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Abstract
Spatiotemporal patterns are common in biological systems. For electrically coupled
cells, previous studies of pattern formation have mainly used applied current as the
primary bifurcation parameter. The purpose of this paper is to show that applied current
is not needed to generate spatiotemporal patterns for smoothmuscle cells. The patterns
can be generated solely by external mechanical stimulation (transmural pressure). To
do this we study a reaction-diffusion system involving the Morris–Lecar equations
and observe a wide range of spatiotemporal patterns for different values of the model
parameters. Some aspects of these patterns are explained via a bifurcation analysis
of the system without coupling — in particular Type I and Type II excitability both
occur. We show the patterns are not due to a Turing instability and that the spatially
extendedmodel exhibits spatiotemporal chaos.Wealsouse travellingwave coordinates
to analyse travelling waves.
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1 Introduction

Smooth muscle cells (SMCs) can be found throughout the body. They are present, for
example, in blood vessels, and provide a variety of essential functions. The contraction
and relaxation of SMCs regulate organ function, such as the blood flow rate in blood
vessels (Lamboley et al. 2003; Shaikh et al. 2011). SMCs aid in digestion and nutrient
collection in the gastrointestinal tract (Bitar 2003; Harnett et al. 2005), and regulate
bronchiole diameter in the respiratory system (Chung2000). In the urinary system, they
play a role in removing toxins and in electrolyte balance (Alexander 1973; Andersson
and Arner 2004). Like other excitable cells (e.g. neuron, endocrine, and skeletal cells),
when stimulated SMCs can generate a large electrical signal (action potential) and
contract in response. This process is known as electro-mechanical coupling.

Electro-mechanical coupling in the cell membrane of a SMC is mediated by the
influx of extracellular Ca2+ through voltage-gated Ca2+ channels and Ca2+ release
from the cell’s internal Ca2+ store, the sacroplasmic reticulum. A schematic represen-
tation of electrically coupled SMCs is shown in Fig. 1. The elevation of the intracellular
Ca2+ concentration causes the membrane potential to increase rapidly, hence the cell
membrane is depolarised, and this results in the opening of theK+ channels. The efflux
of K+ then leads to the repolarisation of the cell. The Ca2+ binds to the calmodulin in
the cytoplasm to activate themyosin light chain kinase enzymewhich results inmyosin
interaction with actin filaments to produce contractile activity. The repetition of this
activity results in periodic oscillations that elicit vasomotion, that is, the contraction
and relaxation of the vessel’s cell wall.

Oscillations can be driven by applied current (Hodgkin and Huxley 1952), agonists
(Sneyd et al. 1995; Koenigsberger et al. 2005), temperature (Anatoly et al. 2013;
Fillafer and Schneider 2013), and pressure (Kubanek et al. 2018). Several experimental

Fig. 1 A schematic representation of electrically coupled smooth muscle cells. The concentration gradient
of Ca2+ between the inside and the outside of the cell results in fluxes of ions into the cell through the
Ca2+ channel and then into the sacroplasmic reticulum (SR). During this process the membrane potential
becomes greater than the resting potential, hence the membrane is depolarised. The depletion of Ca2+ in
the sacroplasmic reticulum induces an efflux of K+ through the K+ channel which causes the membrane
potential to return to its resting state. The leak (Cl−) channel is a non-selective channel that is always open
for ion passage (Color figure online)
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studies have investigated the electrical activity induced by external stimuli in excitable
cells (Friel 1995; Latchoumane et al. 2018; Liang et al. 2019); see also (Roth 1994;
Farhy 2004; Koenigsberger et al. 2005; Izhikevich 2007; Fatoyinbo et al. 2022a, b)for
computational studies.

Communication between cells, primarily excitable and non-excitable cells, helps
regulate a wide range of cellular activities, for example, receiving and transmitting
signals in the central nervous system (Duan et al. 2008; Keener and Sneyd 2009), the
release of hormones into extracellular fluid in endocrine cells (Schwartz 2000; Nakan-
ishi 2006; Combarnous and Nguyen 2020), and contractile activity in muscles (Mége
et al. 1994; Matchkov 2010; Tirziu et al. 2010; Bian et al. 2015). SMCs connected to
their immediate neighbors through different mechanisms (Jongsma andWilders 2000;
Giepmans 2004; Shimizu and Stopfer 2013) and coupled through gap junctions which
can be one of three types: Ca2+, inositol trisphosphate (IP3), or membrane potential
(electrical) (Koenigsberger et al. 2004; Haddock and Hill 2005; Koenigsberger et al.
2005). Gap junctional communications have been observed in other cell types, includ-
ing germ cells in testis (Decrouy et al. 2004), fibroblasts (Azzam et al. 2001), and
astrocytes (Giaume and McCarthy 1996).

The dynamics across a large number of coupled cells can form simple travelling
waves, or complex spatiotemporal patterns. For example, as revealed in experiments,
spiral waves during heart contractions can cause cardiac arrhythmia (Hwang et al.
2005; Pandit and Jalife 2013). Epileptic seizures in the cortex and hallucinations in
the retina or visual cortex can be induced by travellingwaves (Traub et al. 1993; Huang
et al. 2004; Pinto et al. 2020; Pearce 2015).

