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Abstract

Mendelian diseases have shown to be an and efficient model for connecting

genotypes to phenotypes and for elucidating the function of genes. Whole‐exome

sequencing (WES) accelerated the study of rare Mendelian diseases in families,

allowing for directly pinpointing rare causal mutations in genic regions without the

need for linkage analysis. However, the low diagnostic rates of 20–30% reported

for multiple WES disease studies point to the need for improved variant

pathogenicity classification and causal variant prioritization methods. Here, we

present the exome Disease Variant Analysis (eDiVA; http://ediva.crg.eu), an

automated computational framework for identification of causal genetic variants

(coding/splicing single‐nucleotide variants and small insertions and deletions) for

rare diseases using WES of families or parent–child trios. eDiVA combines next‐
generation sequencing data analysis, comprehensive functional annotation, and

causal variant prioritization optimized for familial genetic disease studies. eDiVA

features a machine learning‐based variant pathogenicity predictor combining
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various genomic and evolutionary signatures. Clinical information, such as disease

phenotype or mode of inheritance, is incorporated to improve the precision of the

prioritization algorithm. Benchmarking against state‐of‐the‐art competitors

demonstrates that eDiVA consistently performed as a good or better than

existing approach in terms of detection rate and precision. Moreover, we applied

eDiVA to several familial disease cases to demonstrate its clinical applicability.
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disease variant prioritization, machine learning, NGS diagnostics, rare genetic disease, whole‐
exome sequencing

1 | INTRODUCTION

Rare genetic diseases are classical models for studying gene function and

linking genotypes to disease phenotypes. Although each of these diseases

only affects a small number of patients, the sum of people affected by one

of the more than 7,000 rare diseases exceeds 30 million individuals in the

US alone (Cutting, 2014). Whole‐exome sequencing (WES), and more

recently whole‐genome sequencing (WGS), are routinely applied to

identify variants causing rare Mendelian diseases in studies of families or

parent–child trios (Choi et al., 2009; Ng et al., 2010; Louis‐Dit‐Picard
et al., 2012; Rabbani, Mahdieh, Hosomichi, Nakaoka, & Inoue, 2012).

Usually, each exome sequencing experiment yields tens of

thousands of genetic variants in coding and splicing regions that require

thorough functional annotation and filtering to allow identification of

the causal variant. Several tools have been published performing variant

annotation, including Annovar, VEP, or SNPeff, which augment the

sequencing information with a comprehensive set of current omics,

population genomics, and clinical knowledge (Cingolani et al., 2012;

McLaren et al., 2016; Wang, Li, & Hakonarson, 2010). These tools utilize

a large selection of available databases containing gene annotations,

various genomic features, variant allele frequencies in different

populations, functional impact prediction, and evolutionary conservation

(Bao et al., 2014). Other methods, such as eXtasy (Sifrim et al., 2013),

PhenoDB (Sobreira, Schiettecatte, Boehm, Valle, & Hamosh, 2015),

Phen–Gen (Javed, Agrawal, & Ng, 2014), VarSifter (Teer, Green,

Mullikin, & Biesecker, 2012), KGGseq (M.‐X. Li, Gui, Kwan, Bao, &
Sham, 2012), and SPRING (Wu, Li, & Jiang, 2014), focus on prioritization

of potentially causal variants using both functional annotation and

clinical information. These tools systematically filter, evaluate, and

prioritize thousands of variants, taking into account knowledge found in

genome annotation databases (Rhead et al., 2010), disease gene

repositories (OMIM, Online Mendelian Inheritance in Man; Landrum

et al., 2014), and patient pedigree information, as well as phenotype

descriptions and disease definitions provided for example, as Human

Phenotype Ontology (HPO) terms (Köhler et al., 2014). Finally, methods

such as Endeavour (Tranchevent et al., 2008) and GeneDistiller (Seelow

et al., 2008) prioritize disease genes, not individual variants, by

integrating diverse genomic data sources.

Detection rates of causal variants using WES have been reported to

be as low as 20–30% of cases (H. Lee et al., 2014; Yang et al., 2013),

although higher success rates have been reported for specific disease or

inheritance types (Sawyer et al., 2016) and for studies using parent–

child trios (Yang et al., 2013). While some of the unsolved cases might

be explained by intergenic or intronic regulatory variation or

unidentified structural variants, the low detection rate also indicates

the need for development of better prioritization strategies for coding

variants and robust classifiers comprehensively integrating the available

amount of prior omics and the knowledge of the disease.

Many computational algorithms have been developed to assess

pathogenicity of genetic variants. Tools such as SIFT (Kumar, Henikoff,

& Ng, 2009), CADD (Kircher et al., 2014), PolyPhen‐2 (Adzhubei et al.,

2010), or Eigen (Ionita‐Laza, McCallum, Xu, & Buxbaum, 2016) are

commonly used in clinical practice to help variant interpretation. They

derive a functional impact score based on amino acid or nucleotide

conservation, and biochemical properties of the amino acid changes as

features. While some algorithms additionally categorize variants into

various categories such as “neutral,” “benign,” “deleterious,” “damaging,”

“probably‐damaging,” or “pathogenic” (e.g., SIFT, Condel, PolyPhen‐2,
andMutation Assessor), scores of other methods need to be interpreted

by using (often arbitrary) cutoffs for pathogenicity (e.g., CADD). These

predicted pathogenicity labels are an integral part of the American

College of Medical Genetics and Genomics standards and guidelines for

the interpretation of sequence variants (Richards et al., 2015). Methods

combining multiple classifiers, such as MetaLR, have been shown to

produce better results than single classifiers (Dong et al., 2015).

