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Abstract

Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is one of nineteen

neglected tropical diseases. CD is a vector-borne disease transmitted by triatomines, but

CD can also be transmitted through blood transfusions, organ transplants, T. cruzi-contami-

nated food and drinks, and congenital transmission. While endemic to the Americas, T.

cruzi infects 7–8 million people worldwide and can induce severe cardiac symptoms includ-

ing apical aneurysms, thromboembolisms and arrhythmias during the chronic stage of CD.

However, these cardiac clinical manifestations and CD pathogenesis are not fully under-

stood. Using spatial metabolomics (chemical cartography), we sought to understand the

localized impact of chronic CD on the cardiac metabolome of mice infected with two diver-

gent T. cruzi strains. Our data showed chemical differences in localized cardiac regions

upon chronic T. cruzi infection, indicating that parasite infection changes the host metabo-

lome at specific sites in chronic CD. These sites were distinct from the sites of highest para-

site burden. In addition, we identified acylcarnitines and glycerophosphocholines as

discriminatory chemical families within each heart region, comparing infected and unin-

fected samples. Overall, our study indicated global and positional metabolic differences

common to infection with different T. cruzi strains and identified select infection-modulated

pathways. These results provide further insight into CD pathogenesis and demonstrate the

advantage of a systematic spatial perspective to understand infectious disease tropism.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009819 October 4, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dean DA, Gautham G, Siqueira-Neto JL,

McKerrow JH, Dorrestein PC, McCall L-I (2021)

Spatial metabolomics identifies localized chemical

changes in heart tissue during chronic cardiac

Chagas Disease. PLoS Negl Trop Dis 15(10):

e0009819. https://doi.org/10.1371/journal.

pntd.0009819

Editor: Igor C. Almeida, University of Texas at El

Paso, UNITED STATES

Received: March 10, 2021

Accepted: September 17, 2021

Published: October 4, 2021

Copyright: © 2021 Dean et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Metabolomics data

has been deposited in MassIVE (http://massive.

ucsd.edu/, accession #MSV000080450). Molecular

networks can be accessed at https://gnps.ucsd.

edu/ProteoSAFe/status.jsp?task=

30a31c799f174f4c9ba0af2e49637cea (all samples,

Aqueous extract), https://gnps.ucsd.edu/

ProteoSAFe/status.jsp?task=

c8389c9a72fc41a1a02461039bff38aa (all samples,

Organic extract).

https://orcid.org/0000-0002-6858-5346
https://orcid.org/0000-0001-9574-8174
https://orcid.org/0000-0002-3003-1030
https://orcid.org/0000-0002-1243-8953
https://doi.org/10.1371/journal.pntd.0009819
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009819&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009819&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009819&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009819&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009819&domain=pdf&date_stamp=2021-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009819&domain=pdf&date_stamp=2021-10-14
https://doi.org/10.1371/journal.pntd.0009819
https://doi.org/10.1371/journal.pntd.0009819
http://creativecommons.org/licenses/by/4.0/
http://massive.ucsd.edu/
http://massive.ucsd.edu/
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=30a31c799f174f4c9ba0af2e49637cea
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=30a31c799f174f4c9ba0af2e49637cea
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=30a31c799f174f4c9ba0af2e49637cea
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c8389c9a72fc41a1a02461039bff38aa
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c8389c9a72fc41a1a02461039bff38aa
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c8389c9a72fc41a1a02461039bff38aa


Author summary

Chagas disease (CD) is a tropical disease caused by the parasite Trypanosoma cruzi. CD

originated in the Americas but is now found globally due to population movements. CD

is transmitted through a triatomine vector, organ transplants, blood transfusions, T. cruzi-
contaminated food and drinks, and congenitally. It occurs in two stages, an acute stage

(usually asymptomatic) and a chronic stage. Twenty to thirty percent of chronic stage

cases present severe cardiac symptoms such as heart failure, localized aneurysms and car-

diomyopathy. Unfortunately, what causes severe cardiac symptoms in some individuals in

chronic CD is not fully understood. Therefore, we used liquid chromatography-tandem

mass spectrometry to analyze the heart tissue of chronically T. cruzi-infected and unin-

fected mice, to understand the impact of infection on the tissue metabolome. We identi-

fied discriminatory small molecules related to T. cruzi infection and determined that

regions with the highest parasite burden are distinct from the regions with the largest

changes in overall metabolite profile. These locations of high metabolic perturbation pro-

vide a molecular mechanism to explain why localized cardiac symptoms occur in CD, par-

ticularly at the heart apex. Overall, our work gives insight into chronic cardiac CD

symptom development and shapes a framework for novel CD treatment.

Introduction

Chagas disease (CD) is a parasitic disease caused by the protozoan Trypanosoma cruzi and is

one of the designated neglected tropical diseases [1]. T. cruzi is endemic to the Americas and

infects 7–8 million people worldwide [1]. An estimated 300,000 infections have been recorded

in the United States due to a large Latin American immigrant population and endemic trans-

mission [2–4]. CD is primarily transmitted through triatomine insects of the Triatoma and

Rhodnius genera [2,5]. Non-vectorial modes of transmission involve blood transfusion, trans-

placental transmission, and food and drink contaminated with T. cruzi [1]. The T. cruzi life

cycle includes three main stages: epimastigotes, trypomastigotes and amastigotes. T. cruzi in

the insect vector undergoes transformation from trypomastigotes to epimastigotes in the mid-

gut, and then migrates to the hindgut and differentiates into infective trypomastigotes [1].

