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Mice exhibit stochastic and efficient action switching during
probabilistic decision making
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In probabilistic and nonstationary environments, individuals must use internal and
external cues to flexibly make decisions that lead to desirable outcomes. To gain
insight into the process by which animals choose between actions, we trained mice
in a task with time-varying reward probabilities. In our implementation of such a
two-armed bandit task, thirsty mice use information about recent action and action–
outcome histories to choose between two ports that deliver water probabilistically.
Here we comprehensively modeled choice behavior in this task, including the trial-
to-trial changes in port selection, i.e., action switching behavior. We find that mouse
behavior is, at times, deterministic and, at others, apparently stochastic. The behavior
deviates from that of a theoretically optimal agent performing Bayesian inference in
a hidden Markov model (HMM). We formulate a set of models based on logistic re-
gression, reinforcement learning, and sticky Bayesian inference that we demonstrate are
mathematically equivalent and that accurately describe mouse behavior. The switching
behavior of mice in the task is captured in each model by a stochastic action policy,
a history-dependent representation of action value, and a tendency to repeat actions
despite incoming evidence. The models parsimoniously capture behavior across different
environmental conditionals by varying the stickiness parameter, and like the mice, they
achieve nearly maximal reward rates. These results indicate that mouse behavior reaches
near-maximal performance with reduced action switching and can be described by a set
of equivalent models with a small number of relatively fixed parameters.
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Animals select appropriate actions to achieve their goals. Furthermore, animals adapt
their decision-making process as the environment changes. During foraging, for example,
animals make decisions about when and where to search for food to safely acquire sufficient
nutrients. This requires balancing the trade-off between exploiting known sources of
food versus continuing to explore unknown, potentially more profitable options. In a
dynamic environment, continued exploration and adaptation are required to detect and
react to changing conditions, such as the depletion or appearance of a food source, that
may influence what decision is optimal at a given time. Inherent in this process is the
ability to accumulate evidence about the value of various actions from previous experience.
Many neuropsychiatric diseases are associated with perturbations of evidence-dependent
action selection (i.e., cognitive and/or behavioral flexibility), making individuals with the
disease resistant to updating action plans despite changes in environmental contingencies
(reviewed in refs. 1–4).

The dynamic multiarmed bandit task is an experimental paradigm used to investigate
analogs of these decision-making behaviors in a laboratory setting (5–13), including
in normotypic humans and those with disease (14–16). In this task, the experimental
subject chooses between a small number of actions, each of which offers a nonstationary
probability of reward. The dynamic reward contingencies require the players to flexibly
modulate their actions in response to evidence accumulated over multiple trials. Therefore,
switching between behaviors is a key component of performing this task. However, analysis
of behavior in this task is often reduced to examining the agent’s selection of the higher
rewarding port or to the detection of a state transition.

Several classes of models have been used to model behavior in two-armed or multiarmed
bandit tasks, which make different assumptions about the underlying decision-making
process and focus on different aspects of the behavioral output. For example, theory-
guided ideal observer models assume that agents learn the dynamics of reward contin-
gencies and use Bayesian inference to identify the optimal action on each trial (16–18).
Model-free reinforcement learning strategies (19), like the Rescorla–Wagner model (20),
are more algorithmic in nature. Rather than assuming knowledge of reward contingency
dynamics, these models maintain a running estimate of the value of different actions
(9, 10, 14). Similarly, drift-diffusion models explicitly model evidence accumulation as

Significance

To obtain rewards in changing
and uncertain environments,
animals must adapt their
behavior. We found that mouse
choice and trial-to-trial switching
behavior in a dynamic and
probabilistic two-choice task
could be modeled by equivalent
theoretical, algorithmic, and
descriptive models. These models
capture components of evidence
accumulation, choice history bias,
and stochasticity in mouse
behavior. Furthermore, they
reveal that mice adapt their
behavior in different
environmental contexts by
modulating their level of
stickiness to their previous choice.
Despite deviating from the
behavior of a theoretically ideal
observer, the empirical models
achieve comparable levels of
near-maximal reward. These
results make predictions to guide
interrogation of the neural
mechanisms underlying flexible
decision-making strategies.

Author contributions: C.C.B., S.Q.N., and B.L.S. designed
research; C.C.B. and S.Q.N. performed research;
C.C.B., S.Q.N., S.W.L., and B.L.S. contributed new
reagents/analytic tools; C.C.B., S.Q.N., and S.W.L. analyzed
data; and C.C.B., S.W.L., and B.L.S. wrote the paper.

Reviewers: A.C., University of California, Berkeley; and J.P.,
Princeton University.

The authors declare no competing interest.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed.
Email: scott.linderman@stanford.edu or bsabatini@hms.
harvard.edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2113961119/-/DCSupplemental.

Published April 6, 2022.

PNAS 2022 Vol. 119 No. 15 e2113961119 https://doi.org/10.1073/pnas.2113961119 1 of 12

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2113961119&domain=pdf&date_stamp=2022-04-06
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scott.linderman@stanford.edu
mailto:bsabatini@hms.harvard.edu
mailto:bsabatini@hms.harvard.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113961119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113961119/-/DCSupplemental
https://doi.org/10.1073/pnas.2113961119


an inertial process in order to explain hysteresis in action selection
(21–23). Finally, descriptive models make few assumptions about
the information integration process but simply predict future
behavior given past actions and outcomes using, for example, a
logistic regression (6, 13). These efforts have provided insight into
how simple algorithms can reduce a series of actions and outcomes
to features that might be represented in the brain, facilitating
the identification of neural correlates of action value and belief
state representations (6, 10–12, 24). Furthermore, by enabling the
differentiation of trials in which behavior deviates from the action
with the highest expected value, such models have revealed neural
activity related to exploration (8, 25). However, in evaluating
these various models, trials in which the animal switches between
actions are typically not explicitly considered, and because these
are a small minority of trials, failure to model them correctly has
little impact on overall model accuracy across all trials.

Here we develop a statistical analysis of the relatively infrequent
subset of trials in which the agent switches between actions,
enabling examination of the features that contribute to the flexible
and exploratory components of behavior. We use these models
to study mouse behavior in a two-armed bandit task and gain
insight into the strategy that animals use to select actions to
achieve reward. We find that trial-to-trial action switching is a
stochastic component of the behavior and sets theoretical limits
on the performance of behavioral models in predicting action
choice. Although the optimal agent in this task would perform
inference in a hidden Markov model (HMM), mouse behavior
is not consistent with that of such an agent. Instead, it is better
described by a simple logistic regression using a stochastic action
selection policy. Leveraging the simple form of the logistic regres-
sion weights, we reformulate this model as one that recursively
updates a single state estimate. This recursively formulated logistic
regression (RFLR) model not only captures mouse choice and
switching behavior but generalizes to new environmental param-
eters through a parsimonious solution that minimally reduces
expected rewards. We further show that this model closely re-
sembles a Q-learning algorithm from reinforcement learning, and
under further assumptions they can be shown to be equivalent.
Finally, we relate these models to a sticky agent performing HMM
inference. Altogether, our results connect descriptive, algorithmic,
and theoretically motivated model formulations to offer multiple
views on animal behavior and make predictions about its under-
lying neural mechanisms.