Recently, specialized ensemble learning methods for estimating

pathogenicity of rare variants have been published: Mendelian Clinically

Applicable Pathogenicity (M‐CAP; Jagadeesh et al., 2016), using

gradient‐boosting trees on pathogenicity scores and conservation

features, and Revel (Ioannidis et al., 2016), using an RF to integrate

several pathogenicity predictors.

To combine an intuitive user interface with comprehensive variant

prediction, annotation, pathogenicity classification, and causal variant

prioritization we developed eDiVA (exome Disease Variant Analysis),

http://www.ediva.crg.eu. The eDiVA pipeline is composed of four main

components: (a) eDiVA‐Predict, where sequencing results are processed

to predict the presence of genomic variants; (b) eDiVA‐Annotate, that
enriches variants via a domain‐knowledge database; (c) eDiVA‐Score,
which estimates variant pathogenicity using a random forest model; and

(d) eDiVA‐Prioritize, in which variants from small groups of related
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samples (i.e., families or parent–child trios) are analyzed jointly. eDiVA

returns a shortlist of candidate variants compatible with the selected

disease inheritance model and the pedigree information. Using the

pathogenicity probability computed by eDiVA‐Score, variants are ranked

such that better candidates appear on top of the result list. eDiVA has

been developed with specific emphasis on usability, automation, and

reproducibility of results and is available as a web service with a graphical

user interface (see Supporting Information Material), or as an open‐
source repository with Docker containers. eDiVA can be run using the

NextFlow (Di Tommaso et al., 2017) pipeline management system to

ensure its compatibility with most standalone or cloud‐computing

platforms as well as to guarantee reproducibility on any system.

eDiVA has been optimized for two common clinical diagnostics

scenarios, parent–child trios comprised of healthy parents and one

affected child (tested for recessive, compound heterozygous, and X‐
linked inheritance or dominant de novo variants) and families with

multiple affected relatives (additionally tested for dominant inheri-

tance). We demonstrate that eDiVA outperforms competing approaches

in a semisynthetic benchmark study introducing thousands of known

disease variants from ClinVar (Landrum et al., 2014) or HGMD (Stenson

et al., 2017) into real WES data from the 1000 Genomes Project CEPH

parent–offspring trio of European ancestry (NA12878, NA12891, and

NA12892). We, furthermore, report summary statistics on eDiVA and

Phen–Gen results for 35 unreported disease cases, composed of 15

cases of spinocerebellar ataxia, 16 cases of primary immunodeficiency,

and four cases of congenital myasthenia.

2 | MATERIALS AND METHODS

2.1 | eDiVA pipeline

eDiVA consists of a Python pipeline combined with an SQL Database

back‐end composed of four components: variant prediction, variant

annotation, pathogenicity estimation, and variant prioritization

(Figure S1). The main functionality of eDiVA is to process next‐
generation sequencing (NGS) data for small sets of samples (e.g.,

families or parent–child trios) and to output a shortlist of potentially

causal variants for the diagnosed disease. eDiVA is available as an open‐
source repository, https://github.com/mbosio85/ediva, with a Docker

container composition wrapped within a NextFlow (Di Tommaso et al.,

2017) interface to guarantee exact reproducibility on the most common

computing platforms (including several cloud platforms) and as a freely

accessible web server: http://www.eDiVA.crg.eu. The modular nature of

eDiVA allows for easy integration of specific parts, for example, the

eDiVA‐Score module for pathogenicity estimation, in other pipelines or

tools. Comprehensive examples for the use of eDiVA and example input

files are included in the repository and on the website.

2.2 | eDiVA‐Predict: WES or WGS processing and
variant calling

The eDiVA‐Predict module performs sample‐wise variant calling

according to the recent GATK (McKenna et al., 2010) best practices

(https://www.broadinstitute.org/gatk/guide/best‐practices as of June
2017) to extract genetic variants from raw reads. Reads in fastq

format are aligned using bwa‐mem (H. Li, 2013), alignments are post‐
processed using samtools (H. Li, 2011), GATK (McKenna et al., 2010),

Picard (Picard Tools—By Broad Institute), and custom quality filters

(details provided in Supporting Information Material). Finally, VCF

files are generated using GATK HaplotypeCaller. Subsequent

regenotyping of all positions harboring a single‐nucleotide variant

(SNV) or small insertions and deletions in at least one family member

yields a complete matrix of variants for the whole sample set (family)

in multisample VCF format. Due to the computational resources

required for read alignment and variant calling, eDiVA‐Predict is

currently not enabled on the eDiVA web server, but can be used with

the standalone version of eDiVA on a local or remote computing

infrastructure (e.g., Amazon Cloud). Alternatively, variant prediction

can be performed using any tool able to produce one multisample

VCF file reporting genotype quality and coverage information for all

variable positions (e.g., GATK, McKenna et al., 2010; freebayes,

Garrison & Marth, 2012).