Upon triatomine defecation on the human host, the infective trypomastigotes enter the host

through scratching or rubbing of the bite wound, or through eyes and mucosal surfaces [1].

Following mammalian host cell infection, trypomastigotes differentiate into amastigotes,

which proliferate and subsequently transform into trypomastigotes [1].

CD has two disease stages: acute and chronic [1,2,5]. The acute stage, with high parasite

load, is usually asymptomatic, or presents with non-specific symptoms (fever, malaise) [1,2,5].

A minority of infected individuals (20–30%) will then progressively develop clinical manifesta-

tions of chronic CD, including cardiomegaly, cardiac arrhythmias, apical aneurysms, megaco-

lon, and megaesophagus [2]. In contrast to acute stage CD, chronic CD presents with low to

no parasitemia [5]. T. cruzi infections are treated with either benznidazole or nifurtimox; how-

ever, these treatments cause significant adverse effects, to the point that up to 30% of treated

individuals fail to complete the full treatment course [6,7].

CD was previously considered to have an autoimmune etiology, but parasite persistence

has now conclusively been demonstrated to be required for disease pathogenesis [8]. Along

with parasite persistence, chronic pro-inflammatory responses, including cytokine release and

CD8+ T cell- mediated cytotoxicity, contribute to tissue damage [9]. A heterogeneity of inter-

acting parasite-host factors, including T. cruzi strain, load and tissue tropism, host genetic
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background, and mode of infection, influence the clinical outcomes of the disease [10,11].

However, CD pathogenesis is not yet completely understood [2]. A holistic understanding of

the molecular pathways involved in disease progression could help identify new drug develop-

ment avenues.

Metabolites are the final products of mRNA and protein expression and of protein activity,

thus providing information closely linked to phenotype [12]. Metabolic pathways are drug-

gable. They also change dynamically in response to disease [13,14]. As such, an improved

understanding of metabolism in CD may lead to new avenues for drug development and CD

patient monitoring. Acute T. cruzi-infection affects in vitro and in vivo host metabolic path-

ways, including decreasing mitochondrial oxidative phosphorylation-mediated ATP produc-

tion [9,15–17]. In addition, acutely T. cruzi-infected mice heart tissue and plasma showed

significant changes in certain metabolic pathways, such as glucose metabolism (glucose levels

elevated in heart tissue and lowered in plasma over time), tricarboxylic acid cycle (TCA)

(decrease in select TCA metabolites in the heart tissue and a decrease in all detected TCA

metabolites in plasma), lipid metabolism (increased long-chain fatty acids in the heart tissue

and decreased long-chain fatty acids in plasma), and phospholipid metabolism (high accumu-

lation of phosphocholine precursor metabolites in the heart) [15]. Prior analysis of hearts from

acutely infected mice also showed that cardiac metabolite profiles reflected disease severity,

with changes in cardiac acylcarnitines and glycerophosphocholines predictive of acute infec-

tion outcome [9]. Metabolomic analysis of chronic CD has been limited to serum and gastro-

intestinal tract samples [18,19]. Serum analysis demonstrated significant changes in amino

acid and lipid metabolism, particularly acylcarnitines, sphingolipids, and glycerophospholipids

[19]. Analysis of GI tract samples observed persistent metabolic perturbations in the oesopha-

gus and large intestine in chronic CD, including infection-induced elevation of acylcarnitines,

phosphatidylcholines and amino acid derivatives [18]. However, metabolic changes in the

heart may differ from those in the circulation or in the GI tract [15]. It is therefore essential to

perform metabolomic analysis of tissues collected from the heart in chronic CD.

Many sudden fatalities due to chronic cardiac CD are often attributed to apical aneurysms

which occur at the bottom of the heart [20,21]. Importantly, parasite load is low, spatially het-

erogeneous and poorly correlated to the magnitude of tissue damage in chronic CD, including

in clinical samples [22,23], indicating possible spatial disconnect between CD-induced meta-

bolic alterations and tissue parasite load. We therefore focused on liquid chromatography-tan-

dem mass spectrometry-based metabolomic analysis of transversely sectioned hearts from

mice chronically infected with T. cruzi strains CL and Sylvio X10/4. These samples were previ-

ously collected but only previously analyzed with regards to parasite load and differences in

overall metabolome between heart apex and heart base (infected and uninfected samples com-

bined), without characterizing the impact of chronic infection on the heart metabolome [9]. In

contrast, this study focuses on metabolic changes associated with chronic (90 and 147 days) T.

cruzi strains CL and Sylvio X10/4 infection, compared to matched uninfected controls. Over-

all, we observed significant localized chemical differences associated with infection, with a dis-

connect between parasite localization and overall positional metabolic perturbations. Our data

also showed infection-induced variations in acylcarnitine and glycerophosphocholine chemi-

cal families.

Methods

Ethics statement

All vertebrate animal studies were performed in accordance with the USDA Animal Welfare

Act and the Guide for the Care and Use of Laboratory Animals of the National Institutes of
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Health. The protocol was approved by the University of California San Diego Institutional

Animal Care and Use Committee (protocol S14187).