Results

Task Structure and Performance. To study probabilistic decision
making, we trained mice in a Markovian two-armed bandit task.
During each behavior session, the mouse moved freely in a cham-
ber containing three ports into which it could place its snout (i.e.,
nose poke) to engage with the task (Fig. 1A). One of the side ports
delivered reward with probability p ∈ [0.5, 1] (the high port) and
the other with probability 1− p (the low port). We trained each
mouse with three sets of task conditions, in which the high–low
reward probabilities (in percent) were assigned as 90–10, 80–20,
or 70–30 for a given session but changed day to day. The state
of the reward probabilities was assigned on a trial-by-trial basis
following a Markovian process, such that after completion of each
trial, high and low ports remained the same with probability q =
0.98 and switched with probability 1− q = 0.02. This stochastic
process produced blocks of consecutive trials during which the
high reward probability was assigned to the right or left port
(Fig. 1B), with a mean block length of 50 trials.
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Fig. 1. Mouse behavior in a two-armed bandit task. (A) Task structure: A
mouse initiates a trial by putting its snout (i.e., poking) into the center port.
It then selects one of the two side ports in order to enter the choice state.
In this illustration, the mouse chose the right port. Depending on the choice
and preassigned port reward probabilities, reward is or is not delivered.
The mouse terminates the trial by withdrawing from the side port, which
initiates the ITI state. During this 1-s period, the computer assigns reward
probabilities for the subsequent trial using a Markov process. (B) Example
mouse behavior across part of a session. Blue and white shading indicates
the location of the high–reward probability port as left and right, respectively.
Dot position and size indicate the port chosen by the mouse and the outcome
of the trial, respectively (large dot indicates rewarded). (C) Phighchoice for p =
0.8 as a function of trial number surrounding the trial at which the reward
probabilities reverse (block position = 0). Each thin line shows the behavior of
an individual mouse (n = 6), whereas the thicker line and the shading around
it show the mean and SE, respectively, across mice. (D) As in C but for Pswitch.

Wild-type mice learned to perform this task in all three sets
of reward conditions. We focus on the intermediate condition,
80–20, in the main text and figures unless otherwise stated,
but corresponding information for the alternative contexts is
reported in SI Appendix. In the 80–20 sessions, mice achieved an
average of 514± 77 water rewards in a 40-min session (±SD,
n = 6; SI Appendix, Table S1). Overall, right and left port
selection was unbiased (51% left, 49% right), and mice performed
each trial quickly (center port to center port elapsed time or
trial durations of mean ± SD = 2.05± 3.14 s and median
± MAD = 1.65± 0.79 s). The mean time between center and
choice port was 0.47 s, much faster than the 2-s upper limit
imposed by the task structure. Although timing of actions was
history dependent (SI Appendix, Fig. S1), this information was
not used in the analyses and models presented below.

To quantify task performance and characterize the behavioral
strategy, we determined the per trial probabilities of 1) selecting
the higher rewarding port (Phighchoice), reflecting the ability of
the mouse to collect information across trials to form a model of
the optimal action, and 2) switching port selection from one trial
to the next (Pswitch). Switch trials occurred infrequently: in the
80–20 sessions they made up only 0.07 of all trials. Mice made
decisions in a clearly nonrandom pattern: across mice, Phighchoice

was 0.83 (range was 0.81 to 0.84; SI Appendix, Table S2). Fur-
thermore, the strategy employed by the mice deviated from a
simple “win–repeat, lose–switch” strategy as Pswitch was 0.02 fol-
lowing rewarded choices and 0.18 following unrewarded choices
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(as opposed to the 0.0 and 1.0 rates predicted by win–repeat, lose–
switch; SI Appendix, Table S1).

Mice were sensitive to the nonstationary reward probabilities:
they generally chose the higher-rewarding port but adjusted their
behavior in response to reward probability reversals at block tran-
sitions (Fig. 1C ). The mice required multiple trials to stably select
the new high–reward probability port after a block transition (τ =
4.28± 0.19 SEM trials) (Fig. 1C and SI Appendix, Table S2).
Furthermore, although across all trials, Pswitch was low, it
increased after the block transition (Fig. 1D), paralleling the
recovery of Phighchoice. The dynamics of Phighchoice and Pswitch

following the block transitions indicate that mice, as expected,
modulate their behavior in response to the outcomes of choices,
which motivates our pursuit of models that capture this behavioral
strategy (6, 7, 10, 11). Mice adapted their behavior across reward
contexts, responding more quickly to block transitions in sessions
with the more deterministic reward probabilities (90–10) than
in those with the more stochastic reward probabilities (70–30)
(SI Appendix, Fig. S2 and Table S2).

History Dependence of Behavior. To examine the contribution
of trial history to mouse choice, we computed the conditional
probability that the mouse switched ports given each unique
combination of choice–reward sequences in the preceding trials
[P(switch | sequence)], akin to n-gram models used in natu-
ral language processing (26, 27). This can be thought of as
a nonparametric policy in which the combination of previous
choices and rewards (implicitly across varying latent states) guides
future choice (Fig. 2A). We used a code to represent the condi-
tioned history sequences, which fully specifies port choice and
action outcome over a chosen history length (three in the given
example) leading up to each trial (Fig. 2B and Materials and
Methods). For a history length of three trials, switching behavior
has left–right symmetry. For example, the probability of a left
choice following three rewarded left choices is approximately the
same as the probability of a right choice following three rewarded
right choices. This allowed us to represent choice direction in
relative terms (Fig. 2C ).

Apparent Stochasticity of Behavior Limits the Accuracy of
Predictive Models. To characterize the history dependence of
the mouse switching behavior, we examined conditional switch
probabilities for all unique action and outcome sequences for
history length 3 (Fig. 2D and SI Appendix, Fig. S2). This showed
that the probability of switching varies as a function of trial history,
supported by cross-validated likelihood estimates on data held
out from the ∼115,000 trials collected from the 80–20 sessions
(Materials and Methods and SI Appendix, Fig. S3), and confirms
that mouse behavior depends on action and outcome history.
Broad trends can be identified, such as the tendency to repeat the
previous action after rewarded trials. In addition, although mice
exhibit a regime of behavior in which they nearly deterministically
repeat the same port choice on subsequent trials (Pswitch ≈ 0),
the maximum conditional Pswitch does not approach 1 for any
action-outcome sequence, instead reaching a maximum of ∼0.5
(P(switch | “Abb”) = 0.47± 0.078 SEM). Thus, switches cannot
be predicted with certainty for any combination of three past ac-
tions and outcomes. This apparent stochasticity persists for longer
history sequences that are expressed sufficiently often to reliably
calculate P(switch | sequence) (SI Appendix, Figs. S2 and S3).
Thus, mouse behavior can, in this framework, be qualitatively
described as moving from an exploit state of repeating recently
rewarded actions to an explore state of random port choice after
recent failures to receive reward.
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Fig. 2. Switching behavior is probabilistic and history dependent.
(A) Schematic of world model (black lines) for the two-armed bandit task:
rewards (r) depend on mouse choice (c) and the underlying state (z) for each
trial (t). World state evolves according to a Markov process. A nonparametric
policy (blue) shows previous choices and rewards contributing to future
choice. (B) The action–outcome combination for each trial is fully specified by
one of four symbols: L or R for left or right rewarded trial and l or r for left
or right unrewarded trial, respectively. These can form words that represent
action–outcome combinations across sequences of trials. Each sequence
starting with right port selection has a mirror sequence starting with a left
port selection (e.g., r–L and l–R, in A) and can be combined by defining the
initial direction in the sequence as A/a and those in the other direction
as B/b. The probability of switching ports on the next trial is calculated,
conditioned on each trial sequence for history length n. (C) The conditional
switch probabilities after R/L mirror pairs of history length 3 are plotted for
histories starting on the left vs. right port. The clustering of points around the
unity line confirms the symmetry of mouse switching (correlation coefficient
= 0.91). One such pair (l–r–R and r–l–L) is highlighted, which becomes a
single sequence (a–b–B). (D) (Top) Conditional switch probability across all
mice in the 80–20 condition for each action–outcome trial sequence of
history length 3, sorted by switch probability. Each bar height indicates the
mean switch probability following the corresponding action–outcome history
across all trials and mice. The error bars show binomial SEs. Sequences that
occur with SEM > 20% are shown in lighter gray. (Bottom) As in Top for data
collected across all sessions for a single representative mouse. Sequences
are presented along the x axis using the same order as in Top. (E) Confusion
matrices for the nonparametric policy for right and left port choice (Left)
and repeat and switch (Right) in the 80–20 condition. On-diagonal values
represent the theoretical maximum for sensitivity, or the proportion of
predicted positives relative to all positives, under the mouse’s conditional
probability distribution. Off-diagonal values represent expected proportion
of false negatives, normalized to one across the row with true positives.