When the number of cells is large, such dynamics can be well modelled by reaction-
diffusion equations, as done originally by Turing (1952). In this framework each cell
is described by ordinary differential equations that are usually strongly related to those
given by Hodgkin and Huxley (1952), while communication between cells is captured
by a diffusion term.

Spatiotemporal patterns can arise via diffusion-driven instability (Turing patterns)
or other means. In ecology, the Lotka-Volterra model for two interacting species
exhibits both Turing and non-Turing patterns when a diffusion term is added (Baner-
jee and Banerjee 2012; Shi and Ruan 2015; Liu et al. 2020). In epidemiology, spatial
patterns have been observed in diffusive epidemic models designed to investigate the
spread and control of infectious diseases (Jia et al. 2018; Chang et al. 2020). Also,
various patterns have been observed in cellular dynamics (Izhikevich 2007; Ramos
2002; Kaper and Vo 2018; Vo et al. 2020) and physical and mechanical systems (Paul
et al. 2003; Perez-Londoño et al. 2010; Hens et al. 2015).

There are many studies of spatiotemporal patterns in systems of excitable cells
(Fujii and Tsuda 2004; Hartle and Wackerbauer 2017; Keplinger and Wackerbauer
2014; Lafranceschina and Wackerbauer 2014; Mondal et al. 2018; Calim et al. 2018).
These have involved the Fitzhugh-Nagumo equations (Tsyganov et al. 2014), the
Morris–Lecar equations (Meier et al. 2015; Mondal et al. 2019), and the Wilson-
Cowan equations (Ali et al. 2016), for example. These studies focused on patterns and
waves that are driven by applied current. The purpose of this paper is to stress that
applied current is not necessary for spatiotemporal patterns to occur.
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Such pacemaker dynamics have been identified experimentally in the gastrointesti-
nal tract, urinary tract, lymphatic vessels, arteries, and veins Tomita (1981); Hashitani
et al. (1996); Fukuta et al. (2002); Van Helden (1993); McHale et al. (2006). There
have been several computational studies of pacemaker dynamics in SMCs (Youm
et al. 2006; Rihana et al. 2009; Cho et al. 2012; Ho et al. 2016). Youm et al. (2006)
modelled the pacemaker activity of interstitial cells of Cajal in the gastrointestinal
tract. They found that spontaneous electrical activity is triggered by efflux of Ca2+
from the sacroplasmic recticulummediated by IP3. In the work of Rihana et al. (2009)
spontaneous electrical activity and contraction in single uterine SMCs during the ges-
tation period is explored. Different ionic channels involved in uterine excitability at
term are identified, the model reproduces results observed in vivo. Also pacemaker
dynamics has been described in chemical and ecological models (Merkin and Sadiq
1996; Merkin et al. 1996; Or-Guil et al. 2001; Pal et al. 2019)

In this paper we focus on pacemaker electro-mechanical coupling activity in arte-
rial SMCs due to changes in the vessel’s transmural pressure, that is, the pressure
gradient across the vessel wall. We study a spatially extended two-variable nondimen-
sionalised Morris–Lecar model with no applied current. Without diffusion the model
is a reduced form of the three-dimensional ODE model of (Gonzalez-Fernandez and
Ermentrout 1994) for vasomotion inSMCsof small arteries.Our previouswork (Fatoy-
inbo et al. 2020) showedhow,without diffusion, oscillations arise viaType I andType II
excitability. This distinction between the two types of excitability was first described
by Hodgkin (1948). For Type I excitability oscillations arise via a saddle-node on
invariant circle (SNIC) bifurcation, whereas for Type II excitability oscillations arise
via a Hopf bifurcation (Rinzel and Ermentrout 1999).

In this paper we show how diffusion induces spatiotemporal patterns as well as
travelling fronts and pulses. We start in Sect. 2 by stating the model equations. Then in
Sect. 3 we summarise the dynamics of the model without diffusion using the voltage
associated with the K+ and Ca2+ channels as bifurcation parameters. In Sect. 4 we
show that the spatiotemporal patterns that emerge are non-Turing patterns due to vio-
lation of Turing’s instability criteria. Numerical simulations of the reaction-diffusion
model are carried out in Sect. 5. Various spatiotemporal patterns including travelling
pulses and fronts are explored. The existence of the travelling waves is analysed in
Sect. 6. Finally conclusions are presented in Sect. 7.