In vivo experimentation

All in vivo experimentation and sample collection were conducted and previously reported in

[9]. Briefly, n = 5 five-week-old male C3H/HeJ mice (Jackson Laboratories) were infected with

1,000 T. cruzi strain CL trypomastigotes, with n = 7 matched uninfected controls; both groups

were euthanized 90 days post-infection. N = 5 five-week-old male C3H/HeJ mice (Jackson

Laboratories) were infected with 1 million T. cruzi strain Sylvio X10/4 trypomastigotes, with

n = 5 matched uninfected control mice. N = 4 of these T. cruzi Sylvio X10/4-infected animals

survived to the endpoint, at 147 days post-infection, when they were euthanized along with

matched controls. Euthanized mice were perfused with phosphate-buffered saline to clear any

circulating trypomastigotes. The hearts were removed, transversely sectioned into four sec-

tions from the base to the apex of the heart (sections A to D in text below) and snap-frozen

using liquid nitrogen, for a total of n = 4 sections per animal. Each section was then used in its

entirety for metabolite extraction and LC-MS analysis, so that we have complete and consistent

spatial coverage of the heart tissue.

Although sample collection was reported in McCall et al [9], the authors only studied the

acute impact (12 days post-infection) of Chagas disease on mouse hearts. This study, in con-

trast, examines the impact of infection on the heart samples extracted on days 90 and 147 post-

infection (chronic stage).

qPCR was performed in McCall et al [9]. Briefly, a Quick-DNA universal kit from Zymo

Research was used to extract DNA from homogenized heart tissue sections, and a nanodrop

was used to quantify DNA. 180 ng was used for qPCR analysis. ASTCGGCTGATCGTTT

TCGA and AATTCCTCCAAGCAGCGGATA primers were used to amplify parasite satellite

DNA region [24] and TCCCTCTCATCAGTTCTATGGCCCA and CAGCAAGCATCTATG

CACTTAGACCCC to amplify host TNFα [25]. The following parameters were used for

amplification: initial denaturation for 10 min at 95˚C, then 40 cycles of denaturation (95˚C for

30s), annealing (58˚C for 60s), and extension (72˚C for 60s). PCR product formation was con-

firmed through melting curve analysis. Parasite burden in each heart section was determined

using a standard curve developed from samples extracted from mouse heart tissue spiked with

2 x 107 T. cruzi epimastigotes [9].

Metabolite extraction and UHPLC-MS/MS

The two-step procedure for metabolite extraction was conducted as described in McCall et al
[9], with “aqueous” and “organic” extracts referring to the metabolites recovered from the first

50% methanol extraction and the second 3:1 dichloromethane-methanol extraction, respec-

tively. Dried samples were obtained and resuspended in 50% methanol spiked with sulfadi-

methoxine as internal standard. A checkmix solution with 6 known molecules was also run at

the beginning and end of LC-MS analysis to monitor instrumental drift and showed only

minor retention time shifts (S1 Fig). Both extracts were analyzed separately and were random-

ized according to infection type as well as position to prevent sample bias. Thermo Scientific

UltiMate 3000 Ultra High Performance Liquid Chromatography was used to analyze samples

using a 1.7 μm C8 (50 x 2.1 mm) UHPLC column (Phenomenex) equipped with a C8 guard

cartridge (Phenomenex). Chromatography was done with water + 0.1% formic acid (mobile

phase A) and acetonitrile + 0.1% formic acid (mobile phase B), at a 0.5 mL/min flow rate (7.00

min aqueous extract and 10.5 min organic extract) with a 40˚C column temperature. LC gradi-

ent for aqueous extract is as follows: 0–1 min, hold at 2% B; 1–1.5 min, increase to 40% B; 1.5–
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4 min, increase to 98% B; 4–5 min, hold at 98% B; 5–6 min, decrease to 2% B; 6–7 min, hold at

2% B. LC gradient for organic extract is as follows: 0–1 min, hold at 2% B; 1–1.5 min, increase

to 60% B; 1.5–5.5 min, increase to 98% B; 5.5–7.5 min, hold at 98% B; 7.5–8.5 min, decrease to

2% B; 8.5–10.5 min, hold at 2% B.

MS/MS detection was conducted on a Maxis Impact HD QTOF mass spectrometer (Bruker

Daltonics) [9]. Electrospray ionization was used to generate ions and MS spectra obtained in

positive mode only. ESI-L Low concentration Tuning Mix (Agilent Technologies) was used for

daily instrument calibration and Hexakis(1H,1H,3H-tetrafluoropropoxy)phophazene (Synquest

Laboratories), m/z 922.009798, was used throughout the analysis as internal calibrant (lock

mass).The following instrumental parameters were used for UHPLC-MS/MS: runtime: 0 to 7

min (aqueous extract), 0 to 10.5 min (organic extract); polarity: positive; exclusion: on; nebulizer

gas pressure: 2 bar; capillary voltage: 4,500 Volts; ion source temperature: 200˚C; dry gas flow:

9.0 L/min, spectra rate acquisition: 3/sec; TopN: 7 (aqueous extract), 10 (organic extract); mass

range: 80–2,000 m/z; active exclusion: after 4 spectra and release after 30s; ramped collision-

induced dissociation energy: 10–50 eV. Mass ranges with common contaminants and lock mas-

ses were excluded (m/z 123.59–124.59, 143.50–144.50, 159.47–160.47, 182.49–183.49, 216.61–

217.61, 309.83–310.83, 337.50–338.50, 359.50–360.50, 622.00–622.05, 921.50–925.50).