2.3 | eDiVA‐Annotate: Functional variant
annotation

Using the eDiVA‐Annotate module each variant is individually

linked with public information sources to integrate multiple

knowledge domains, and to provide a comprehensive annotation

profile. First, ANNOVAR (Wang et al., 2010) is applied to relate

each variant to its corresponding gene (choosing among UCSC,

Ensembl, or Refseq gene annotations), and to its functional

consequence at the protein level. Next, functional, population

genomics, and evolutionary data relevant for variant prioritization

are added to each variant. To this end we created a MySQL

database, eDiVA‐DB, containing all relevant positional information

obtained from UCSC table browser (Rhead et al., 2010) and other

sources. Each variant is annotated with population allele fre-

quency information from the dbSNP (Sherry et al., 2001),

discovEHR (Dewey et al., 2016), 1000 Genomes Project

(1000GP; The 2015 Genomes Project Consortium, 2015), Exome

Variant Server (Exome Variant ), and GnomAD exomes (Lek et al.,

2016) databases. The latter three databases also provide informa-

tion on specific populations (e.g., Caucasian, Asian, African

American, etc.), which can be selected for improved causal variant

prioritization. Information on evolutionary conservation is incor-

porated from PhyloP (Rhead et al., 2010), and PhastCons (Hubisz,

Pollard, & Siepel, 2011), including conservation scores for

primates, mammals, and vertebrates. Precalculated scores for

functional impact of variants have been integrated based on the

algorithms SIFT (Kumar, Henikoff, & Ng, 2009), PolyPhen‐2
(Adzhubei et al., 2010), Mutation Assessor (Reva, Antipin, &

Sander, 2011), Condel (González‐Pérez & López‐Bigas, 2011),

Eigen (Ionita‐Laza et al., 2016), and CADD (Kircher et al., 2014).

Furthermore, eDiVA‐DB includes information on genomic features

like segmental duplications and simple sequence repeats provided
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by UCSC table browser (Rhead et al., 2010). Finally, eDiVA‐DB

provides clinical data from ClinVar (Landrum et al., 2014) and

OMIM related to each variant and affected gene.

eDiVA‐Annotate uses multisample VCF files and returns a file

with annotated variants in comma‐separated value format. This step

can be performed on the eDiVA web server.

2.4 | eDiVA‐Score: Estimating variant
pathogenicity

eDiVA's prioritization algorithm relies on accurate estimation of

pathogenicity for each variant. We therefore developed eDiVA‐
Score, a machine learning classifier, which assigns a pathogenicity

probability to each variant based on its annotation characteristics

obtained from eDiVA‐Annotate. eDiVA‐Score is built by training a

random forest (RF) model using the R “randomForest” package

with 1000 binary classification trees (Breiman, 2001; Hastie,

Tibshirani, & Friedman, 2009) and five‐fold cross validation. Eleven

features were selected to train the RF model: (a) the maximum

minor allele frequency (MAF) of 1000Genomes and GnomAD

databases; (b) four conservation measures (conservation in

primates and mammals using the PhastCons (Hubisz et al., 2011)

and PhyloP (Pollard, Hubisz, Rosenbloom, & Siepel, 2010); (c) four

functional impact predictors: Condel (González‐Pérez & López‐
Bigas, 2011), Phred‐scaled CADD score (Kircher et al., 2014),

Eigen (Ionita‐Laza et al., 2016), and Mutation Assessor (Reva et al.,

2011); (d) the likelihood to be in a segmental duplication, which

correlates with false‐positive variant calls (Ho, Tsai, Chen, & Lin,

2011); and (e) an in‐house estimator of systematic sequencing

errors called ABB‐score (Muyas et al., 2019). Note that Condel,

Eigen and CADD are combination scores integrating several

features also included in eDiVA‐score, namely evolutionary

conservation (PhastCons and PhyloP in mammals and primates)

and Mutation Assessor scores. The RF model has been trained

using 15,000 random pathogenic and likely pathogenic variants

from the ClinVar database (Landrum et al., 2014) as positive cases.

We then built a control set composed of 15,000 nonpathogenic

variants from ClinVar, and 100,000 random variants from

GnomAD (Lek et al., 2016) not contained in ClinVar. The vast

majority of variants in both positive and negative training set are

rare (allele frequency [AF], <1%; Figure S2a,b), thus circumventing

that AF dominates the classification model. Following the neutral

theory of molecular evolution (Kimura, 1983) missing data is

generated using expected values for nonpathogenic (neutral)

variants (Figure 1). The only exception is AF, as missing data in

the context of AF means that the SNV is novel, that is, has AF of

zero. Variants used for training of the RF have been excluded in all

benchmarking tests performed in this study.

2.5 | eDiVA‐Prioritize: Causal variant prioritization

Causal variant prioritization consists of four steps, (a) ranking by

estimated probability of variants to cause a phenotypic change

(eDiVA‐Score, see above); (b) removal of all variants that do not

segregate according to the selected inheritance mode; (c)

filtering based on functional and population genomic features;

and (d) prioritization based on user defined clinical phenotypes

(as HPO IDs). Filtering based on segregation requires the user to

submit a simple pedigree file defining the relationship between

samples and their disease state (i.e., affected or unaffected), and

to choose the most likely inheritance pattern for the disease (or

to run all modes). eDiVA‐Prioritize can process variants following

five types of inheritance patterns: (a) dominant de novo, (b)

autosomal dominant inherited, (c) autosomal recessive homo-

zygous, (d) autosomal recessive compound heterozygous, or (e)

X‐linked.
Optionally, eDiVA removes variants that are improbable of

being damaging, are likely false‐positive calls or do not have

sufficient read coverage in all family members to reliably

estimate segregation patterns. By default, eDiVA applies a

lenient filter setting defined in Table S1. Finally, eDiVA allows

the user to specify a list of HPO terms (Köhler et al., 2014)

relevant for the disease as an additional source of information to

prioritize variants in genes. eDiVA highlights all variants in genes

related to the submitted phenotypic traits using a custom

algorithm to estimate the HPO‐gene association (detailed in the

Supporting Information material).