For a history of length 3, this nonparametric model of mouse
behavior is defined by 43/2 = 32 conditional probabilities. A
more concise summary is given by the confusion matrices for its
average predicted choice probabilities (Fig. 2E). We considered
two representations of these choices: the chosen port (left/right)
and whether the mouse switched port from the last trial (re-
peat/switch). These confusion matrices show that left and right
port choices are highly predictable actions, each with an average
probability of 0.90. In contrast, although the repetition of action
selection from one trial to the next is highly predictable given
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choice and outcome history, with an average probability of 0.94,
the apparently stochastic nature of switching events makes them
highly unpredictable, such that the probability of predicting that
the mouse will switch its port choice from one trial to the next
is only 0.23. Nevertheless, this prediction is better than that
expected by chance given the 0.07 basal switch rate, providing
a target against which we can evaluate model performance.

Models of Mouse Behavior. Our goal in the preceding analysis
of mouse behavior was to identify quantifiable features that could
be used to constrain and test computational models of behavior.
Based on this analysis we selected four criteria to evaluate models
of mouse behavior:

1. The first criterion is the average log likelihood (LL) of a held-
out fraction (30%) of data; i.e., the average log probability the
model assigns to a mouse’s choice given its preceding choices
and the rewards conferred. As a baseline, we use the LL under
the nonparametric model with history length 3 (LL =−0.180;
SI Appendix, Table S3).

2. We also selected the ability of the model to accurately predict
port selection and switching events on a trial-by-trial basis, as
compared to the expected confusion matrices defined above
(Fig. 2E).

3. As the third criterion, we chose the ability of the model to cap-
ture the conditional action and outcome history dependence of
Pswitch, including the apparent history-dependent stochasticity
of behavior (Fig. 2D).

4. Finally, we selected the ability of the model to reproduce the
dynamics of Phighchoice and Pswitch around block transitions
(Fig. 1 C and D).

These features of behavior were stable within and across sessions
(SI Appendix, Figs. S4 and S5).

In developing models, we separately consider two components
underlying the observed behavior: the algorithm and the policy.
The algorithm is the process used to generate beliefs about the state
of the environment (i.e., level of confidence that the higher-reward
port is left vs. right). The policy relates those computed beliefs to a
decision to select a port. The behavioral task evolved according to a
discrete Markovian process such that, from the agent’s perspective,
the world can be described as governed by an HMM. Therefore,
the theoretically motivated, ideal observer model would use a
Bayesian inference algorithm for HMMs to infer which port
is most likely to yield reward. We compared this theoretically
motivated model to logistic regression (a descriptive model that
is frequently used to predict behavior in this context) and to
Q-learning (a commonly used reinforcement learning algorithm).
For the policy, we hypothesized that stochastic action policies
would better reproduce the observed behavioral patterns over
their deterministic counterparts, given the apparent stochasticity
of mouse conditional switch probabilities.

Bayesian Agents Fail to Capture Mouse Behavior. In our task,
there are two environmental states corresponding to whether the
left or right port is the higher–reward probability port. These
states are not directly observable by the mouse. Instead, they
are relayed to the mouse through the outcomes of its choices. A
Bayesian agent computes a posterior distribution (also called the
“belief state”) over the environmental state given past choices and
rewards by performing inference with a model of the world, here
an HMM. Due to the Markovian nature of the task, the belief state
computation can be performed recursively (Fig. 3A and Materials
and Methods). The agent then incorporates the belief state into a
policy, which specifies a distribution over choices on the next trial.

A

D

E

B C

Fig. 3. HMM overestimates mouse switching probability. (A) The HMM recur-
sively updates belief state (bt ) by incorporating evidence from choice (ct−1)
and reward (rt−1) of the recent trial. The next choice (ct ) depends on the
model posterior and the policy (blue). (B) Absolute values of the differences
between the HMM confusion matrices and nonparametric confusion matrix
(Fig. 2E) for each action type. (C) Conditional switch probabilities generated
from the HMM plotted against those observed from mice (sum of squared
error [SSE] = 4.102). (D) Conditional switch probabilities as predicted by the
HMM (blue; model) overlaid on the observed mouse behavior (gray) for all
history sequences of length 3. Sequences on the x axis are sorted according
to mouse conditional switch probabilities of the full dataset (Fig. 2D). The bar
heights show the mean switch probability across mice for each corresponding
sequence history, and the error bars show the binomial SE for the mouse test
data. (E) HMM-generated Phighchoice (blue; Left) and Pswitch (Right) as a function
of trial number surrounding state transition (block position 0) as compared to
the mouse behavior (gray). Dark lines show the mean across trials at the same
block position, and the shading shows the SE.

Let zt denote the environmental state on trial t (left, zt = 1;
right, zt = 0). Let ct denote the mouse’s choice (left, ct = 1; right,
ct = 0), and let rt be a binary variable indicating whether or
not the mouse received a reward. Since the environmental state is
binary, we can represent the belief state with a single value, bt+1 =
P(zt+1 = 1 | c1:t , r1:t). For Bayesian agents, the distribution of
the next choice is determined by the policy, which is a function of
the belief state, P(ct+1 = 1 | c1:t , r1:t) = π(bt+1).

We considered multiple policies to convert the belief state into
a distribution over choices on the next trial. In this task, the
optimal agent would use a greedy policy in which π(bt+1) =
1 if bt+1 ≥ 0.5 and π(bt+1) = 0 otherwise. Alternatively, the
Thompson sampling policy (28) sets π(bt+1) = bt+1 so that ports
are chosen at a rate proportional to the model’s belief. Last, the
softmax policy interpolates between these two policies by means
of a temperature parameter, T (29) (Materials and Methods). As
T goes to zero, the softmax policy recovers the greedy policy, and
when T = 1 it is equivalent to Thompson sampling.