LC-MS/MS data analysis

Data processing was performed as previously reported using Optimus, July 21, 2016 version

[9,26,27]. Optimus data processing parameters are as follows: (i) LC-MS feature detection: m/z
tolerance: 20.0 ppm; noise threshold: 1000; half of MS/MS isolation window: 2.0 Da. (ii)

Advanced FD settings: commom_chrom_fwhm: 20; common_chrom_peak_snr: 2.0;

mtd_reestimate_mtd_std: enabled; epd_width_filtering: off; epd_min_fwhm: 1.5; edp_-

max_fwhm: 25.0; ffm_report_summed_ints: Enabled. (iii) Filter features: minimum occur-

rence rate: 0.01. (iv) Missing feature intensities: Enable imputation of missing features:

Enabled. (v) Normalize features: Enable feature normalization using internal standards (sulfa-

dimethoxine injection control): enabled.

Data was normalized to sulfadimethoxine internal standard peak, followed by total ion cur-

rent (TIC) normalization in R. Random forest analyses were performed separately on the

aqueous extract feature table and the organic extract feature table (both total ion current

(TIC)-normalized), with both results jointly summarized in figures and tables. Principal coor-

dinate analysis (PCoA) was performed on total ion current (TIC) normalized MS1 feature data

table using the Bray-Curtis-Faith dissimilarity metric using QIIME1 [28], for both organic and

aqueous extractions combined. The three-dimensional PCoA plots were visualized in

EMPeror [29]. Three-dimensional data visualization was performed using ‘ili’ (http://ili.embl.

de/) [27] using a three dimensional heart model from 3DCADBrowser.com (http://www.

3dcadbrowser.com/).

Global Natural Products Social Molecular Networking (GNPS) was used to perform molec-

ular networking according to the following parameters: precursor mass tolerance: 0.02 Da;

fragment ion mass tolerance: 0.02 Da; cosine score: 0.7; minimum matched fragment ions: 4;

search analogs: do search; network TopK: 10; maximum connected component size: 100; mini-

mum cluster size: 2; score threshold: 0.7; library search min. matched peaks: 4; max. analog

search mass: 100; filter precursor window: filter; filter peaks in 50 Da window: filter; filter

below Std. Dev: 0.0; min. peak intensity: 0.0; filter library: filter; filter spectra from G6 as blanks

before networking: don’t filter [30].

Metabolite annotation was based on selected libraries in the GNPS infrastructure:

GNPS-COLLECTIONS-MISC, GNPS- EMBL-MCF, GNPS-FAULKNERLEGACY,
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GNPS-LIBRARY, GNPS-NIH-CLINICALCOLLECTION1, GNPS-NIH-CLINICALCOLLEC-

TION2, GNPS-NIST14-MATCHES, HMDB, MASSBANK, MASSBANKEU, PNNL-LIPIDS,

MONA. Direct MS2 spectral matches to these libraries enable metabolomics standard initia-

tive level 2 annotation confidence [31]. All spectral matches were visually inspected and MS2

fragment annotation was performed using CFM-ID [32,33], HMDB [34,35] and LipidMaps

[36]. Cytoscape 3.7.0. was used to visualize the molecular networks [37]. Molecular networks

were used to annotate metabolites without a direct match to GNPS libraries, using sub molecu-

lar network chemical families and annotation propagation [30], enabling metabolomics stan-

dard initiative level 3 annotation confidence [31]. Given the fragmentation pattern for

glycerophosphocholines (PCs) under our instrumental conditions, we cannot distinguish

based on MS2 pattern or m/z between PC isomers, such PC O-16:0/18:1 and PC O-12:0/22:1.

Therefore we reported both library spectral matches and all possible other possible annotations

based on LipidMaps nomenclature [36]. Lastly, annotations were filtered based on plausibility

vis-à-vis the observed retention time.

Random forest analysis was performed in Jupyter Notebook using R with the number of

trees set to 500. Random forest classifier cutoff was based on ranked variable importance score

of differential metabolites >1.3. FDR-corrected Mann-Whitney p<0.05 for all positions was

used as an alternate method to determine significant metabolite differences. Venn diagrams

were used to visualize the unique and common metabolites differential between CL and Sylvio

X10/4 infection, compared to uninfected samples, based on heart segment positions, random

forest classifier for all positions, or FDR-corrected Mann-Whitney p<0.05 for all positions,

using http://bioinformatics.psb.ugent.be/webtools/Venn/. Effect size calculations were per-

formed on total acylcarnitine and glycerophosphocholine levels in heart section A using

Hedges’ g, via https://www.socscistatistics.com/effectsize/default3.aspx.

PCs were selected through the following steps: 1) Collect all metabolite features annotated

as PCs through matching to GNPS reference libraries, for each extract (including matches

with identical m/z to reference libraries and analog matches, with mass differences represent-

ing for example PCs with different chain lengths or degree of saturation compared to reference

libraries). 2) Extend these annotations using molecular networking, collecting all metabolites

with shared fragmentation patterns to these library matches. This ensures that all candidate

PCs with quality MS2 fragmentation patterns are selected. 3) Verify that the MS2 spectra con-

tain the PC diagnostic peaks of m/z 86.10 (N,N,N-Trimethylethenaminium), m/z 125.00

(2,2-Dihydroxy-1,3,2-dioxaphospholan-2-ium) and m/z 184.08 (phosphocholine). 4) Verify

m/z presence in LipidMaps [36]. 5) Subset feature abundance table to these m/z and retention

times, to obtain a new feature table with the peak area of PCs in our samples. Specifically, there

were a total of 396 PCs where 81 were short (400–599.99 m/z), 207 were mid-length (600–

799.99 m/z), and 108 were long (>800 m/z). A similar process was used to sub-select acylcarni-

tines, monitoring presence of the 3-carboxyallylium +CH2-CH = CH-COOH diagnostic peak

at m/z 85.03). There were a total of 84 acylcarnitines, which were assigned to short- (C2-C4),

mid- (C5-C11) and long-chain (C12 and longer) categories using LipidMaps [36].