2.6 | Performance evaluation using semisynthetic
cases

To assess the performance of eDiVA and several competing methods,

we implemented a semisynthetic benchmark based on real WES data

from a trio in which we spiked‐in known pathologic variants from the

ClinVar database (Landrum et al., 2014). We chose a publicly available

CEPH trio sequenced within the framework of the 1000 Genomes

Project composed of samples with European ancestry NA12878

(daughter), NA12891 and NA12892 (parents), downloadable from

https://public_docs.crg.es/sossowski/MicrobeGenomes/human/eDiVA/

insilico_simulation_data/, and we called variants and generated a

multisample VCF file using eDiVA‐Predict. For the purpose of this

benchmark study, all 138,705 variants found in the original trio are

considered true negatives, that is, variants not associated with the

disease.

Next, we embedded known disease variants in the trio following

segregation patterns expected for Mendelian diseases. This positive

set, containing variants associated with the diseases, consists of all

variants from ClinVar (Landrum et al., 2014) database labeled as

“pathogenic” or “likely pathogenic”, having an OMIM reference in the

database and that had not been used for training of eDiVA‐Score. For
each pathogenic variant, we extracted: chromosome, position,

reference and alternative nucleotides, dbSNP identifier, gene name,

inheritance mode of the associated disease (where available,

randomly assigned otherwise), and HPO terms for the disease.

Variants without HPO annotation have been excluded from the

benchmark set.
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We have simulated three inheritance patterns: autosomal

recessive homozygous, autosomal recessive compound heterozygous,

and dominant de novo, as these are the most likely patterns found in

parent–child trio based rare‐disease diagnostics. To create realistic

disease genotypes, each pathogenic variant was introduced into the

exomes of the daughter and the parents, if applicable according to

the inheritance mode. The read distribution of reference and

alternative reads was simulated depending on the inheritance mode

and the original coverage data. The variant allele frequency (VAF) of

the alternative allele (i.e., the fraction of reads showing the

alternative allele) introduced in the original VCF file has been

obtained using a beta distribution and a binomial distribution for

homozygous and heterozygous variants, respectively. A total of 6,811

disease‐associated variants from ClinVar not previously used in the

training of eDiVA‐Score were used for benchmarking: 3,353

recessive homozygous, 2,592 dominant de novo, and 866 recessive

compound heterozygous disease‐causing variants (see Table S2 for

additional information on simulated genotypes).
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2.7 | Benchmarking of variant pathogenicity
estimation methods

We evaluated the ability of eDiVA‐Score and six competing methods,

namely CADD, Eigen, DANN, Revel, M‐CAP, and MetaLR (Dong et al.,

2015, Ioannidis et al., 2016, Ionita‐Laza et al., 2016, Jagadeesh et al.,

2016, Kircher et al., 2014, Quang, Chen, & Xie, 2015), to prioritize

pathogenic over benign variants. We generated a receiver operating

characteristic (ROC) curve for each tool and benchmark set and

measured performance by area under the curve (AUC).

First, we evaluated the performance of each method on the

ClinVar test set (containing only variants not used for model

training), using variants labeled “pathogenic” as true positives (TP)

and variants labeled “benign” as true negatives (TN; Figure 2a–c).

Second, we benchmarked using variants from the HGMD and

GnomAD databases (not used in model training or present in

ClinVar) as TP and TN, respectively (Figure 2d–f). Third, we

measured the performance of all methods on HGMD data only,

using the categories for damaging and likely damaging mutation (DM

and DM?) as TP and any other HGMD category as false positives (FP)

(Figure 3g–i). Functional impact values for the benchmarked methods

have been obtained from the respective publications. CADD, DANN,

and eDiVA provide damage estimates for all positions of the genome,

and Eigen for close to 70% of all positions, whereas Revel, M‐CAP,
and MetaLR are trained specifically for rare (AF, <1%) or known

variants and are only available for a subset of ClinVar, HGMD, and

GnomAD. We, therefore, performed three separate performance

tests for each of the three benchmark sets, applying the following

criteria (a) using only variants having Revel and M‐CAP scores

available (ClinVar: 3,887 TP and 10,494 TN; HGMD/GnomAD:

63,712 TP and 100,000 TN; HGMD: 63,712 TP and 1,892 TN); (b)

random subset of all variants, assigning a default value of 0 to missing

values (ClinVar: 19,888 TP and 16,694 TN; HGMD/GnomAD: 96,569

TP and 100,000 TN; HGMD: 96,569 TP and 7376 TN); and (c) using

only rare variants (AF, ≤0.01) from the previous pool of variants

(ClinVar: 16,531 TP and 15,531; HGMD/GnomAD: 90,004 TP and

97,828 TN; HGMD: 96,004 TP and 2,817 TN).

Furthermore, we studied five variant sets provided by Grimm

et al. (2015), forming a collection of data sets for benchmarking

pathogenicity classifiers published in independent studies. Finally, we

combined these five sets to form a combined benchmark (see

Supporting Information Materials for details).

2.8 | Benchmarking of disease variant
prioritization methods

We compared eDiVA with three commonly used tools for variant

annotation and prioritization: Exomiser (Robinson et al., 2014),

PhenoDB (Sobreira et al., 2015), and Phen–Gen (Javed et al., 2014)

on a set of 6,811 semisynthetic parent–child trios (see above).

PhenoDB was executed from the https://phenodb.org/ website using

standard parameters (a) AF, <0.01; (b) including variants which are

present in dbSNP, and (c) analysis type chosen among “autosomal

recessive compound heterozygous”, “autosomal recessive homozy-

gous”, or “autosomal dominant new mutation”. We locally installed

Phen–Gen and launched it with the corresponding setups: (a)

“Recessive”, “allow_de_novo = 0” for recessive and compound inheri-

tance, and (b) “Dominant”, “allow_de_novo = 1” for the dominant de

novo inheritance model. We locally installed Exomiser and analyzed

all trio cases using PhenIX prioritization mode (details in Supporting

Information Material). We tested eDiVA in two configurations, (a)

without phenotype description, and (b) using HPO IDs describing the

disease phenotype for disease‐specific prioritization of candidate

variants.