To test if a Bayesian agent could accurately model the mouse’s
behavior, we performed a dense grid search over the HMM
parameters and selected the parameters that maximized the log
probability of the mouse’s choices. We did this for a range of
softmax policy temperatures. For the Thompson sampling policy
(T = 1), the best-fit HMM parameters accurately capture the
temporal structure of the environment (maximized at a transition
probability of 0.02) but underestimate the high port reward
probability (maximized at a reward probability of 0.65, whereas
the true probability was 0.8). In terms of predicting the mouse’s
behavior, this model was much worse than the baseline (LL =
−0.325; SI Appendix, Table S3).
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We also examined behavior predicted by the Bayesian agent
with the Thompson sampling policy and found that it failed to
capture essential features of the mouse behavior, as measured by
criteria 2 to 4 above. This agent systematically overestimated the
probability of switching (Fig. 3 B–E). This is reflected by the
deviation of the model from the expected confusion matrices
of the nonparametric policy, which we compute as the absolute
values of the differences between the model’s values and expected
values for each action (Fig. 3B; Δs , compared to the data in
Fig. 2E). Accordingly, the model overestimates the conditional
switch probabilities (Fig. 3 C and D). (Note that here we present
the analyses of the held-out data not used for training, which
are only 30% of the data presented in Fig. 2D. We preserve
the sorting order from the full dataset, but for this reason the
conditional switch probabilities and binomial SE estimates differ
across figures.) Finally, the HMM fails to capture the dynamics of
Pswitch around block transitions of reward probabilities (Fig. 3E).
On the other hand, Phighchoice is captured quite well by the
HMM, demonstrating the ability of a model to predict port
selection from action–outcome history despite using very different
trial-by-trial switching dynamics from the animal.

We performed the same procedure at different softmax policy
temperatures, but by each of the behavioral metrics outlined
above, these models also failed to capture the mouse behavior
(SI Appendix, Fig. S6 and Table S3). This included an HMM us-
ing parameters that correspond to the ideal observer, which uses
a greedy policy wherein the agent deterministically selects the
port that has a higher probability according to the model’s belief.
These results show that the mouse behavior is not captured by
the optimal agent, nor by a model following the same inference
process but with imperfect learning of environmental parameters.

Logistic Regression with a Stochastic Policy Better Predicts
Mouse Behavior. Logistic regression has been used previously
to predict rodents’ choices in similar tasks (6, 7, 11, 13), but
its ability to predict trial-by-trial switches has not been evalu-
ated. We built a logistic regression model for the conditional
probability of the mouse’s next choice given its past choices
and rewards, P(ct+1 = 1 | c1:t , r1:t) = σ(ψt+1), where σ(x ) =
(1 + e−x )−1 is the logistic function and ψt+1 are the log-odds.
We modeled the log-odds as

ψ
(LR)
t+1 =

L1∑

i=0

αict−i +

L2∑

i=0

βict−irt−i +

L3∑

i=0

γirt−i + δ, [1]

where α, β, and γ represent the weights on input features for
choice (ct ), encoding of choice–reward interaction (ctrt ), and
reward (rt ) across trials back to L1, L2, and L3, respectively. The
choice is encoded as ct = 2ct − 1, which equals +1 for a left
port choice and −1 for a right port choice. We fit the model
by maximum likelihood estimation and used cross validation to
select the number of past trials to include for each feature. This
confirmed that there is minimal left–right port choice bias (i.e.,
δ = 0.04). We also found that rewards alone did not contribute
significantly to choice prediction (i.e.,L3 = 0) but that the history
of choice–reward encoded trials benefited the model (i.e., L2 = 5;
Fig. 4B). Furthermore, only information about the most recent
port choice was necessary (i.e., L1 = 1). This enabled us to use a
reduced form of the model log-odds computation:

ψ
(LR)
t+1 = αict +

5∑

i=0

βict−irt−i . [2]

The feature weights indicate a propensity of mice to repeat their
previous action, as denoted by the positive coefficient on previous
choice (hereby denoted by α; Fig. 4B).

E

C

F

D

A B

Fig. 4. Stochastic logistic regression policy captures mouse behavior com-
prehensively, whereas greedy logistic regression fails to predict switches.
(A) The logistic regression computes the probability of choice (bt ) from choice
(ct−i) and reward (rt−i) information across a series of trials. Here we represent
the model estimate as bt for consistency across graphical representations, but
note that it in this case it corresponds to the log-odds of choice, ψ (Eqs. 1
and 2). (B) (Left) Feature weights for a logistic regression predicting the log-
odds of mouse port selection for the choices, rewards, and choice–reward
interactions in the previous 10 trials. (Right) Feature weights after cross-
validation for hyperparameters and refitting the model. α is the weight on
the previous choice, and β is the set of weights on choice–reward information
for the previous five trials. (C) Absolute value of the differences between
the logistic regression confusion matrices and nonparametric confusion
matrix (Fig. 2E) for each action. Δ scores are shown for stochastic logistic
regression as well as for greedy logistic regression. (D) Conditional switch
probabilities generated by the logistic regression model using a stochastic
(blue) or greedy (red) policy plotted against those observed in mice (stochastic
SSE = 0.378, greedy SSE = 1.548). (E) (Top) Conditional switch probabilities
for the stochastic logistic regression (blue) across sequences of history length
3 overlaid on those from the mouse data (gray). Sequences on the x axis
are sorted according to mouse conditional switch probabilities of the full
dataset (Fig. 2D). Error bars show binomial SEs for the mouse. (Bottom) As
in Top but for a greedy policy (red). (F) Phighchoice (Left) and Pswitch (Right) as
a function of trial number surrounding state transition (block position 0).
Logistic regression predictions with a stochastic (blue) and greedy (red) policy
are overlaid on probabilities observed for mice (gray). Dark lines show the
mean across trials at the same block position, and the shading shows the SE.

We tested the fit model on the held-out data to predict the
left or right choice of the mice and found that this model,
coupled with a stochastic action policy, recapitulated all features
of the behavior and achieved comparable log-likelihood estimates
on held-out data to those of the nonparametric model (Fig. 4
C–F, blue traces; LL = −0.182; SI Appendix, Table S3). The
stochastic policy used here, and in all models below, is a special
case where the model selects its port at a rate proportional to the
model estimate (Materials and Methods). The stochastic logistic
regression captured both the port choice and switching behavior
of the mouse as well as possible given the expected confusion
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matrices (i.e., Δ≈ 0; Fig. 4C ). The model captures the history
dependence of the mouse’s switching behavior, including the
apparent stochasticity of conditional switching (Fig. 4 D and E).
Finally, the model recapitulates the time course over which the
block transition perturbs stable port selection and uses increased
switch prediction as a mechanism to recover the selection of the
high port (Fig. 4F ).

These results differ from those of the theoretically motivated
model (i.e., HMM) as well as from the same logistic regression
model using a deterministic policy (a greedy policy that selects
the port with higher log-odds; Fig. 4, red traces). Interestingly,
the impact of policy on model performance is most evident when
evaluating model fit on switching behavior, with surprisingly
subtle effects on the model’s accuracy in predicting left vs. right
choice (Fig. 4F ). Although the greedy logistic regression captures
much of the dynamics of Phighchoice (Fig. 4 F, Left), it does so
without predicting switching between ports (Fig. 4 F, Right).
These results emphasize the need to explicitly examine switch trials
in behavioral modeling.

Recursive Formulation of the Reduced Logistic Regression.
Our goal in modeling behavior was to uncover the task fea-
tures and algorithms that lead to the expressed decision-making
strategy. The reduced logistic regression accurately captures the
mouse behavior but requires the weights on each of its features
to be learned and the sequence of past choices and rewards to
be stored in memory. Furthermore, it requires adapting feature

weights when task conditions change such that the animal would
essentially need to store multiple look-up tables of feature weights
and recall the correct table to perform the task. As such a look-up
table-based strategy seems implausible as the foundation of mouse
behavior, we inspected the structure of the logistic regression
model to determine whether we could achieve similar predictive
accuracies with a recursively updated algorithm.