Results

The purpose of this study was to compare the metabolic impact of chronic CD in the mouse

heart between divergent T. cruzi strains and between cardiac regions. To do so, we analyzed

previously-collected positive mode LC-MS/MS data [9]. While this prior study focused on the

impact of acute infection (12 days post-infection in mice) on the cardiac metabolite profile,

here we specifically focused on the impact of 90 and 147day infection (chronic stage CD in

mice) on the cardiac metabolite profile, which had not been studied before.
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We observed a clear localized impact of T. cruzi infection on the overall metabolite profile

(Figs 1, S2 and S3). As previously described [9], parasite burden was highest at the base of the

heart (position A) for strain CL and central positions (position C) for strain Sylvio X10/4 (Fig

1A). PERMANOVA analysis indicated that the highest significant perturbation in the overall

metabolite profile occurred at central positions for strain CL infection (PERMANOVA analy-

sis of Bray-Curtis-Faith distance matrix R2 = 0.20813, p-value = 0.004 at position C) and at api-

cal positions for strain Sylvio X10/4 infection (PERMANOVA R2 = 0.27923, p-value = 0.014 at

position D) (Fig 1B). Strikingly, in both cases chemical disturbance was greatest at sites distinct

from the site of highest parasite burden, which corroborates our observations in the context of

chronic gastrointestinal T. cruzi infection in mice [18]. The localization of chemical distur-

bance also provides a molecular mechanism explaining the apical aneurysms observed in CD

patients and the fact that these happen even though cardiac tissue parasite burden is low [22].

To identify the specific cardiac metabolites spatially perturbed by infection, initially we

built a random forest classifier for each position, each strain and each extraction method, com-

paring to uninfected matched control samples (S1–S4 Tables). We first assessed the overlap

between the top-ranked most differential metabolites by random forest for the two different

strains, at each position, as described in Methods. Limited overlap of these significant metabo-

lites was observed between strains (Fig 2A–2D). To address the possibility that a given metabo-

lite was modified by each strain at different positions, we also performed this analysis for all

positions combined (Fig 2E and 2F, S5 and S6 Tables). Indeed, a higher overlap was observed

between strains under these conditions, but still only representing a fraction of all differential

metabolites. However, annotation of these differential metabolites using molecular networking

through the GNPS platform [30] revealed that while differing in terms of m/z, many were part

Fig 1. Disconnect between sites of parasite persistence and metabolic alterations in chronic cardiac CD. (A) Median cardiac parasite burden, as determined by

qPCR. Parasite burden was highest at the heart base (position A) for strain CL and central heart segments (position C) for strain Sylvio X10/4, indicating parasite strain-

specific differences in parasite tropism. (B) Statistically significant perturbations in the overall metabolite profile between uninfected and strain CL-infected mice (left),

and between uninfected and strain Sylvio X10/4-infected mice (right). The highest significant metabolite perturbation was at central heart segments (position C) for

strain CL (���, p< 0.001 by PERMANOVA) and at the heart apex (position D) for strain Sylvio X10/4 (��, p< 0.01 by PERMANOVA).

https://doi.org/10.1371/journal.pntd.0009819.g001
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of the same chemical families, including acylcarnitines and glycerophosphocholines (S1–S6

Tables, S4 and S5 Figs).

Random forest classifier identified several acylcarnitines and glycerophosphocholines as

impacted by infection (S1–S5 Tables). Both chemical families play a major role in several bio-

chemical pathways. Carnitine serves as a shuttling mechanism for fatty acids, in the form of

acylcarnitines, from the cytosol into the matrix of the mitochondria for beta-oxidation [38].

Glycerophosphocholines are major components of lipid metabolism, cell membrane structure,

and choline production, the latter of which is essential for select amino acid and neurotrans-

mitter synthesis [39,40].

Total acylcarnitines in the central positions of the heart were decreased by strain Sylvio

X10/4 infection compared to the uninfected group (Fig 3A and 3B, Mann-Whitney p<0.05). A

similar pattern was observed for total acylcarnitines following strain CL infection when com-

pared to matched uninfected samples at the heart base (Fig 3A and 3B, Mann-Whitney

p<0.05). Normal levels and distributions of acylcarnitines in the heart are represented by

uninfected samples (Fig 3). Previous studies demonstrated that acylcarnitines of different

lengths were associated with infection outcome in acute (12 days post-infection) T. cruzi

Fig 2. Limited overlap of specific differential metabolites between strains. Yellow and red circles represent

differential metabolites between strain Sylvio X10/4-infected and matched uninfected controls, and between strain CL-

infected and matched uninfected controls, respectively. Intersect are metabolites impacted by infection in both strains.