2 A NondimensionalisedMorris–Lecar Systemwith Diffusion

We consider a nondimensionalised reaction-diffusion system to model the dynamics
of a population of coupled SMCs through passive electrical coupling of adjacent cells.
The reaction term in the model is based on our previous study on an isolated SMC
(Fatoyinbo et al. 2020). The model equations are

∂V

∂τ
= D

∂2V

∂X2 − ḡL(V − v̄L) − ḡK N (V − v̄K ) − ḡCaM∞(V )(V − 1), (1)

∂N

∂τ
= λ(V )(N∞(V ) − N ), (2)
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where V (X , τ ) is the membrane potential and N (X , τ ) is the fraction of open K+
channels. The system parameter D ≥ 0 is the diffusion coefficient, ḡL, ḡK, and ḡCa
are conductances per unit area for the leak, potassium, and calcium currents, respec-
tively, while v̄L and v̄K are the corresponding Nernst reversal potentials (equilibrium
potentials). The fraction of open calcium [potassium] channels at steady state M∞
[N∞] and the time scale for the opening of the potassium channel, λ(V ) are:

M∞(V ) = 1

2

(
1 + tanh

(
V − v̄1

v̄2

))
, (3)

N∞(V ) = 1

2

(
1 + tanh

(
V − v̄3

v̄4

))
, (4)

λ(V ) = ψ cosh

(
V − v̄3

2v̄4

)
, (5)

where v̄1 and v̄3 measure the potential at which potassium and calcium channels are
half-opened, ψ is a time constant, and v̄2 and v̄4 are additional parameters. Unless
otherwise specified, we use the following values of the parameters: v̄1 = −0.2813,
v̄2 = 0.3125, v̄3 = −0.1380, v̄4 = 0.1812, ψ = 0.1665, v̄L = −0.875, v̄K =
−1.125, ḡL = 0.25, ḡK = 1.0, and ḡCa = 0.4997.

In this paper, we consider a one-dimensional spatial domain � = [−L, L] for
the values of X . At the boundaries, X = ±L , we use no-flux boundary conditions.
However we are primarily concerned with the dynamics that emerges away from the
boundaries. Further, the diffusion coefficient D can be scaled to any value by scaling
the spatial variable X appropriately. Thus the value of D only affects the speed at
which dynamics propagates, not the types of dynamics that arise. For these reasons,
the values of D and L will not be important to the spatiotemporal patterns that we
describe below.

3 The Dynamics of a Single Cell

In this section we summarise some of the results of Fatoyinbo et al. (2020) for the
dynamics of (1)–(2) in the absence of diffusion, i.e. D = 0. We show how stable
oscillations are created through either Type I or Type II excitability and consider the
effect of varyingψ (not done in Fatoyinbo et al. (2020)). This is important to the nature
of the spatiotemporal dynamics described in Sect. 5. More details on the dynamics of
a single cell can also be found in (Fatoyinbo 2020).

Figure 2 shows bifurcation diagrams as v̄1, v̄3, andψ are varied from their values as
listed in Sect. 2. These were computed numerically using auto (Doedel et al. 2012).
Spontaneous oscillations in (1)–(2) are triggered by a change in transmural pressure,
and therefore, we use pressure-dependent parameters, v̄1 and v̄3, as bifurcation param-
eters.

Figure 2 a shows the result of varying v̄1. The systemhas aunique equilibriumexcept
between saddle-node bifurcations SN1 and SN2 where there are three equilibria: one
stable (lower branch) and two unstable (middle and upper branch). As the value of v̄1 is
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Fig. 2 Panels a and b show a bifurcation diagram and the time series of (1)–(2) with D = 0 using v̄1 as
the bifurcation parameter. Panels c and d show the bifurcation diagrams with v̄3 and ψ as the bifurcation
parameters. In each bifurcation diagram all parameters (except the one being varied) are fixed at the values
listed in Sect. 2. Black [magenta] curves correspond to equilibria [limit cycles]. Solid [dashed] curves
correspond to stable [unstable] solutions. The vertical lines indicate the parameter values used in Figs. 3, 7,
and 8.HB:Hopf bifurcation; SN: saddle-node bifurcation (of an equilibrium); SNC: saddle-node bifurcation
of a limit cycle; SNIC: saddle-node on an invariant circle bifurcation; HC: homoclinic bifurcation (Color
figure online)

increased from the smallest value shown in the diagram, the upper equilibrium branch
loses stability in a subcriticalHopf bifurcation (HB). The unstable limit cycle produced
here gains stability via a saddle-node bifurcation (SNC). Upon further increasing the
value of v̄1, the stable limit cycle is destroyed at the saddle-node bifurcation SN2.
This is an example of a saddle-nodle on invariant circle bifurcation (SNIC) where
the limit cycle is replaced by a heteroclinic connection between the two equilibria
(Kuznetsov 1995). As a consequence, the period of the limit cycle approaches infinity
as the bifurcation is approached. Here the system displays Type I excitability as stable
oscillations are created in a SNIC bifurcation by appropriately decreasing the value
of v̄1. Figure 2b shows the temporal dynamics of the membrane potential V for v̄1 =
−0.325,−0.265 and −0.25 in Fig. 2a.