To benchmark the ability of eDiVA, Exomiser, PhenoDB, and

Phen–Gen to distinguish disease‐causing from benign variants we

compared three quality metrics, (a) recall (i.e., did the causal variant

appear in the output list or not), (b) average number of false positives

across all benchmarked cases as a proxy for precision, and (c) ranks

of causal variants reported for each mode of inheritance using violin

plots (Figure 3a–c). To compare ranks, variants reported by eDiVA

are sorted by eDiVA‐Score, Phen–Gen results are sorted by DCOD‐
score (“Probability of deleteriousness based on genic predictor”), and

Exomiser results are sorted by “Exomiser Gene Combined Score”.

Results of PhenoDB are presented in the default order (chromosome

and position), as no prioritization score is provided.

3 | RESULTS

3.1 | eDiVA: A platform for pathogenicity
estimation and causal variant prioritization

eDiVA is a disease variant prioritization tool optimized for NGS‐
based genetic disease diagnostics in families and parent–child trios. It

is composed of four components: eDiVA‐Predict handles read

alignment and variant prediction, eDiVA‐Annotate performs func-

tional annotation of variants, eDiVA‐Score estimates the probability

of variants to be pathogenic, and eDiVA‐Prioritize filters and ranks

variants according to various quality criteria, proper segregation, and

likelihood to cause phenotypic changes. eDiVA is available as

standalone software at https://github.com/mbosio85/ediva, and as

a web service providing access to functional annotation, pathogeni-

city classification and causal variant prioritization modules (www.

ediva.crg.eu). The eDiVA web service facilitates analysis of families or

parent–child trios in a few clicks, requiring only a VCF file, and

optionally a set of HPO IDs describing the disease phenotype. eDiVA

returns a shortlist of candidate variants and genes, ranked by

pathogenicity score (together with gene relatedness to the specified

HPO IDs if available), and including all annotation features in comma‐
separated value (.csv) and Microsoft Excel (.xlsx) format.

3.2 | Benchmarking eDiVA and competing methods

To comprehensively evaluate eDiVA's performance in finding

disease‐causing variants, and to compare it to previously published

tools, we performed a benchmark in two categories. First, we
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F IGURE 2 Benchmarking of the pathogenicity classifiers eDiVA‐Score, CADD, Eigen, Revel, and M‐CAP using ROC for (a) set of 10,494
ClinVar pathogenic variants (TP) and 3,887 ClinVar “benign” variants (TN); (b) set of 16,694 ClinVar pathogenic variants (TP) and 19,888
ClinVar “benign” variants (TN), setting missing values to benign, (c) subset of rare variants (AF, <1% from set c); (d) set of 63,712 variants from

HGMD (TP) and 100,000 from GnomAD (TN) for which values from all tools are available; (e) set of 96,569 variants from HGMD (TP) and
100,000 from GnomAD (TN), setting missing values to benign; (f) subset of rare variants (AF, <1% from set e); (g) set of 63,712 HGMD variants
(“DM” and “DM?”) as TP, and 1,892 HGMD variants (other categories) as TN for which values from all tools are available; (h) set of 96,569

variants from HGMD (“DM” and “DM?”) as TP, and 7,376 HGMD (other categories) as TN, setting missing values to benign; and (i) subset of rare
variants (AF, <1% from set h). AF: allele frequency; eDiVA: exome Disease Variant Analysis; M‐CAP: Mendelian clinically applicable
pathogenicity; ROC: receiver operating characteristic; TN: true negative; TP: true positive
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evaluated the ability of eDiVA‐Score to distinguish disease‐causing
from benign variants compared to four publicly available methods for

estimating deleteriousness. Second, we benchmarked the perfor-

mance of eDiVA, PhenoDB, and Phen–Gen on identification of causal

variants using semisynthetic parent–child trios analyzed by WES,

optionally allowing for the use of clinical phenotype descriptions for

causal variant prioritization.

3.3 | Benchmarking of eDiVA‐Score and other
variant pathogenicity classifiers

We developed eDiVA‐Score, a machine learning‐based method for

estimating variant pathogenicity (deleteriousness) independent of

any prior clinical information (see Section 2). Feature‐selection
identified population allele frequency, functional impact, and con-

servation in placental mammals as the most important features

(Figure 1a). The correlation matrix for all features is shown in

Figure S3. Features selected for inclusion in the RF show distinct

distributions for pathogenic variants compared to benign variants in

ClinVar (Figure 1b), random coding variants reported in GnomAD

(Figure S4b). All integrated conservation scores (PhyloP and

PhastCons scores for vertebrates, mammals and primates) classify

pathogenic variants better than random, but perform worse than any

specialized method for estimating functional impact or pathogenicity

(Figure S5).