The weights assigned to past choices and rewards were well
fit by an exponential curve (30), with initial magnitude β that
decays across trials at a rate of τ (Fig. 5B). Using this exponential
approximation and approximating the finite sum with an infinite
one (since τ < L2), we can rewrite the log-odds of port selection
on the next trial (ψt+1) as

ψ
(LR)
t+1 ≈ αct + β

∞∑

i=0

e−i/τct−irt−i . [3]

Furthermore, we can compute the infinite sum recursively by
observing that

φt = β

∞∑

i=0

e−i/τct−irt−i , [4]

= βctrt + e−1/τφt−1. [5]

We recognize the resulting form as mathematically analogous to
a drift diffusion model (21–23) that decays toward zero with

E

A B C D

G

F Fig. 5. A recursive formulation of the logistic
regression recapitulates behavior in multiple
reward probability conditions. (A) An RFLR up-
dates a single state belief (bt ) using evidence
from recent choice (ct−1) and reward (rt−1).
The policy (blue) shows an additional contribu-
tion on next choice prediction from the pre-
vious choice. (B) β weights for choice–reward
information are described by an exponential
function (black curve). (C) Summary of the fit
RFLR parameters for data from mice perform-
ing in the three sets of reward probability
conditions. Each data point shows the mean
parameter estimate with error bars indicat-
ing the bootstrapped 95% confidence intervals.
(D) Δ scores for absolute values of the differ-
ences between the RFLR confusion matrices
and nonparametric confusion matrix (Fig. 2E)
for each action across the three reward prob-
ability conditions. (E) Conditional switch prob-
abilities calculated from the RFLR predictions
plotted against those of the observed mouse
behavior for each set of reward probability con-
ditions (Top, 90–10 [SSE = 0.243]; Middle, 80–
20 [SSE = 0.417]; Bottom, 70–30 [SSE = 0.33]).
(F) Conditional switch probabilities predicted by
the RFLR (model) across sequences of history
length 3 overlaid on those from the mouse data
(gray) for the three sets of reward probability
conditions. Error bars show binomial SE for the
mouse. (G) Phighchoice (Left) and Pswitch (Right) as
a function of trial number surrounding state
transition (block position 0) for the three sets
of probability conditions. Dashed lines show
mean of model predictions, and solid lines
show mean of true mouse probabilities across
trials at the same block position. Shading shows
the SE.
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time constant τ but receives additive inputs depending on the
most recent choice and whether or not it yielded a reward. The
magnitude β determines the weight given to incoming evidence.
Therefore, our computation of the log-odds can be given as a
filtering of choices and rewards biased byα toward the most recent
choice (Fig. 5A):

ψ
(RFLR)
t+1 = αct + φt . [6]

This form of the model offers two advantages over the original
logistic regression when considering a potential neural imple-
mentation of the algorithm: 1) the exponential representation of
choice and reward history captures the behavior using a model
with only three parameters (α,β, τ ), whereas the logistic regres-
sion used six, and 2) the recursive definition of this choice–reward
representation reduces the memory demands since the model only
needs to store the current state estimate (φt ), choice (ct ), and
reward (rt ).

We tested this RFLR on all three sets of reward conditions
(i.e., 90–10, 80–20, and 70–30) and found it predicted
all features of mouse behavior excellently (Fig. 5 D–G and
SI Appendix, Table S3). Interestingly, the α parameter varied
the most across reward probability conditions, whereas β and
τ remained relatively constant (Fig. 5C ), suggesting that the
mechanism by which mice adapt their behavior can be explained
by increasing or decreasing their bias toward repeating their
previous choice. Notably,α > 0 in all contexts, such that there was
always some tendency to repeat the previous choice (stickiness).

Relation to Reinforcement Learning Algorithms. Algorithms
that use trial-to-trial behavior and outcomes incrementally to
build an estimate, rather than requiring recalling the full action
history for each new choice, are appealing for decision-making
theory. The RFLR resembles another class of such algorithms,
namely, Q-learning algorithms used in reinforcement learning
(19). Q-learning algorithms use a model-free approach to
compute quality estimates for each choice available to the agent
and recursively update these estimates depending on whether or
not a reward is received (19). Let Qt,1 and Qt,0 denote the quality
estimates for the left and right choices, respectively. The recursive
updates are

Qt+1,i =

{
e−1/τQQt,i + βQ(rt −Qt,i) if ct = i

e−1/τQQt,i otherwise.
[7]

Thus, the quality estimates decay toward zero at a rate determined
by the forgetting time constant τQ, and the chosen port’s quality
is updated based on the discrepancy between the received and
expected reward and a learning rate βQ. The policy is given
by P(ct+1 = 1 | c1:t , r1:t) = σ(ψ

(Q)
t+1), where the log-odds are

modeled as

ψ
(Q)
t+1 = αQct +ΔQt+1/T . [8]

Here αQ is a weight on the previous choice, ΔQt+1 =Qt+1,1 −
Qt+1,0 is the difference in quality estimates, and T is a tempera-
ture parameter.

Compare these log-odds to those of the RFLR model (Eq. 6),
and note that ΔQt+1/T is analogous to the recursive quantity
φt . It too can be computed recursively:

ΔQt+1 = e−1/τQΔQt + βQctrt − βQctQt,ct . [9]

These updates are nearly the same as those for φt (Eq. 5). The only
difference is the final term, which depends on the current quality
estimate of the chosen port.

In the closely related forgetting Q-learning (F-Q) model (24),
the final term in Eq. 9 disappears. The key difference in the F-Q
model is that the updates for the chosen port are replaced with
a convex combination of the current estimate and the observed
reward, Qt+1,i = e−1/τQQt,i + (1− e−1/τQ)rt , when ct = i .
Under this formulation, the dynamics for ΔQt+1 simplify so that
an exact correspondence can be made between the parameters of
the RFLR model and those of the F-Q model (31) (Materials and
Methods).

As expected, implementing the F-Q model with learn-
ing/forgetting, choice history bias, and temperature values derived
from the RFLR model yielded equivalent trial-by-trial choice
probabilities and results (LL = −0.182; SI Appendix, Table S3).
The more flexible Q-learning model did not yield higher
performance and in fact appears to overfit (LL = −0.185). The
result of this analysis provides an algorithmic formulation based
on reinforcement learning theory that comprehensively captures
mouse choice and switching behavior.

Returning to the Bayesian Agent. The full LR, RFLR, and
Q-learning models are similar in both their form and their ability
to predict mouse behavior, contrasting the poor performance
of the theoretically optimal Bayesian agent. The Bayesian agent
uses knowledge of the task structure (i.e., an HMM) to infer
the environmental state and guide future action, but it does not
capture the tendency of the mice to repeat their last action (i.e.,
compare graphical representations of the HMM and RFLR in
Figs. 3A and 5A).

To gain insight into the differences between these models,
we developed a mathematical correspondence for the log-odds
computation by the RFLR with that of the Bayesian agent per-
forming inference in an HMM (Materials and Methods). Let
ψ
(B)
t+1 = log bt+1

1−bt+1
denote the belief state of the Bayesian agent,

converted into log-odds. We showed that the recursive belief state
calculations for the HMM can be written as

ψ
(B)
t+1 ≈ e−1/τBψ

(B)
t + αBct + βBctrt , [10]

where (αB,βB, τB) are determined by the reward and transition
probabilities of the HMM (Materials and Methods). These updates
are similar to those of the RFLR, allowing us to establish a
relationship between the RFLR parameters and the reward and
transition probabilities of the HMM.