Next we vary the value of v̄3. As shown in Fig. 2c, as we increase the value of v̄3 a
unique equilibrium loses stability in a supercritical Hopf bifurcation HB1 then regains
stability in a subcritical Hopf bifurcation HB2. The stable oscillations are created at
HB1 with finite period. They subsequently lose stability at a saddle-node bifurcation
and terminate at HB2. In this case the system displays Type II excitability since the
periodic oscillations arises through a Hopf bifurcation.
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Finally Fig. 2d shows how the dynamics changes under variation to the value of
ψ . The system has three equilibria for all values of ψ > 0. For relatively low and
intermediate values of ψ , there exist one stable (lower branch) and two unstable
(upper and middle branch) equilibria. By increasing ψ , a stable limit cycle emanates
through a homoclinic bifurcation (HC) and upon further increase of ψ terminates in
a supercritical Hopf bifurcation (HB). As in Fig. 2c the excitability here is Type I.
Between the homoclinic and Hopf bifurcations the system is bistable as the limit cycle
coexists with a stable equilibrium. As shown in Fatoyinbo et al. (2020), for different
parameter values the system has three coexisting stable solutions.

4 Linear Stability Analysis

Alan Turing (1952) hypothesised that spatially inhomogeneous patterns may arise in
a reaction-diffusion system if a spatially homogeneous steady state is stable in the
absence of diffusion and destabilised as result of diffusion. Such instability is referred
to as diffusion-driven instability or Turing instability. The conditions required for the
onset of Turing instability have beenwell studied (Alonso et al. 2002; Shoji et al. 2003;
Murray 2003; Banerjee and Banerjee 2012; Krause et al. 2021). Here we perform a
linear stability analysis of (1)–(2) around a spatially homogeneous steady state and
show that the conditions for Turing instability are not satisfied for this system.

As shown in the previous section, in the absence of diffusion (1)–(2) typically
has one or three equilibria and the stability of these depends on the values of the
parameters. Here let (V ∗, N∗) be a stable equilibrium of (1)–(2) with D = 0 (i.e. no
diffusion) for some combination of parameter values. Then for (1)–(2) with D > 0,
(V ∗, N∗) represents a spatially homogeneous state.

Let
(
V0(X , τ ), N0(X , τ )

)
represent the perturbation of a solution to (1)–(2) from

the steady state, i.e.

(
V0
N0

)
=

(
V − V ∗
N − N∗

)
. (6)

By linearising (1)–(2) about (V ∗, N∗), we obtain the following leading-order approx-
imation to the dynamics of the perturbation:

(
V0
N0

)
τ

=
(
D 0
0 0

)(
V0
N0

)
XX

+
(
fV fN
gV gN

) (
V0
N0

)
. (7)

The second matrix in (7) is the Jacobian matrix of (1)–(2) evaluated at (V ∗, N∗). By
directly differentiating (2) with respect to N , we obtain

gN = −ψ cosh

(
V ∗ − v̄3

2v̄4

)
. (8)

Formulas for the other three entries in the Jacobian matrix will not be needed.
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We now look for a solution to (7) of the form (V0, N0)(X , τ ) = βe(λτ+ikX), where
β is a constant vector, λ is the growth rate of perturbation in time, and k is the wave
number. While there are many such solutions, we will show that all must have λ < 0.
This implies that for any sufficiently small perturbation (6), the corresponding solution
to (1)–(2) decays to (V ∗, N∗) as t → ∞, hence the steady state is not destabilised
(Murray 2003). By substituting the given form into (7),

(−k2D + fV − λ fN
gV gN − λ

)
β =

(
0
0

)
. (9)

Equation (9) is homogeneous in β, thus has a nontrivial solution only if the matrix in
(9) is singular.

This implies

λ = T

2
±

√
T 2 − 4�

2
, (10)

where T = −k2D + fV + gN and � = −k2DgN + fV gN − gV fN denote the trace
and determinant of the matrix in (9) when λ = 0. By assumption (V ∗, N∗) is stable
in the absence of diffusion, therefore

fV + gN < 0, fV gN − fN gV > 0. (11)

But from (8) we always have gN < 0 because ψ > 0 for physical reasons. Therefore
T < 0 and � > 0, thus λ < 0 for any D > 0. Thus (V ∗, N∗) is not destabilised by
the inclusion of diffusion and so the spatiotemporal patterns that we describe below
are not due to Turing instability. Similarly, Klika et al. (2012) provided conditions for
the emergence of patterns in reaction-diffusion systems outside the classical Turing
mechanism. They found that for arbitrarily large values of wave number k2 the system
is destabilised. Also, in line with our results, it has been reported from previous studies
on coupled PDE-ODEsmodels that patterns cannot occur unless the system is unstable
in the absence of diffusion (Härting andMarciniak-Czochra 2014;Marciniak-Czochra
et al. 2017).

5 Spatiotemporal Dynamics of the Full Model

In this section we explore the effect of varying v̄1, v̄3 and ψ on the spatiotemporal
dynamics of the reaction-diffusion system (1)–(2). Since the patterns are not due to
Turing instability, as shown in Sect. 4, we will investigate spatiotemporal dynamics
for a wide range of parameter values, in particular where the steady states may be
stable or unstable. We show numerically that a wide range of spatiotemporal patterns
can occur, including travelling pulses, travelling fronts, and spatiotemporal chaos.