(A-D) Differential metabolites for each strain, at given heart positions, as determined by random forest classifier, with

variable importance score cutoff as described in Methods. (E) Metabolites impacted by infection with each strain,

irrespective of position, as determined by random forest classifier, with variable importance score cutoff as described

in Methods. (F) Metabolites impacted by infection with each strain, irrespective of heart position, using FDR-corrected

Mann Whitney p<0.05 cutoff.

https://doi.org/10.1371/journal.pntd.0009819.g002
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mouse models [9]. Therefore, we sought to understand how different length acylcarnitines

were affected by chronic (90 and 147 days post-infection) infection. Acylcarnitines are classi-

fied based on the number of carbons in their fatty acid chain as short- (�C4), mid- (C5 -C11),
and long-chain (�C12) acylcarnitines. In the case of CL strain infection, when compared to

uninfected samples, short chain acylcarnitines were significantly decreased at the heart base

(p<0.05 Mann-Whitney, Fig 3C and 3D). Strain Sylvio X10/4 infection significantly decreased

mid-chain acylcarnitine at all positions (Mann-Whitney p<0.05, Fig 3E and 3F) and signifi-

cantly decreased long-chain acylcarnitines at heart base, center and apex (Mann-Whitney

p<0.05, Fig 3E–3H).

Select glycerophosphocholines were increased at specific sites upon infection. CL strain

infection significantly increased total glycerophosphocholines, at central heart positions com-

pared to uninfected samples (Mann-Whitney p<0.05), as did strain Sylvio X10/4 at the heart

apex (Mann-Whitney p<0.05, Fig 4A and 4B). Further analysis based on

Fig 3. Spatial impact of chronic T. cruzi infection on cardiac acylcarnitines. Normal levels and distribution of acylcarnitines are represented by uninfected samples.

(A, B) Differential total acylcarnitine distribution between uninfected and infected heart sections for both CL and Sylvio X10/4 strains. CL-infected mice showed

statistically significant decreases in total acylcarnitine levels at heart base when compared to uninfected mice (�, p<0.05 by Mann-Whitney test). (C, D) CL-infected

mice showed statistically significant decreases (�, p<0.05, by Mann-Whitney test) in short-chain acylcarnitine (� C4) at heart base. (E, F) Sylvio X10/4-infected mice

showed statistically significant decreases in mid-chain acylcarnitines at all positions compared to uninfected mice. (�, p<0.05 by Mann-Whitney test). (G, H) Sylvio

X10/4-infected mice showed statistically significant decreases in long-chain acylcarnitines (�C12) at most heart positions compared to uninfected mice (�, p<0.05 by

Mann-Whitney test).

https://doi.org/10.1371/journal.pntd.0009819.g003
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glycerophosphocholine m/z was performed, because previous studies showed differences in

glycerophosphocholine m/z range between fatal and non-fatal acute mouse infection [9]. Gly-

cerophosphocholines were categorized into three mass ranges: short (400–599.99 m/z), mid

(600–799.99 m/z), and long (>800 m/z). Significantly increased glycerophosphocholines were

observed for CL strain infection in short (m/z 401–599.99) glycerophosphocholines at heart

center and apex (Mann-Whitney p<0.05, Fig 4C and 4D). Sylvio X10/4 strain infection signifi-

cantly increased short (m/z 401–599.99) and long (m/z>800) glycerophosphocholines at the

heart apex when compared to uninfected samples (Mann-Whitney p<0.05, Fig 4C, 4D, 4G

and 4H).

Discussion

There are 7 T. cruzi discrete typing units infectious to humans (DTUs TcI—TcVI and Tcbat).

These DTUs, while still currently considered the same species, nevertheless present significant

genetic differences [41,42]. Select T. cruzi strains are also more virulent than others or require

a greater dose to establish infection. The inocula used in this study for both strains are

Fig 4. Spatial impact of chronic T. cruzi infection on cardiac glycerophosphocholines. (A, B) Differential total glycerophosphocholine distribution between

uninfected and infected heart sections for both CL and Sylvio X10/4 strains. CL-infected mice showed statistically significant increases in total glycerophosphocholine

levels at central heart positions when compared to uninfected mice (�, p<0.05 by Mann-Whitney test). (C,D) Both infected strains showed statistically significant

increases (�, p<0.05, by Mann-Whitney test) for short glycerophosphocholines (m/z 400–599.99) at central and apical positions for strain CL and apical positions for

strain Sylvio X10/4. (E, F) Mid-sized glycerophosphocholines (m/z 600–799.99) were not significantly affected by infection for both strains. (G, H) Sylvio X10/4-infected

mice showed a statistically significant increase (�, p<0.05 by Mann-Whitney test) in long glycerophosphocholines (m/z> 800) at apical positions.

https://doi.org/10.1371/journal.pntd.0009819.g004
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standard and based on their relative degree of acute-stage lethality [9,43]. Specifically, strain

Sylvio X10/4 is a low virulence strain, necessitating a higher infectious inoculum to observe

cardiac pathology at chronic timepoints [43]. In contrast, susceptible mice infected with 1000

CL trypomastigotes survive the acute stage to develop chronic cardiac symptoms, while mice

infected with higher inocula only survive a few weeks [9]. Timing and magnitude of induced

disease may also differ between T. cruzi strains. Ninety days timepoint for strain CL infection

enables comparison with Hossain et al, which analyzed impact of infection on the gastrointes-

tinal metabolome at 89 days post-infection [18]. In addition, the different doses and time-

points enabled us to find commonalities across infection systems, mimicking the clinical

situation where patients do not know how long ago they were infected, or with which strain.

Cross-strain, -dose and -timepoint comparisons are thus important to guide drug

development.