This analysis revealed two key differences between the RFLR
model and the Bayesian agent. First, they differ in how they
weigh the preceding choice, ct . Whereas for all conditions the
best-fitting RFLR model yields α > 0 (Fig. 5C ), the optimal
HMM requires αB < 0 (see derivation in Materials and Methods).
Intuitively, the RFLR model tends to repeat its previous action,
in contrast to the HMM, which makes its selection considering
only its posterior belief and independent of any additional choice
history bias. Second, the RFLR recursions operate on the weighted
sum of past choices and rewards,φt , whereas the HMM recursions
operate directly on the log odds, ψ(B)

t+1. To address this difference,
the Bayesian agent needs an additional tendency to repeat its
choice immediately after switching ports. We show that the RFLR
and the Bayesian agent can be made equivalent by adding a
stickiness bias,

κt+1 = (α− αB) ct − αe−1/τBct−1, [11]

to the Bayesian agent. Then its policy is given by P(ct+1 =

1 | c1:t , r1:t) = σ(ψ
(B)
t+1 + κt+1) (Materials and Methods), and by

construction, it matches the performance of the descriptive and
algorithmic models (SI Appendix, Table S3).
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Comparison of Behavior of Models Performing the Two-Armed
Bandit Task. Analysis of the trial-by-trial log-odds estimates for
the RFLR (and accordingly for the sticky HMM, F-Q, and full LR
model) reveal asymmetrical use of rewarded vs. unrewarded choice
information, whereby rewarded choices provide evidence toward
the selected port but unrewarded choices result in a decay toward
α (and therefore maintain a preference for the most recent choice;
Fig. 6A). This contrasts the mechanics of the optimal agent, for
which unrewarded trials provide evidence toward the alternative
port (Fig. 6A). For an optimal agent, an unrewarded choice (or
series of unrewarded choices) at the current selection port can flip
the sign of belief or log-odds ratio, providing evidence in favor
of switching ports (Pswitch > 0.5 and even nearing deterministic
Pswitch), in conflict with the actual mouse behavior.

In contrast, for the empirically better-fitting models (LR,
RFLR, F-Q, and sticky HMM), the effect of unrewarded trials
on the log-odds estimate is to drift toward its choice history
bias (i.e., α) and, therefore, like the mouse, cause increasingly
random port selection. Shifting the port favored by the empirical
models requires achieving a reward on the alternative port from
the current preference, which causes an update and sign flip in the
belief parameter. This suggests that switches under the empirical
models rely on the combination of the odds ratio approaching
1 (i.e., log-odds = 0) and a stochastic action policy to facilitate
random sampling of the low-probability port. It is these stochastic
switches—rather than evidence-based switching—that allow the
empirical models to update their belief to favor a new action in
the future.

The empirical versus ideal models exhibit different bounds on
the maximum and minimum trial-to-trial switching probability
(Materials and Methods and Fig. 6A). The upper and lower bounds
of switching probability in the ideal Bayesian agent are constrained
by the odds ratio of the transition probability—even when the
model confidently infers the current state of the port reward
probabilities, the log-odds are bounded by the probability that the
system remains in this state on the next trial. In contrast, the RFLR
and sticky HMM reach near-deterministic steady-state behavior
(Fig. 6A and Materials and Methods). These bounds explain the
elevated switch rate produced by Thompson sampling on the
HMM belief state, even outside of the block transition (Fig. 6B).
Following reward, the belief log-odds of the HMM are further
constrained to the product of the odds ratios of the emission
probability and transition probability.

Optimality of Behavior. The deviation of the empirical behav-
ior from the theoretically optimal model appears striking when
examining trial-by-trial action selection. However, it is unclear
that these deviations have a significant cost in terms of the
total rewards received. Surprisingly, the expected reward rate of
the original Thompson sampling HMM predicting choice from
mouse behavior was only marginally better than that actually
achieved by the mice (71% vs. 70% trials rewarded in 80–20
sessions, respectively).

To determine whether this was an effect of the suboptimality of
the mouse history crippling the HMM performance, we simulated
data under the ideal HMM unbounded from mouse history. We
initialized an ideal observer model with the true task parameters
(p = 0.8 and q = 0.98) and allowed it to play the game using
its own past choices and rewards as history. This model did not
perform better, achieving 71%± 0.4% rewards per session (mean
± SEM). While this version of the HMM uses the optimal
inference process for the task, an ideal agent in this task should act
greedily on the inferred belief. Indeed, a greedy HMM using the
same parameters achieves marginally greater reward rates (Fig. 6B,
74%± 0.0%), highlighting the significance of the action policy
on switching behavior. We compared the performance of these
models to simulations run under a generative form of the RFLR
using the empirically fit parameters, which achieved 69%± 0.0%
rewards per session (mean ± SEM). Notably, even without the
mouse history as input features to guide action selection, the
RFLR-generated behavior resembles the characteristic patterns of
mouse behavior (Fig. 6B).

We hypothesized that the mice converged to a local maximum
or plateau of expected reward within the parameter space in
which further optimization of behavior driven by reward rate is
challenging. For each of the three reward conditions we held τ
constant at the corresponding empirically fit value and examined
expected reward across the two-dimensional parameter space for
varying α and β. In each, there is a wide plateau over which
expected reward stabilizes, and both the α and β values for the
true task parameters under the original HMM and the fit values
under the RFLR lie near this plateau (Fig. 7A). For this reason,
near-maximal performance can be achieved with a broad range of
α and β values (Fig. 7B).

We also considered that the mice may optimize reward relative
to a cognitive or physical cost, as opposed to optimizing reward
rate at any cost. Specifically, we hypothesized that the stickiness

B

A

Fig. 6. Simulations with a generative RFLR recapitulate mouse behavior. (A) Representative session depicting equivalent trial-by-trial log-odds computations
for the RFLR vs. the sticky HMM (orange vs. black traces). These model estimates contrast the log-odds of the posterior computed by the ideal HMM (light blue),
which specifically diverges in prediction updating following unrewarded trials. Stem plot shows the choice–reward interaction that provides action–outcome
evidence to the RFLR. Horizontal dashed lines indicate ±α, and vertical dashed lines indicate state transitions. Zoomed-in image shows an expanded segment
of the session with unrewarded trials labeled by red dots. (B) Phighchoice (Left) and Pswitch (Right) as a function of trial number surrounding a state transition (block
position 0) in the 80–20 condition for the generative RFLR (orange), generative ideal HMM (light blue, dashed), and Thompson sampling HMM (TS, solid) overlaid
with the observed mouse probabilities (gray). The lines show the means across trials at the same block position, and the shadings show the SEs.
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CA

B

Fig. 7. Reward per switch ratios differentiate models and policies that all achieve near-maximal expected reward. (A) Expected reward landscape for the
generative RFLR across varying α (y axis) and β (x axis) values with the empirically observed τ in each of the three reward conditions (τ90−10 = 1.25, τ80−20 =
1.43, and τ70−30 = 1.54). Color bars indicate expected reward rate across simulated trials, and isoclines mark increments above random (0.5). The RFLR-fit α and
β values are depicted with the asterisk, and the relative α and β specified for the HMM lie along the dashed line. (B) Profile of expected reward as a function of α
for varying values of β (color bar, ranging from β = 1 to β = 5, with fit β in black). Expected reward rate at the fit α (black vertical dashed line) suggests minimal
additional benefit of modulating β. (C) (Top) Expected reward in each of the three probability contexts for the generative RFLR using mouse-fit parameters and
generative HMM using the true task parameters. HMM performance is shown using either a greedy or stochastic (Thompson sampling, TS) policy. (Bottom) Ratio
of rewards to switches for each of the three models across reward probability conditions. Each data point shows the mean across simulated sessions, and error
bars show SE but are smaller than the symbol size.