The system (1)–(2) was solved numerically by using the method of lines. We used
a second-order central finite difference approximation to the spatial derivative using
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1000 X -values per unit interval, and a standard numerical scheme for the time deriva-
tive (ode15s in matlab) (Schiesser and Griffiths 2009; Hiptmair et al. 2010). All
numerical simulations use no-flux boundary conditions for X ∈ [−L, L] and initial
conditions

V (0, X) = V ∗ + G(X) and N (0, X) = N∗, (12)

where (V ∗, N∗) is a homogeneous steady state of (1)–(2). Different functions G(X)

(specified below) provide different perturbations from the steady state. As mentioned
in Sect. 2, a linear coordinate change can be applied to (1)–(2) to scale the value of
D > 0 to any positive number; in all simulations below, we use D = 0.0001.

5.1 The Effect of the Parameters v̄1, v̄3, andÃ

Now we examine the spatiotemporal patterns exhibited by (1)–(2) for the values of
v̄1, v̄3, and ψ marked a-f in Fig. 2. In this initial condition (12), we use the Gaussian
perturbation,

G(X) = A0 exp

(−X2

2σ 2

)
, (13)

with A0 = 0.3 and σ = 0.1.
Figure 3 shows the resulting spatiotemporal patterns for different values of v̄1.

For low values of v̄1 the system has a unique homogeneous steady state (the upper
equilibrium branch in Fig. 2a). This steady state is stable and the solution quickly
converges to the steady state as in Fig. 3a. Instead with v̄1 just to the right of the
Hopf bifurcation, a complex spatiotemporal pattern emerges, as shown in Fig. 3b. The
solution starts as a pulse at the centre of the domain due to the initial perturbation. Then
the pulse splits into two propagating pulses that transition to time-periodic oscillations
with inhomogeneous patterns at the back as they move across the domain. Outside the
patterned region the solution is periodic corresponding to the limit cycle of the system
with no diffusion. Similar behaviour is observed for values of v̄1 between the Hopf
bifurcation and the SNIC bifurcation. For example in Fig. 3c we have used v̄1 = 0.25.
This is very close to the SNIC bifurcation so now the oscillations outside the patterned
region are of particularly high period. Such patterns are sometimes termed generalised
travelling waves (Vakulenko and Volpert 2001)

Beyond the SNIC bifurcation, as in Fig. 3d, we again observe complex spatiotem-
poral patterns but now oscillations do not occur outside the patterned region because
the system with no diffusion no longer has a stable limit cycle. With a yet larger value
of v̄1 the pattern forms a relatively ordered triangular structure bearing an interest-
ing resemblance to the Sierpinski triangle. Numerical simulations performed over a
longer time scale suggest that this structure persists indefinitely. Figure 4 shows a
typical profile of the solution at a large time. By increasing the value of v̄1 further,
as in Fig. 3f, patterns are no longer observed. Here the solution simply decays to the
stable homogeneous steady state (the lower equilibrium branch of Fig. 2a).
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Fig. 3 Space-time plots of the membrane potential V for the values of v̄1 marked in Fig. 2a. Specifically a
−0.325; b −0.265; c −0.25; d −0.248; e −0.240; and f −0.230. The initial condition is (12) with (13),
using the upper equilibrium branch of Fig. 2a for the steady state (V ∗, N∗), and all other parameters are
fixed as in Sect. 2 (Color figure online)

The irregular nature of the patterns in Fig. 3 strongly suggests that the dynamics
is chaotic. To obtain further evidence of this we numerically estimated the maximal
Lyapunov exponent through the DChaos package of the software R (Sandubete and
Escot 2021). Specifically we considered the parameter values of Fig. 3c at the fixed
spatial value X = −1 (other values gave similar results) and applied the numerical
algorithm to the resulting time series with transient dynamics removed (shown in
Fig. 5a). This produced an estimate for the Lyapunov exponent as λ = 0.12, with
greater than 95% confidence that the true value is greater than zero and the solution
is chaotic. Figure 5b illustrates the convergence of the algorithm to its final estimate
over the number of data points used. Further Fig. 6a shows the spatial average as a
function of time. This also shows irregular oscillations and here DChaos estimated
the maximal Lyapunov exponent as λ = 0.04 again with greater than 95% confidence
that the true value is positive further reinforcing our claim that the dynamics is indeed
chaotic.

Nowwe study the spatiotemporal behaviour of themodel by varying v̄3 and keeping
all other parameters fixed as in Sect. 2. Recall that in this case the system in the absence
of diffusion exhibits supercritical and subcritical Hopf bifurcations (see Fig. 2c). The
results of numerical simulations are shown in Fig. 7. For extremely low values of
v̄3, the system returns quickly to the homogeneous steady state. Between the Hopf
bifurcations, where the system in the absence of diffusion has a stable limit cycle,
we observe mostly homogeneous oscillations corresponding to this limit cycle (see
Fig. 7b–e). In panels (b) and (c) away from X = 0 where the perturbation is applied,
it takes some time for the solution to settle to oscillatory behaviour because the initial
condition is set very near the value of the unstable steady state. In panels (d) and
(e) oscillations develop across the domain relatively quickly. In panel (e), which is
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Fig. 4 The spatial distribution of the a membrane potential V ; b fraction of open potassium channels N
with v̄1 = −0.25 (as in Fig. 3c) and τ = 500. Panel c shows the variables plotted against each other over
all −3 < X < 3 (Color figure online)
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Fig. 5 a A time series of the membrane potential V at spatial point X = −1 for the parameter values
of Fig. 3c; b A plot of the Lyapunov exponent as a function of the number of observations (data points)
produced by the numerical package DChaos of R (Color figure online)

