indicator of Black (versus non-Hispanic White). In both models, the 
Poverty variable is CT-aggregate proportion in poverty. Continuous covariates are centered and scaled.    

CT-aggregate Race-stratified 

ACS WP Census ACS WP Census 

2008 Intercept 0.97 (0.95,0.99) 0.95 (0.93,0.97) – 1.05 (1.03,1.08) 1.02 (1.00,1.05) – 
Race 1.09 (1.05,1.14) 1.10 (1.06,1.15) – 0.95 (0.88,1.03) 0.97 (0.89,1.05) – 
Poverty 1.22 (1.17,1.27) 1.10 (1.06,1.14) – 1.34 (1.29,1.39) 1.19 (1.15,1.24) – 

2009 Intercept 0.97 (0.95,0.99) 0.95 (0.93,0.97) – 1.06 (1.03,1.08) 1.03 (1.01,1.06) – 
Race 1.09 (1.05,1.13) 1.10 (1.05,1.14) – 0.92 (0.84,1.00) 0.92 (0.84,1.01) – 
Poverty 1.22 (1.18,1.26) 1.10 (1.06,1.14) – 1.34 (1.29,1.39) 1.20 (1.16,1.24) – 

2010 Intercept 0.97 (0.95,0.99) 0.95 (0.93,0.97) 0.97 (0.95,0.99) 1.07 (1.04,1.10) 1.04 (1.02,1.07) 1.07 (1.05,1.09) 
Race 1.09 (1.05,1.14) 1.10 (1.05,1.14) 1.09 (1.05,1.14) 0.88 (0.82,0.95) 0.88 (0.81,0.97) 0.89 (0.81,0.96) 
Poverty 1.22 (1.18,1.26) 1.11 (1.07,1.15) 1.19 (1.15,1.23) 1.35 (1.31,1.40) 1.21 (1.17,1.26) 1.32 (1.28,1.36)  
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coefficient is eliminated. 

4. Discussion 

In this paper, we explore the impact of using imperfect and tempo
rally mismatched population size estimates to model small-area, real- 
time disease incidence rates for epidemiologic studies. In a case study of 
MA CT-level data, we found no evident advantages of using WorldPop 
population size estimates, either alongside or in place of the default ACS 
estimates, to create small-area incidence rates for real-time epidemio
logic modeling. This is in spite of the fact that, in practice, WorldPop 
estimates may be available contemporaneously while ACS estimates are 
from prior years. WorldPop’s method of obtaining high-resolution age- 
stratified population size estimates, i.e., by projecting county-level age 
distributions onto small area total population size estimates, proves 
particularly problematic for modeling health disparities. This approach 
induces error in WorldPop’s age-stratified estimates that is associated 
with key measures of disadvantage, such as poverty, leading to bias in 
health disparity estimates when using age-standardized WorldPop 
denominators. 

By comparing analyses using ACS denominators and “ground truth” 
2010 decennial census denominators, we demonstrate that the impact of 
the inevitable temporal incompatibility of ACS denominators for quan
tifying real-time disparities in disease incidence depends on the 
modeling approach being used. Over short time periods (several years), 
changes in total CT population size as measured by ACS may be attrib
utable primarily to sampling variability, and this variability may have 
little to no impact on health disparity estimates. On the other hand, 
changes over time in CT racial composition measured by ACS likely 
represent meaningful changes, and using outdated population estimates 
in race-stratified disparity models may induce substantial bias in 
disparity estimates that could lead to incorrect inference. These findings 
are consistent with ACS’s documentation, which states that ACS should 
be used primarily for tracking changes in the characteristics of areas 
(racial composition, socioeconomic status) rather than tracking changes 
in population sizes. 

To our knowledge this is the first study that compares the impact of 
biases in commonly-used population size estimates for real-time, small- 
area disease modeling. The primary limitation of our study is its narrow 
temporal and geographic scope. The quality of both ACS and WorldPop 
population estimates varies across space and time, limiting the gener
alizability of our work. WorldPop relies on remote sensing data, the 
quality of which differs by geographic region (Elvidge et al., 2017). ACS 
data quality is known to be poorer for low-income and African American 
populations (Spielman et al., 2014), leading to regional differences in 
data quality. Thus, our findings in a single Northeastern state may not be 
representative of other states and regions. We are also utilizing the 
decennial census population counts as the ground truth population sizes 
for 2010. Differential undercounts in the decennial census, primarily 
impacting low-income and minority communities, are well-documented 
(Robinson, 2011; Robinson et al., 1993). In the 2010 census, the USCB 
found an overall 2.1% undercount of the Black population and a 0.8% 
overcount of the non-Hispanic White population (United States Census 
Bureau, 2012). These issues may be further exacerbated for small areas, 
which should be taken into consideration when interpreting our results. 
However, census counts serve as a standard referent population in the 
US. 

In spite of numerous longstanding USCB programs and policies 
aimed at reducing undercounts, the USCB has struggled to overcome the 
many and complex challenges that lead to undercounting of certain 
disadvantaged groups and overcounting of certain privileged groups 
(O’Hare, 2019). These systematic errors could lead to either 
over-estimation or under-estimation of health disparities, depending on 
how the magnitude of error varies across age and sex groups. Initiatives 
like the Census Post-Enumeration Survey (also called the Accuracy and 
Coverage Evaluation or the Census Coverage Measurement Survey) and 

the Demographic Analysis program provide nation-level estimates of 
census under/overcount of various demographic groups. However, 
because the nature and magnitude of under/overcounting varies across 
space, simply scaling small-area counts to adjust for national-level 
under/overcount estimates is unlikely to correct the problem. More
over, our analyses with WorldPop have revealed how attempts to pro
duce ultra high-resolution population size estimates, by downscaling 
census counts and making strong assumptions about homogeneity of 
demographic features across space, can induce further errors that 
severely bias health disparity estimates. 

The collection of exceptional events affecting 2020 census data 
collection– including the COVID-19 pandemic, increasing concern about 
law enforcement practices, the consideration of the addition of a citi
zenship question on the census, and the move to more online census data 
collection– are likely to introduce new sources of counting error (Jar
min, 2021; The White House, 2021). Moreover, USCB will, for the first 
time, apply differential privacy procedures to public-release 2020 
census data, the consequences of which are still not fully understood for 
small-area disease modeling applications (Krieger et al., 2021). These 
challenges will complicate future epidemiologic studies using decennial 
census counts as a “gold standard” and will necessitate novel approaches 
for addressing differential under/overcounts to accurately estimate 
health disparities. For populations age 65+, Medicare enrollment data, 
which are made available to researchers by the US Centers for Medicare 
and Medicaid Services (CMS), may provide a more accurate and repre
sentative source of small-area intercensal denominator information than 
USCB products. Over 96% of Americans age 65+ are enrolled in Medi
care (Di et al., 2017), and the data provided by CMS contain 
individual-level age, sex, racial/ethnic group, and zipcode identifiers for 
enrollees. While Medicaid enrollment data are not similarly represen
tative of a common population due to heterogeneity in state-level pro
grams, these data could likely be used to create small-area-specific 
scaling factors to adjust for undercounts of low-income populations 
(including young people). 

Given the unprecedented quantity and richness of data available 
today, the future of high-resolution population size estimation may lie in 
combining information from USCB products and other data sources. It is 
essential that these efforts, in addition to improving accuracy in total 
population size estimates, consider how the integration of other data 
sources can address census under-representation of disadvantaged 
groups. Finally, the development and application of statistical methods 
that can better account for population size uncertainties/measurement 
error in disease mapping models are critical to address these issues. 
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