We benchmarked the ability of eDiVA‐Score, CADD, DANN,

Eigen, Revel, M‐CAP, and MetaLR to predict the deleteriousness of

variants and to distinguish pathogenic from benign variants in nine

setups (Section 2). We first compared the performance on classifying

pathogenic and benign variants from ClinVar (Figure 2a), on

distinguishing disease variants from HGMD (Stenson et al., 2017)

from 100,000 random variants from GnomAD (Figure 2d), for which

scores are available for all methods. Note that Revel and M‐CAP
have been trained on a subset of the HGMD variants (e.g., using class

“DM” as positive training set), giving them an advantage due to

potential overfitting in any of the following benchmark tests using

HGMD variants (for an in‐depth discussion of the interplay between

overfitting and circularity in training and benchmarking data (Grimm

et al., 2015). Using ROC analysis, we found that eDiVA‐Score
distinguishes disease‐causing and benign variants with high sensitiv-

ity and recall in both benchmark sets (AUC of 0.95 and 0.90),

considerably better than CADD (AUC of 0.91 and 0.74), DANN (AUC

of 0.89 and 0.82), Eigen (AUC of 0.87 and 0.77), Revel (AUC of 0.91

and 0.89), M‐CAP (AUC of 0.84 and 0.90), and MetaLR (AUC of 0.88

and 0.87). Of note, eDiVA‐Score showed better precision‐recall
curves than competing methods (Figure S6).

F IGURE 3 Receiver operating characteristic curves comparing pathogenicity classifiers on five independent data sets (and the combined set)

composed of pathogenic and neutral variants. Revel, M‐CAP, and eDiVA show a similarly strong performance, with the exception of the
PredictSNP and Varibench sets, on which Revel and M‐CAP outperform eDiVA‐Score. eDiVA: exome Disease Variant Analysis; M‐CAP:
Mendelian clinically applicable pathogenicity; SNP: single‐nucleotide polymorphism
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Disease variant prioritization tools depend on pathogenicity

values for any position of the exome, since de novo mutations can

occur randomly and novel ultra‐rare variants are still being

discovered. Therefore, we next benchmarked the methods on

random variants chosen from the complete ClinVar and HGMD/

GnomAD benchmark sets, whereas setting missing data to benign

(Section 2). As expected, the recall of Revel, M‐CAP, and MetaLR

decreased substantially due to missing information, whereas the

other methods performed slightly better than in the previous tests

(Figure 2b,e). Finally, we tested how the methods perform on

classification of rare variants (AF, <0.01), otherwise following the

same criteria for selection of the test sets as in the previous

benchmark (Figure 2c,f). Again, eDiVA‐Score shows the best

performance of all methods.

We wondered if the use of random GnomAD variants as TN

(nonpathogenic) set might bias the results of the HGMD/GnomAD

benchmark due to for example, overfitting onto the allele frequency

feature. Therefore, we next measured the performance of all

methods on HGMD data only, using the categories for highly likely

pathogenic (“DM” and “DM?”) as TP set and less likely pathogenic

(any other HGMD category) as TN set (Section 2). We performed the

same three tests as discussed above for the ClinVar and HGMD/

GnomAD benchmark sets. On the subset of variants for which scores

are available for all methods (Figure 2g) eDiVA's performance (AUC

0.77) was found to be slightly lower than MetaLR's (0.80), Revel's

(AUC 0.82), and M‐CAP's (AUC 0.85), but substantially better than

the performance of the other general‐purpose methods CADD (AUC

0.67) and Eigen (AUC of 0.70). However, eDiVA still outperformed all

other methods on the complete HGMD variant set (missing scores

set to benign), as well as on the rare variant set (Figure 2h,i).

Finally, we compared the performance of all methods on a

benchmark set compiled by Grimm et al. (2015), consisting of

mutually exclusive subsets of the previously published benchmark

sets Varibench, HumVar, ExoVar, predictSNP, and SwissVar (see

Supporting Information Material for details). These popular bench-

mark data sets differ in the way they define pathogenic and neutral

variants, for example, the maximum AF for pathogenic variants can

differ dramatically, allowing us to benchmark diverse challenges.

Furthermore, Grimm et al. filtered these benchmark sets to minimize

overlap between them, reducing the likelihood that tools are

benchmarked on variants they have been trained on and hence

reducing the impact of overfitting on the benchmark results (Grimm

et al., 2015). We found that none of the methods consistently

performs better than other methods, but that eDiVA‐Score, M‐CAP,
Revel, and MetaLR show comparably high performance, except on

PredictSNP and Varibench, for which MetaLR, Revel, and M‐CAP
show a better performance than eDiVA‐Score. PredictSNP incorpo-

rates HGMD variants in the positive and negative control sets; see

Tables 2 and 3 of Grimm et al. (2015), likely to be giving a strong

advantage to Revel and M‐CAP, which have been trained on HGMD.

CADD, DANN, and Eigen performed significantly worse than the

other three methods on all benchmark sets. Note that CADD, DANN,

Eigen, and MetaLR have been trained to predict deleteriousness (or

more general the functional impact) of variants, whereas eDiVA‐
Score, Revel, and M‐CAP have been trained to identify pathogenic

variants, partly explaining the divergent performance levels across

the different benchmark sets. Moreover, eDiVA‐score, MetaLR, and

M‐CAP use CADD as one of many features, explaining the better

performance of the derived scores.

In summary, our benchmark results demonstrate the good

performance of eDiVA‐Score as pathogenicity classifier, comparable

to and often better than state‐of‐the‐art methods available to date.

Furthermore, eDiVA‐Score outperforms other general‐purpose
methods not restricted by variant AF (i.e. CADD, DANN, and Eigen),

while showing competitive results when compared with specialized

tools such as MetaLR, M‐CAP, and Revel, which are only available for

known (rare) SNVs.

3.4 | Causal variant prioritization in parent–child
trios

We benchmarked the performance of eDiVA and three widely used

tools, PhenoDB, Phen–Gen, and Exomiser, on identification of causal

variants for rare Mendelian diseases in parent–child trios. To this

end, we simulated three scenarios typically encountered in parent–

child trio diagnostics, (a) autosomal dominant de novo, (b) autosomal

recessive homozygous, and (c) autosomal recessive compound

heterozygous Mendelian inheritance modes. In total, we simulated

6,811 semisynthetic parent–child trios by integrating reported

pathogenic variants from ClinVar into real WES data of a trio

obtained from 1000GP (see Section 2 and Table S2).