just before the subcritical Hopf bifurcation, the initial stimulus creates a pulse of
propagating action potentials. For values of v̄3 beyond the subcritical Hopf bifurcation
and subsequent saddle-node bifurcation SNC (see Fig. 2c), periodic oscillations can be
observed for a short time across the entire domain, then stabilise to the homogeneous
steady state, as in Fig. 7f.
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Fig. 6 a A plot of the spatial average of the membrane potential V against time for the pattern shown
in Fig. 3c; b A plot of the Lyapunov exponent as a function of the number of observations (data points)
produced by the numerical package DChaos of R (Color figure online)

(a)

-3 0 3
0

100

200

300

400

500

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

(b)

-3 0 3
0

100

200

300

400

500

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

(c)

-3 0 3
0

100

200

300

400

500

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

(d)

-3 0 3
0

100

200

300

400

500

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

(e)

-3 0 3
0

100

200

300

400

500

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(f)

-3 0 3
0

100

200

300

400

500

-0.6

-0.4

-0.2

0

Fig. 7 Space-time plots of the membrane potential V for the values of v̄3 marked in Fig. 2c. Specifically
a −0.3462; b −0.3019; c −0.2813; d −0.2384; e −0.1725; and f −0.05565. The initial condition is (12)
with (13), using the stable and unstable equilibrium branch of Fig. 2c for the steady state (V ∗, N∗), and all
other parameters are fixed as in Sect. 2 (Color figure online)

Finally Fig. 8 shows spatiotemporal patterns for the various values of ψ marked in
Fig. 2d. For extremely low values of ψ , the initial perturbation creates a pulse at the
centre of the domain and as time progresses the pulse splits into two travelling pulses
propagating in opposite directions at the same speed (Fig. 8a). A slight increase in
the value of ψ leads to a destabilisation of the pulses that results in an initiation of
secondary pulses travelling in the opposite direction to the primary pulses (Fig. 8b).
By increasing the value ofψ further, we are able to see within the τ = 500 time frame
that the secondary pulses collide with one another and eventually irregular oscillations
disseminate across the spatial domain (Fig. 8c–d). Interestingly, asψ is varied past the
homoclinic bifurcation, the unstable pulses transition to travelling fronts connecting
a stable steady state to an unstable state with irregular oscillations at the back of the
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Fig. 8 Space-time plots of the membrane potential V for values of ψ as marked in Fig. 2d. Specifically a
0.1; b 0.12; c 0.13; d 0.2; e 0.3; and f 0.5. The initial condition is (12) with (13), using the upper equilibrium
branch of Fig. 2a for the steady state (V ∗, N∗), and all other parameters are fixed as in Sect. 2. The solution
transitions from propagating pulses travelling in opposite direction to complex spatiotemporal patterns to
fronts travelling in opposite direction (Color figure online)

fronts (Fig. 8e). As the value of ψ is increased further, the upper equilibrium branch
gains stability at the Hopf bifurcation so beyond this bifurcation the system has two
stable steady states. In this case the fronts connect one stable steady state to the other
(Fig. 8f).

Figure 9 shows the solution at τ = 300 for the six values of ψ used in Fig. 8. This
shows how increasing the value ofψ causes the two travelling pulses to transition into
two travelling fronts via an intermediate phase of spatiotemporal chaos.

5.2 Numerical Simulations with Alternate Initial Conditions

In this section we consider other perturbation functions G(X) in the initial condition
(12) to investigate how the initial condition affects the patterns that develop. First we
consider

G(X) = εX , (14)

with ε = 0.025. Figure 10 shows the resulting spatiotemporal patterns for different
values of v̄1. Specifically the six plots use the same parameter values as the corre-
sponding plots in Fig. 3. In panels (a) and (f) of Fig. 10 the solution simply settles to
the stable equilibrium of the system in the absence of diffusion (as in Fig. 3). In panels
(b) and (c) the initial condition is insufficient to generate the spatiotemporal chaos that
was observed in Fig. 3 within the τ = 500 time frame. By simulating for a longer time
we found that in (b) the solution appeared to converge to homogeneous oscillations
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Fig. 9 Solution profiles at time τ = 300 showing the transitions from travelling pulses to spatiotemporal
chaos and to fronts (Color figure online)
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Fig. 10 Space-time plots using the same parameter values as Fig. 3 but now with the perturbation function
(14) in the initial condition (12) (Color figure online)

matching the stable limit cycle of the system in the absence of diffusion, while in (c)
spatiotemporal chaos did arise shortly after τ = 500, and this is shown in Fig. 11a.
Finally in panels (d) and (e) we do observe spatiotemporal chaos. The particular pat-
terns that emerge appear to have the same features as those in Fig. 3 suggesting that
for both initial conditions the solution is converging to the same attractor.
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Fig. 11 Space-time plots of the membrane potential V using a longer time frame than other plots. The
parameter values and initial conditions in panel a are the same as Fig. 10f, and in panel b are same as
Fig. 8b (Color figure online)