of the empirical models might indicate a preference for the mice
not just for reward maximization but also for efficient collection
of reward in terms of behavioral effort, in this case as reflected in
the switching rate. Comparing the ratio of rewards to switches, we
found that the RFLR achieves twice as many rewards per switch as
the Thompson sampling HMM in the 80–20 condition (i.e., an
average of 9.95 vs. 4.46 rewards per switch, respectively). Calculat-
ing this ratio of rewards per switch for models simulating behavior
in each reward context, we find that the RFLR exceeds the original
HMM in all three (Fig. 7C ). Interestingly, this parallels minimal
differences between the models in overall expected reward (Fig.
7C ) and so can be attributed to the RFLR’s efficient reduction in
switching. However, both of these models are outperformed by
the ideal Bayesian agent that uses a greedy policy, indicating that
the RFLR’s advantage to maximizing rewards per switch is only
valid under the constraint of a stochastic policy. Thus, under the
assumption that switching ports bears a cognitive and/or physical
cost and given a tendency for exploration, the objective of the mice
may not be exclusively reward maximization but rather optimizing
the tradeoff between reward maximization and cost.

Discussion

We find that mice performing a two-armed bandit task exhibit
switching behavior defined by apparent stochasticity, stickiness,
and a representation of action value. These components can
be represented in multiple distinct, yet equivalent, models to
comprehensively capture both trial-by-trial switching and port
choice behaviors. Furthermore, although mouse behavior deviates
from that of the ideal Bayesian observer, the expected reward
for the empirical models is comparable to that for the ideal
agent. Additionally, given a tendency toward exploration, this
strategy preserves high reward rates while minimizing trial-by-
trial switches via a choice history bias. Modulating this level
of stickiness captures the adaptive response of mice to different
reward contexts, offering a parsimonious solution to learning new
environmental parameters.

Switch Trials Reveal Stochasticity in Mouse Behavior. Many
behavioral tasks, including the two-armed bandit, are described
as having components of explore vs. exploit in which an agent

at times exploits existing knowledge and executes an action most
likely to lead to reward, whereas at other times it explores the en-
vironment by choosing an action with a less certain outcome that
reveals information about the environment (9, 12, 14, 32–34).

In such tasks, the trials in which the agent switches actions are
the manifestation of exploration and behavioral flexibility (i.e.,
changes in action due to accumulating information), which are
highly informative components of the behavior. Analysis of these
trials provides an important insight by revealing the apparently
stochastic nature of mouse decision making given recent choice
and reward history: although mice enter a regime of nearly deter-
ministic repetition of actions, they do not enter a corresponding
regime of deterministic switching (i.e., no accumulation of evi-
dence will consistently push the mouse to switch actions). Thus,
even following a series of “no reward” outcomes at a single port,
the mouse chooses its next action apparently at random rather
than reliably switching selection to the other port.

This understanding propels our selection of a stochastic policy
to capture the tendency of the mice to make decisions at a rate
proportional to their confidence in those decisions. The policy we
fit to behavior balances exploitation of the choice favored by the
model estimate and exploration of the alternative choice (9, 16).
The stochasticity we describe is observed under the constraints of
our model variables and history length but does not necessarily
characterize the decision to switch given an unconstrained model
(i.e., given a complete history or access to neural activity). Clearly,
at the extreme, the exact sequence of actions and action outcomes
expressed by the mouse leading up to a trial late in a session is likely
unique (given the exponential growth in sequence possibilities as a
function of trial number), and thus, it is not possible to determine
if the action choice is stochastic given the full history.

Stochasticity of Behavior Constrains Maximum Predictability of
Behavior by Models. There has been a recent push in behavioral
studies to account for behavioral events at the resolution of single
trials (35). This is a worthwhile goal, especially in evaluating
the predictive performance of behavioral models. However, we
found that the stochastic component of behavior given our model
assumptions sets bounds on the predictability of different ac-
tions. Therefore, we compared the performance of each model
against the theoretical probabilities of predicting each action
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(i.e., expected confusion matrices from the nonparametric model)
set by the stochasticity of the mouse behavior on the same type of
trial. In the context of exploratory behavior, the method described
here or a similar approach to constraining models under the true
distribution of the data (34) enables testing of models against
realistic boundaries of predictive accuracy.

Stickiness Captures the Deviation of Mouse Behavior from the
Optimal Agent. Interestingly, we find that the model that best
recapitulates the mouse behavior, even after the animals have
undergone extensive training, does not use the strategy that maxi-
mizes reward in this task (the HMM with a greedy policy). Single
latent variable HMMs can be implemented in artificial neural
networks and therefore, at least in principle, by the brain, so it
is unclear why mice do not perform this optimal strategy (36).
An ethological explanation can be proposed from our observation
that using the optimal strategy offers only marginal increases
in expected reward over the simple RFLR (or analogous F-Q
model; 74% vs. 69% expected reward, respectively). Moreover,
given a tendency for exploration or stochasticity, the HMM
requires more trials in which the agent switches between ports
to achieve equal reward. This hypothesis suggests that constraints
imposed by learning the task structure and the asymmetric costs
associated with the selection or executions of actions lead the
mouse away from the HMM implementation. Additionally, it
brings up an interesting question as to whether mice have an
innate tendency for exploration in environments with uncertainty
(37–40).

We found that a descriptive model, the logistic regression,
offered a better fit to mouse behavior than the ideal observer
model. This finding is consistent with recent data-driven modeling
of rodents behaving in a similar two-armed bandit task in which
the reward contingencies drifted continuously from one trial to
the next (13). In that case, the logistic regression coefficients
exhibited a similar exponential decay, placing the greatest weight
on the most recent actions and outcomes. Given that both tasks
involve reward contingencies with Markovian dynamics, we sus-
pect that a similar connection could be made to a theoretically
motivated ideal observer model performing inference in an HMM
and minimizing switching.

In our analysis, the differences between the ideal observer and
the data-driven models were explained by an additional influence
of past choice on future choice. We accounted for this by building
a sticky HMM, which, by construction, produced equivalent trial-
by-trial log-odds predictions as the RFLR. Stickiness has been
reported in analyses of behavior across tasks and species and is also
called perseveration, choice history bias, and the law of exercise
(13, 23, 24, 40–44). This bias to repeat previous actions offers a
parsimonious mechanism for adapting an existing action policy
to novel environmental conditions: we found that in the face of
changing reward probability conditions, mice minimally updated
the weight assigned to incoming evidence and the time constant of
memory decay (β and τ , respectively) but instead modulated their
behavior by increasing or decreasing their level of perseveration. In
the mathematically equivalent F-Q formulation of reinforcement
learning, this change is conserved as the α parameter is directly
derived from the RFLR. This behavioral adaptation, represented
largely by a single parameter, comes at low cost to the animal
in terms of expected reward and therefore may be an efficient
strategy for minimizing effort necessary to learn new behavioral
strategies (44–46).