Figure 3a shows violin plots with the rank distribution of causal

variants in the output lists of 6,811 analyzed trios. The optimal result

is a skewed distribution close to zero, meaning that the causal variant

is reported as first or very close to the top of the list in the majority

of cases. Here, comparison with PhenoDB is not meaningful, as

PhenoDB (unlike Phen–Gen, Exomiser, and eDiVA), offers no ranking

based on pathogenicity scores (but sorts by chromosome and

position). Compared to Exomiser and Phen–Gen, eDiVA's ranking

method shows the best performance for recessive homozygous

inheritance, eDiVA and Exomiser show best performance for

dominant de novo inheritance, and all tools show similarly good

performance for compound heterozygous inheritance. eDiVA con-

sistently reported causal recessive homozygous variants and com-

pound heterozygous variants within the top five candidates

(median = 1), and dominant de novo variants within the top 25 of

reported candidates (median = 4; Figure 4a). Considering that the

CEPH trio has been sequenced as part of the 1000GP we finally

tested if the use of 1000GP allele frequency information for filtering

biases the performance estimates of eDiVA. However, we found no

difference when not using the 1000GP AF database (Figure S7).

Nonetheless, we cannot exclude the possibility that eDiVA (or the

other methods) show reduced performance in understudied popula-

tions.

The use of HPO IDs for prioritization further reduced FPs

reported by eDiVA (label eDiVA‐HPO in Figure 4c). Overall, we

BOSIO ET AL. | 873



observed a two‐fold reduction in FPs across all inheritance modes

tested. However, filtering by in silico gene panels also resulted in a

reduction in recall (Figure 4b,c). Finally, we observed improved

prioritization ranks under all inheritance types, with the strongest

impact seen for de novo variants (Figure 4a).

We also investigated the impact of incomplete or imperfect

phenotyping on eDiVA's performance by altering the HPO annota-

tion of genetic variants imported from ClinVar (see Supporting

Information Methods). Benchmarking results on the semisynthetic

simulation with incomplete phenotyping show a small reduction in

causal gene ranking efficiency (Figure S8). However, even imperfect

phenotypic information improved the performance as compared to

complete exclusion of such information.

In summary, the benchmark analyses show that eDiVA achieves

highly competitive causal variant prioritization performance with

respect to ranking, precision and recall, while requiring no fine tuning

of parameters by the user for specific inheritance types. When

disease‐specific HPO term descriptors are available, eDiVA's

(a)

(b)

(c)

F IGURE 4 Benchmark of the causal variant prioritization tools eDiVA, Exomiser, Phen–Gen, and PhenoDB. (a) Violin plots showing the rank

of disease‐causing variants within the reported candidate lists for the three tested inheritance types: “recessive homozygous”, “compound
heterozygous”, and “dominant de novo”; (b) Recall values for 6,811 semisynthetic trio cases, representing the fraction of identified causal
variants (i.e., “solved cases”). (c) Average number of false positives reported per case as a proxy for precision. eDiVA has been tested in two
configurations, with HPO‐based gene prioritization (eDiVA_HPO) and with the default configuration not using HPO terms (eDiVA). Adding HPO

filtering reduces false positives at the cost of a slightly reduced Recall. HPO: Human Phenotype Ontology
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precision is further enhanced to the point at which complete

automation of causal variant identification is feasible for recessive

homozygous and compound heterozygous segregation.

3.5 | eDiVA results on clinical cases

eDiVA has successfully been used in published case studies on mitral

valve prolapse (Durst et al., 2015), cystic fibrosis (Ramos et al., 2014),

phenylketonuria (Trujillano et al., 2014), arthrogryposis (Wambach

et al., 2017), and Opitz‐C (Urreizti et al., 2017), among others,

identifying both known, as well as novel rare‐disease genes. We

recently assessed the performance of eDiVA for the diagnosis of rare

congenital genetic diseases using WES of 35 parent–child trios,

including 15 cases of congenital ataxia, four cases of congenital

myasthenia, and 16 cases of primary immunodeficiency. Here we

report general statistics on the number of candidate genes per case,

while case reports and novel candidate genes will be published in

separate papers. Across the 35 studied trios, eDiVA on average

reported a median of 11, 3, and 10 candidate genes per trio for

recessive homozygous, recessive compound heterozygous, and

dominant de novo inheritance mode, respectively, using default

parameters. In comparison, Phen–Gen reported a median of 36 and

52 candidate genes for recessive (including compound heterozygous)

and dominant (including de novo) inheritance mode, respectively.

Histograms of reported candidate gene numbers for eDiVA and

Phen–Gen are shown in Figures S9 and S10. eDiVA found causal

variants in known genes for the respective disease in none cases, and

variants in genes associated with closely related disease phenotypes

in seven cases. Screening of Phen–Gen results did not reveal

additional candidates missed by eDiVA. The function of a novel

disease variant for congenital ataxia has been described in

Bahamonde et al. (2015), and reports for other candidate genes are

in preparation.