For other values of the parameters and other initial conditionswe similarly observed
that, broadly speaking, the dynamics of (1)–(2) settled to the same long-time behaviour
as that described in Sect. 5.1. For example using the parameter values of Fig. 8b, when
the initial condition is changed from (13) to (14) the result is Fig. 11b which evidently
exhibits a similar structure. We conclude that the profile of the initial perturbation
does not seem to change the types of spatiotemporal patterns that are produced by the
model.

6 TravellingWave Analysis

For the travellingwaves analysis, wewill focus on the values ofψ where the numerical
simulations of (1)–(2) result in travelling pulses and fronts, respectively. For example,
whenψ = 0.1 two stable counter-propagating pulses are created, and they travel across
the domain at approximate speed c = 0.006182 (see Fig. 8a). Figure 12a shows the
pulses and Fig. 12b–d are solution profiles at times τ = 50, 250, 400. Also, when
ψ = 0.5 two stable counter-propagating fronts are created, and they travel across the
domain at speed c = 0.004155 (see Fig. 8f). The fronts are shown in Fig. 13a, b–d are
solution profiles at the same three times. The given wave speeds have been estimated
directly from the numerical simulation results.

In the coming section, we introduce the travelling wave variable to transform (1)–
(2) to a set of three ODEs and approximate the travelling wave solutions numerically.
This allows us to find the homoclinic and heteroclinic trajectories that correspond to
the travelling pulse and front solutions, respectively.

6.1 Existence of TravellingWaves

To describe the travelling wave profile we consider travelling waves with unknown
wave speed c > 0. By introducing the travelling wave variable, ζ = X − cτ , the
model (1)–(2) becomes

(
V
N

)
τ

= D

(
V
0

)
ζ ζ

+
(
cV
cN

)
ζ

+
(
f (V , N )

g(V , N )

)
, (15)
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Fig. 12 A reproduction of Fig. 8a and plots of the solution profile at the values of τ that are marked by
horizontal lines (Color figure online)
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Fig. 13 A reproduction of Fig. 8f and plots of the solution profile at the values of τ that are marked by
horizontal lines (Color figure online)

where

f (V , N ) = −ḡL(V − v̄L) − ḡK N (V − v̄K ) − ḡCaM∞(V )(V − v̄Ca),

g(V , N ) = λN (V )
(
N∞(V ) − N

)
.
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Travelling waves are stationary solutions to (15) and satisfy

D

(
V
0

)
ζ ζ

+ c

(
V
N

)
ζ

+
(
f (V , N )

g(V , N )

)
= 0. (16)

We rewrite (16) as system of first order ODEs with ′ := d
dζ

by introducing a new
variable W = V ′ to obtain

V ′ = W ,

W ′ = − 1

D
(cW + f (V , N )),

N ′ = −1

c
g(V , N ).

(17)

The boundary conditions are

lim
ζ→+∞(V ,W , N )(ζ ) = (V+, 0, N+), lim

ζ→−∞(V ,W , N )(ζ ) = (V−, 0, N−), (18)

where (V±, N±) are equilibria of (1)–(2). For a pulse (V+, N+) and (V−, N−) are the
same equilibrium; for a front they are different equilibria.

A number of mathematical methods have been established to show the existence
of travelling wave solutions in reaction-diffusion systems. These involve singular
perturbation theory (Merkin and Sadiq 1996; Cornwell and Jones 2018), variational
techniques (Chen and Choi 2015), and factorisation (Achouri 2016).We use the shoot-
ingmethod (Ermentrout 2002) to identify travellingwaves and approximate their wave
speed. This was achieved by numerically computing solutions to the travelling wave
ODEs (17) for initial points perturbed from an equilibrium in a direction tangent to
either its stable manifold or unstable manifold. In either case, this direction is given
by an eigenvector of the Jacobian matrix of (17) evaluated at the equilibrium, and a
formula for this matrix is provided in Appendix A. We adjusted the value of c until
the solution was approximately homoclinic (in the case of a pulse) or heteroclinic (in
the case of a front).

We first consider the parameter values of Fig. 8a for which stable travelling pulses
were observed. The equilibrium associated with these pulses is the lower-most equi-
librium branch of Fig. 2c. For the travelling wave ODEs (17), this equilibrium has a
one-dimensional unstable manifold. By performing the shooting method, we found
that a solution approximating one branch of this manifold forms a homoclinic con-
nection when c = 0.006116, approximately. This matches the speed of the pulses
observed in Fig. 8a. A plot of the pulse profile for V is shown in Fig. 14a and its
corresponding homoclinic trajectory in (V ,W , N ) phase space is shown in Fig. 14b.
As expected the pulse profile extracted from our numerical solution to (1)–(2) matches
the pulse solution obtained of the travelling wave ODEs (17).