However, pathogenic processes are overall similar in cardiac CD across T. cruzi strains,

with accumulation of fibrosis and inflammation [42,44]. These similarities are reflected in the

common metabolomic changes observed for strain Sylvio X10/4 (TcI) and strain CL (TcVI)-

infected heart tissue in this study, including chronic infection-induced increases in glycero-

phosphocholines and decreases in acylcarnitines. These results concur with independent find-

ings with regards to select acylcarnitines in the serum of CD1 mice chronically infected with T.

cruzi strain Brazil (TcI) and to short-chain acylcarnitines and glycerophosphocholines in the

heart of BALB/c mice acutely infected with T. cruzi strain Y (TcII) [15]. They also concur with

the negative relationship between mid-chain acylcarnitines vs fibrosis and disease progres-

sion-associated cytokine PDGF, and the positive relationship between glycerophosphocholines

in mass ranges 400–499, 500–599 and over all mass ranges vis-à-vis of inflammation, fibrosis

and progression-associated cytokines in the heart of BALB/c mice chronically infected with T.

cruzi strain H1 (TcI) [45].

Differences in pathogenesis between strains may be due to differential strain tropism.

Indeed, TcI strains tend to produce cardiomyopathy, while TcVI strains commonly produce

megacolon and megaesophagus, although cardiomyopathy can still occur [46]. Our results

indicate a disconnect between sites of highest parasite burden and sites of metabolic perturba-

tion. Although parasite levels were highest in central heart segments following strain Sylvio

X10/4 infection, we observed statistically significant perturbations in metabolism at the apex

of the heart (Fig 1). Apical aneurysms are one of the major symptoms in chronic CD patients

[47]. In addition, lateral heart wall damage is also common among chronic CD patients, in

central regions of the heart [48], and we observed significant perturbations in cardiac metabo-

lism at lower central heart positions in strain CL infection (Fig 1B) [48]. These results are con-

sistent with clinical findings of low cardiac tissue parasite burden in CD in humans. Although

parasite persistence is required for Chagas disease progression, nevertheless, cardiac tissue par-

asite load was not correlated with the magnitude of tissue damage, in patient-derived samples

[22]. Based on these results, we propose a concept of spatial disease tolerance, whereby some

tissue regions are more affected by infection, while others are less functionally affected. This is

likely due to a combination of host and pathogen factors, given the differences we observe here

between strain CL and strain Sylvio X10/4 infection in the same C3H mouse genetic back-

ground. Importantly, the localization of maximal metabolic perturbation in acute strain Sylvio

X10/4 infection was also the heart apex, indicating that the spatial course of disease may be set

early in CD [9]. Likewise, host factors likely contribute, such as the higher production of anti-

parasitic but tissue-damaging IFNγ at the heart apex or specific cardiac regions being more

prone to microvasculature disruptions [9].

Our results also highlight the importance of considering metabolic changes at the level of

chemical families, beyond just individual metabolites. While there was little overlap of highly
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significant metabolite m/z at each position between strains, most differential annotatable

metabolites were from these two chemical families. McCall et al. described these two chemical

families as discriminatory compounds between fatal and non-fatal acute T. cruzi infected heart

tissue [9]. Considering acute stage infection progresses into chronic stage infection, it is not

surprising that changes in the relative abundance of these molecules are also observed in

chronic CD.

Glycerophosphocholines have been linked to coronary heart disease due to production of

lysophosphatidylcholines and choline [39,49]. Increased acylcarnitine levels have been linked to

cardiovascular disease as well as cardiac symptoms in non-CD cardiac disease [50,51]. However,

our results show the opposite pattern for acylcarnitines compared to non-infectious heart dis-

ease, highlighting the need to specifically study CD rather than extrapolate from other cardiac

conditions. Indeed, this divergence was also observed at the level of gene expression profiles:

upregulation of lipid metabolism gene expression was observed in heart samples of human car-

diac CD patients compared to controls, while downregulation was seen in non-infectious dilated

cardiomyopathy patient samples [52]. Higher lipid metabolism would increase acylcarnitine

catabolism and thus decrease overall acylcarnitine abundance. Decreased carnitine palmitoyl-

transferase and acetyltransferase levels, as observed by proteomic analysis of infected mouse

heart tissue [53], may alternatively also contribute to the decreased acylcarnitine levels we

observed. Interestingly, a few infection-perturbed metabolites were annotated as odd chain satu-

rated fatty acids. While rare, odd chain saturated fatty acids have also been linked to protection

from coronary heart disease, atherosclerosis and type II diabetes [54–56].

These results set a foundation for host-directed therapeutic development. CD may be particu-

larly amenable to such treatment strategies, due to the contribution of host-mediated tissue dam-

age to CD pathogenesis [1,8]. Indeed, we have previously shown that carnitine supplementation

can be used to treat acute CD [18]. These findings also demonstrate a causal role in disease path-

ogenesis for the metabolic alterations observed in our studies. Our observation of decreases in

cardiac acylcarnitines in chronic CD indicate that carnitine-based treatment regimens may also

be useful to treat chronic CD. Importantly, the fact that acylcarnitines are affected in both

chronic CL and Sylvio X10/4 infection suggests cross-strain applicability. Other studies have

emphasized the impact of metabolism modulators on CD progression. High fat diet reduces par-

asite levels and increases survival in acute CD mouse models [57]. Treatment of acutely T. cruzi
infected mice with metformin (a metabolic modulator used to treat diabetic patients) also led to

an increase in overall survival rate and decreased blood parasitemia [58].