4 | DISCUSSION

Despite the massive increase in sequencing capacity and the

availability of highly optimized analysis tools, multiple large‐scale
rare‐disease studies reported that in only 20–30% of cases a causal

variant can be identified using WES. Several reasons might explain

the inability of WES analysis to identify causal variants in a majority

of cases, including for example, the inability to identify regulatory

variants (Claussnitzer et al., 2015), our limited knowledge of the

function of noncoding RNAs, generation of new exon donor or

acceptor sites by intronic variants (Y. Lee et al., 2012), small copy

number variations (Krumm et al., 2012), incomplete penetrance, and

unknown function of coding genes, among others. However, we argue

that the potential of WES has not been exhausted and that causal

coding variants are often missed due to inappropriate correction of

noise in the data, insufficient use of clinical (phenotypic) data, or

reporting of long unranked candidate lists, requiring tedious screen-

ing by clinicians. We further claim that these shortcomings are often

overlooked due to unrealistic simulated benchmark tests not

reflecting the level of noise found in real family or trio NGS data.

We have addressed these problems by developing eDiVA, a

pipeline that combines multisample variant calling of family data, QC

and filtering, extensive functional annotation, machine learning‐
based classification of deleterious variants, and prioritization of

causal variants optimized for various clinical scenarios. Furthermore,

we developed a highly realistic benchmark test combining real WES

data of a parent–child trio with thousands of pathogenic ClinVar

variants to generate 6,811 semisynthetic disease trios. Using these

cases, we have demonstrated that eDiVA's pathogenicity estimator

(eDiVA‐Score) as well as eDiVA's prioritization algorithm perform

favorably compared to existing state‐of‐the‐art methods. eDiVA has

been able to find disease‐causing variants with higher recall, fewer

false positives and better ranking than competing tools in three

benchmarked modes of inheritance. Finally, we evaluated the use of

phenotypic descriptors for optimizing the prioritization process.

We found that adding HPO ID‐based prioritization introduces a

trade‐off between recall and the number of false positives in the

output list. Despite the marginal reduction in recall, focusing on

known disease genes is often the preferred choice for diagnostic

purposes. Our knowledge of genetic factors playing a role in disease

is constantly growing, reflected in a rapid increase of genotype–

phenotype relations stored in various databases. Hence, it would be

beneficial to reanalyze WES data sets once in a while (e.g., every

6–12 months) to benefit from new knowledge and to facilitate

identification of previously unknown/unreported causal variants.

Moreover, combined reanalysis of the growing cohorts of WES data

stored in many institutes would allow to identify matching causal

genes across multiple families or cases. However, most analysis

pipelines require substantial hands‐on time and long candidate‐
variant lists have to be screened by experts, making regular

reanalysis of data sets impractical. eDiVA has been developed with

a specific emphasis on high reproducibility of results and complete

automation of the analysis using artificial intelligence‐based methods.

Machine learning classifiers are used to perform candidate ranking

and prioritization, reducing hands‐on time of clinical experts to a

minimum. Integration with NextFlow, moreover, guarantees repro-

ducibility of results at later time points and on most computing

platforms. Therefore, eDiVA is a dedicated solution for regular

reanalysis of large disease cohorts or collections of diagnostic cases.

Additional steps can be taken to improve the identification of

disease‐related variants fromWES data. The availability of custom allele

frequency databases with geographical specificity would help to reduce

the number of false‐positive genotype–phenotype associations due to

population specific variants. To this end, institutes and hospitals with

access to large cohorts of sequenced exomes may use in‐house data to

filter population specific variants, an approach we have pursued our self

by collecting thousands of Iberian cases in an aggregated allele

frequency database (http://geevs.crg.eu/, unpublished). Identification

of extended homozygosity regions could in addition help to diagnose

causal homozygous variants in consanguineous cases. Moreover, the

integration of structural and copy number variants (SVs and CNVs) has
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been shown to increase recall rates substantially (Gambin et al., 2017).

Despite their frequent involvement in rare diseases (McCarroll &

Altshuler, 2007), CNVs are often disregarded in WES analyses, and are

rarely processed in combination with point mutations. Prioritization

algorithms will have to be adapted to consider compound heterozygotes

composed of a point mutation in one and a CNV in the other allele. CNV

analysis is currently being integrated in eDiVA and will be available in

the near future.

Better use of phenotypic descriptors has the potential to improve

both precision and recall of causal variant prioritization methods. We

observed that HPO ID‐based prioritization dramatically improved

the precision of eDiVA. However, incomplete maps of known

genotype–phenotype (or gene–phenotype) relations in public data-

bases led to a mild reduction in recall. Robinson et al. (2014)

proposed a method to overcome this limitation, tapping into the

genotype–phenotype associations from mouse data to solve causal

variant identification for corresponding human phenotypes. Other

methods based on image analysis, for example, Hadj‐Rabia et al.

(2017) or face2gene (http://suite.face2gene.com/), have also shown

promising results for diagnosis of patients with visible phenotypic

features. Finally, an important step in the evaluation of newly

discovered genotype–phenotype associations is the identification of

additional cases with a similar phenotype and mutations in the same

gene. Several approaches for gene matching have been published, for

example, GeneMatcher (Sobreira et al., 2015), which have been

connected via the Matchmaker Exchange platform. Integration of

approaches using image analysis, cross‐species phenotype–genotype

correlation, and gene matching has the potential to further improve

AI‐based variant prioritization methods such that they can rival the

diagnostic precision of clinical experts in the future.

In summary, we have shown that eDiVA is a step towards full

automation of causal variant identification in family and parent–child

trio data using machine learning‐based approaches. eDiVA can be

used as a support tool for clinicians to find disease‐causing variants,

or as a fully automated solution for periodic reanalysis of large WES

(or WGS) cohorts. eDiVA is able to identify known causal disease

variants with high precision and recall, and facilitates identification of

novel disease variants with minimal hands‐on time.
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