Now we consider the parameter values of Fig. 8f for which our numerical solution
produced two travelling fronts. These connect the lower-most and upper-most equi-
librium branches of Fig. 2c. As equilibria of (17), these have one-dimensional stable
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Fig. 14 a The solution profile of (1)–(2) and a solution to the travellingwaveODEs (17) with c = 0.006116,
using the same parameter values as Fig. 8a b The same two solutions but plotted in the phase space of (17)
(Color figure online)
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Fig. 15 a The solution profile of (1)–(2) and a solution to the travelling wave ODEs (17) with c = 0.0043
using the same parameter values as Fig. 8f b The same two solutions but plotted in the phase space of (17)
(Color figure online)

manifolds. Consequently, we solved (17) backwards in time from an initial point near
the upper equilibrium and adjusted the value of c until observing an approximately
heteroclinic orbit. This produced c = 0.0043, approximately,matching thewave speed
observed in Fig. 8f. The plot of the front profile for V (ζ ) is shown in Fig. 15a, and its
corresponding heteroclinic trajectory in (V ,W , N ) phase space is shown in Fig. 15b.
The front obtained by the solution to (1)–(2) is also shown and seen to closely match
the front profile of (17).

7 Discussion

In this paper we used a reaction-diffusion model to investigate the collective dynamics
of SMCs with passive electrical coupling. The main feature of the model is that it
exhibits excitatory waves in response tomechanical stimulation even when the applied
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current is absent. In order to reveal the mechanisms that underpin these spatiotemporal
dynamics, we have studied the model with simply one spatial dimension.

First we summarised and extended the bifurcation analysis of the system in the
absence of diffusion given in Fatoyinbo et al. (2020). In particular the analysis reveals
that the model can generate oscillations through Type I and Type II excitability.

This analysis is the starting point for explaining many aspects of the spatiotemporal
dynamics of the fullmodel, as detailed in Sect. 5. By using travellingwave coordinates,
we were able to understand the occurrence of travelling pulses and fronts, Sect. 6. For
instance, a stable travelling pulse transitions to a stable travelling front as the rate
constant for the K+ channel is increased. In the absence of stable travelling pulses
or fronts we observed what appears to be spatiotemporal chaos. We estimated the
maximal Lyapunov exponent to show that the irregular behaviour is indeed chaotic.
This chaos is caused by the presence of diffusion (because without diffusion the model
consists of twoODEs). Overall we found that the long-term dynamicswas independent
of the choice of initial perturbation used in (12). We also showed in Sect. 4 that the
spatiotemporal dynamics are not due to Turing instability.

The analysis in our paper demonstrates a biologically plausible system wherein
complex spatiotemporal patterns can emerge from a system of SMCs. Moreover,
these patterns are not driven by spatial inhomgeneities in the system, nor by Tur-
ing instability. We have observed patterns of excitation waves similar to those found
in models of cardiac arrhythmia (Davidenko et al. 1992; Ermentrout and Rinzel 1996;
Dodson and Sandstede 2019). The results in this study could be useful in improving
our understanding of physiological responses and disorders in smooth muscle cells.

Several aspects of the spatiotemporal chaos remain to be explained. It would be
useful to obtain a theoretical understanding for the speed at which the boundary of the
chaotic region propagates. It would also be helpful to pinpoint bifurcations at which
travelling pulses and fronts lose stability and these are likely to represent the onset
of the chaotic dynamics. It would also be interesting to see what patterns occur when
two or three spatial dimensions are considered.
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Appendix A: The linearisation of the travelling wave ODE

Here we evaluate the Jacobian matrix of the travelling wave ODEs (17) at an arbitrary
equilibrium (V±,W±, N±). The Jacobian matrix is

J =
⎛
⎜⎝

0 1 0
− 1

D fV − c
D − 1

D fN

− 1
c gV 0 − 1

c gN

⎞
⎟⎠ , (19)

where

fV =
[

− ḡL − ḡK N± − ḡCa
2v̄2

(
1 − tanh2

(
V± − v̄1

v̄2

))
(V± − v̄Ca)

− ḡCa
2

(
1 + tanh

(
V± − v̄1

v̄2

)) ]
,

fN = −ḡK (V± − v̄K ),

gV = ψ

2v̄4

[{
1

2

(
1 + tanh

(
V± − v̄3

v̄4

))
− N±

}
sinh

(
V± − v̄3

2v̄4

) ]

+ ψ

2v̄4

[
cosh

(
V± − v̄3

2v̄4

)(
1 − tanh2

(
V± − v̄3

v̄4

))]
,

gN = −ψ cosh

(
V± − v̄3

2v̄4

)
.

The eigenvalues of (19) are the solutions to the characteristic equation

λ3 + P2λ
2 + P1λ + P0 = 0, (20)

where

P2 = gN D + c2

cD
, P1 = gN + fV

D
, and P0 = fV gN − fN gV

cD
.
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