Implications for the Neural Mechanism. One of the goals of this
study was to increase our understanding of decision making in

order to guide future interrogation of circuit function and the neu-
ral underpinnings of behavior. However, the specific algorithms
that we found best fit the mouse behavior may or may not be
directly implemented in the brain. The demonstration that multi-
ple distinct algorithms can similarly model behavior underscores
this point and draws our focus to the features that are shared by the
models. We hypothesize that whatever algorithm the brain relies
on for this task, if it is deterministic, then it is combined with
a stochastic action policy to produce the behavior we observe.
(Of course, a policy that appears stochastic behaviorally can
have deterministic neural origins.) Recently developed statistical
methods offer new means of determining if and how the features
of these behavioral models are encoded in neural activity (47).

Each of the models that successfully recapitulates mouse behav-
ior relies on an interaction between choice and reward, consistent
with previous accounts of action value encoding in brain regions
such as striatum and medial prefrontal cortex (5, 6, 10, 11, 48).
The action value representation in our empirical models notably
treats evidence from rewarded and unrewarded trials asymmetri-
cally. This asymmetry has been previously reported in analysis of
mouse evidence accumulation (16), and it contrasts the behavior
of the ideal agent that uses unrewarded trials as evidence in favor
of the alternative option. Investigating whether, and at what level
of processing, a corresponding asymmetry exists in the neural
representation of reward will be important for understanding the
nature of reinforcement in learning.

Furthermore, past work has hypothesized that recursive algo-
rithms that compress information over a sequence of trials to a
small number of variables are more neurally plausible (32). Here
we show that some recursive algorithms (i.e., original HMM)
struggle to explain switching behavior, whereas nonrecursive mod-
els (i.e., logistic regression) perform well. This poses a potential
challenge to this hypothesis. However, we were able to derive
alternative recursive algorithms (i.e., RFLR, F-Q model, and
sticky HMM) that do accurately explain behavior.

Is there a way to disambiguate these models if they all pro-
duce the same behavior? Previous work has shown that model-
based and model-free methods may exist in parallel but can
be distinguished through measurements of neural activity (49).
Behaviorally, model-based representations may offer an advantage
for overall performance accuracy, but as has been shown here
and previously, the magnitude of this difference in accuracy is
task-dependent (50). Importantly, model-based implementations
come at a cost for cognitive demands (50), so this tradeoff
between demand and reward may favor model-based methods in
some contexts but not others. Additional contextual features may
make the implementation of particular models favorable, such
as environments where action outcomes are not symmetric or
interdependent. In this case, the ability to separately approximate
the value of each action, as in Q-learning models, could be
beneficial. Furthermore, in a lateralized task, this could allow for
lateralized representations across hemispheres.

More complex behavioral models might predict mouse be-
havior more accurately than those discussed here. For example,
recent work has shown that mouse behavior in similar tasks is well
described by drifting or discretely switching policies, suggesting
that animal behavior is guided by time-varying internal states (51,
52). This raises an interesting and perhaps confusing point: as
we seek to understand animal behavior, we must simultaneously
infer an animal’s internal state as well as that animal’s inferences
about the external state of the world. Probabilistic models that
bridge descriptive, algorithmic, and theoretically guided charac-
terizations offer a route to resolving these complexities of animal
behavior.
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Materials and Methods

Behavior Apparatus. The arena for the two-armed bandit task was in-
spired by previous work (6). Behavior experiments were conducted in 4.9′′

× 6′′ custom acrylic chambers. Each chamber contained three nose ports
with an infrared-beam sensor (Digi-Key, 365-1769-ND) to detect entry of
the snout into the port. A colored light-emitting diode (LED) was positioned
above each port. For the two side ports, water was delivered in 2.5 μL
increments via stainless steel tubes controlled by solenoids (The Lee Co.,
LHQA0531220H). The timing of task events was controlled by a microcon-
troller (Arduino) and custom software (MATLAB). Plans for an updated version
of the behavioral system, including the most recent hardware and software, are
available online: https://edspace.american.edu/openbehavior/project/2abt/ and
https://github.com/bernardosabatinilab/two-armed-bandit-task.

Behavior Task. Wild-type mice (C56BL/6N from Charles River and bred in
house) aged 6 to 10 wk were water restricted to 1 to 2 mL per day prior to
training and maintained at >80% of full body weight. While performing the
task, mice moved freely in the chamber. Activation of an LED above the center
port indicated that the mouse could initiate a trial by nose poking into the center
port. Doing so activated LEDs above the two side ports, prompting the mouse
to choose to nose poke to the right or left. The mouse had 2 s to make its
selection. Following side port entry, the computer determined whether or not to
deliver a water reward according to the corresponding port reward probability
and the result of pseudorandom number generation. Withdrawal from the side
port ended the trial and started an intertrial interval (ITI). The 1-s ITI followed
selection, during which time the system assigned the reward probabilities for
the next trial according to a Markov decision process (0.98 probability that high
and low port assignments remained the same, 0.02 probability the assignments
reversed). After the 1-s minimum ITI, the center port LED turned on, and the
mouse was permitted to initiate the next trial (with no upper limit to trial initiation
time). The duration of each behavior session was 40 min, over which the mouse
typically earned >350 rewards. All training sessions were conducted in the dark
or under red light conditions. Experimental manipulations were performed in
accordance with protocols approved by the Harvard Standing Committee on
Animal Care, following guidelines described in the NIH Guide for the Care and
Use of Laboratory Animals.

Conditional Switch Probabilities. To concisely represent the history preced-
ing each trial, we defined a code that captures both action (relative choice
direction) and the outcome of that action (reward or no reward): the letter (a/A
vs. b/B) denotes the action, and the case (lower vs. upper) denotes the outcome
with uppercase indicating a rewarded trial. We define the first choice direction
of the sequence as “A,” so that, depending on reward outcome, choices in this
direction are also labeled “A/a,” whereas those in the other direction are labeled
“B/b.” This code was used to build “words” (e.g., Aab) that fully specify the action
and outcome histories for a given length on which switch probabilities were
conditioned.

Models of Mouse Behavior. All behavior models were trained on 70% of
sessions and tested on the remaining held-out data. For models predicting
mouse choice on previous mouse behavior (Figs. 3–5), model predictions were
taken as the mean across 1,000 repetitions on bootstrapped test data to acquire
representative estimates of choice and switch probabilities.

We simulated mouse behavior by implementing the Bayesian agent and
RFLR as generative models. We simulated the task with the location of the high-
rewarding port (p = 0.8) determined by a Markovian process with a transition
probability of 0.02 and preserved the session structure that the mice experienced,
such that the number of trials in each session was drawn from a distribution
based on the mouse behavior. Each model was given the same set of sessions
and played until a simulated dataset the same size as the mouse dataset was
generated. We ran this simulation for 1,000 repetitions to create the averaged
performance presented in Fig. 6.

For the Bayesian agent, we used the ideal observer given the true task
parameters and after random initialization for the first choice allowed the model
to recursively update its belief given its own actions and associated outcomes to
guide future choices. We generated behavior from an HMM Thompson sampling
on its belief to correspond with the stochastic policy of the RFLR, as well as acting
greedily on its belief to represent the ideal observer (Figs. 6B and 7C). For the
RFLR, the model played using the fit parameters of the mouse. The expected
reward landscape was calculated by performing a parameter grid search with this
simulation.

Complete mathematical details are given in SI Appendix, Text.

Data Availability. The behavioral dataset is publicly available at the Harvard
Dataverse (https://doi.org/10.7910/DVN/7E0NM5) (53). The code for analyzing
this data is publicly available at GitHub, https://github.com/celiaberon/2ABT
behavior models. All other study data are included in the article and/or
SI Appendix.
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