Due to the low parasite burden in chronic Chagas disease and instrumental limits of detec-

tion, we anticipate most if not all detected metabolites to be host-derived, supported by their

detection in uninfected tissues. As such, this study is focused on the impact of T. cruzi infec-

tion on host metabolism. A further limitation is that many of the differential metabolites were

not annotatable, as is usual in metabolomic studies [59]. Nevertheless, we were able to anno-

tate metabolites affected by chronic infection that make up important host biochemical path-

ways. We only analyzed samples in positive mode due to the greater availability of positive

mode reference libraries, leading to better annotation rates (35.4% in positive mode vs 10.2%

in negative mode [18]). A further limitation is that free fatty acids do not ionize well under our

instrument conditions, so that we cannot link the changes in PCs to other lipids [60]. Lastly,

effect size calculations on our total acylcarnitine and glycerophosphocholine data indicate that

we were only adequately powered to detect large differences (Hedges’ g>0.6–0.8).

Overall, our study highlights the importance of identifying overall differences but also posi-

tional metabolic differences associated with infection, and the need to study multiple T. cruzi
strains. Results also show the strength of systematic chemical cartography in understanding
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disease tropism and how it differs from pathogen tropism. These results will serve as stepping

stones for further CD drug development, something that is urgently needed.

Supporting information

S1 Table. Annotated and unannotated metabolites perturbed by infection at position A,

identified through random forest classifier. � indicate confidence level 3 annotations. All

other annotations at level 2 confidence. NA, not annotated/not applicable.

(XLSX)

S2 Table. Annotated and unannotated metabolites perturbed by infection at position B,

identified through random forest classifier. � indicate confidence level 3 annotations. All

other annotations at level 2 confidence. NA, not annotated/not applicable.

(XLSX)

S3 Table. Annotated and unannotated metabolites perturbed by infection at position C,

identified through random forest classifier. � indicate confidence level 3 annotations. All

other annotations at level 2 confidence. NA, not annotated/not applicable.

(XLSX)

S4 Table. Annotated and unannotated metabolites perturbed by infection at position D,

identified through random forest classifier. � indicate confidence level 3 annotations. All

other annotations at level 2 confidence. NA, not annotated/not applicable.

(XLSX)

S5 Table. Annotated and unannotated metabolites perturbed by infection at positions

A-D, identified through random forest classifier. � indicate confidence level 3 annotations.

All other annotations at level 2 confidence. NA, not annotated/not applicable.

(XLSX)

S6 Table. Annotated and unannotated metabolites identified as perturbed by infection at

all positions (FDR-corrected Mann Whitney p<0.05). � indicate confidence level 3 annota-

tions. All other annotations at level 2 confidence. NA, not annotated/not applicable.

(XLSX)

S1 Fig. Base peak chromatogram of checkmix solution used to monitor instrumental drift.

(A) Base peak chromatogram of organic extract checkmix solution at beginning (red) and end

(blue) of LC-MS analysis. (B) Base peak chromatogram of aqueous extract checkmix solution

at beginning (blue) and end (red) of LC-MS analysis.

(TIF)

S2 Fig. Principal coordinate analysis plot of T. cruzi strain CL infected (red) and unin-

fected (blue) heart tissue samples. Statistically different clustering found in position C (PER-

MANOVA p-value<0.05).

(TIF)

S3 Fig. Principal coordinate analysis plot of T. cruzi strain Sylvio X10/4 infected (gold)

and uninfected (blue) heart tissue samples. Statistically different clustering found in position

D (PERMANOVA p-value<0.05).

(TIF)

S4 Fig. Molecular subnetworks and mirror plot of aqueous and organic extract acylcarni-

tines and glycerophosphocholines. Each pie chart is one metabolite colored by MS2 spectral

count in CL-infected and Sylvio X10/4-infected samples where red is CL and gold is Sylvio
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X10/4. (A) Subnetwork of aqueous extract acylcarnitines with representative acylcarnitine mir-

ror plot (acetylcarnitine, m/z 204.124). (B) Subnetwork of aqueous extract phosphocholines

with representative glycerophosphocholine mirror plot (Spectral match to 1-Hexadecanoyl-2-

(9Z-octadecenoyl)-sn-glycero-3-phosphocholine reference library spectrum, m/z 772.549). (C)

Subnetwork of organic extract acylcarnitines with representative acylcarnitine mirror plot

(palmitoylcarnitine, m/z 424.343). (D) Subnetwork of organic extract phosphocholines with

representative glycerophosphocholine mirror plot (Spectral Match to 1-Stearoyl-2-linoleoyl-

sn-glycero-3-phosphocholine reference library spectrum, m/z 794.57).

(TIF)

S5 Fig. Representative GNPS mirror plots of annotated metabolites. (A) Mirror plot of m/z
384.116, RT 136s (top, black) to reference library spectrum (Succinyladenosine, bottom,

green). (B) Mirror plot of m/z 137.047, RT 30s (top, black) to reference library spectrum

(Hypoxanthine, bottom, green). (C) Mirror plot of m/z 148.061, RT 27s (top, black) to refer-

ence library spectrum (L-Glutamine, bottom, green). (D) Mirror plot of m/z 153.043, RT 34s

(top, black) to reference library spectrum (Xanthine, bottom, green). (E) Mirror plot of m/z
538.52, RT 362s (top, black) to reference library spectrum (N-(1,3-dihydroxyoctadec-4-en-

2-yl)tetradecanamide, bottom, green). (F) Mirror plot of m/z 657.204, RT 180s (top, black) to

reference library spectrum (hemin cation, bottom, green).

(TIF)
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