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ABSTRACT

Prophages are phages that are integrated into bac-
terial genomes and which are key to understand-
ing many aspects of bacterial biology. Their ex-
treme diversity means they are challenging to de-
tect using sequence similarity, yet this remains the
paradigm and thus many phages remain unidentified.
We present a novel, fast and generalizing machine
learning method based on feature space to facilitate
novel prophage discovery. To validate the approach,
we reanalyzed publicly available marine viromes and
single-cell genomes using our feature-based ap-
proaches and found consistently more phages than
were detected using current state-of-the-art tools
while being notably faster. This demonstrates that
our approach significantly enhances bacteriophage
discovery and thus provides a new starting point for
exploring new biologies.

INTRODUCTION

Prophages are bacteriophages integrated into bacterial
genomes where they play an important role in the ecology,
physiology and evolution of their bacterial hosts (1,2). De-
spite the many and varied examples of ways that prophages
impact bacterial biology, our knowledge is based on a some-
what limited number of prophages in well-studied prokary-
otes (3–5). Integrated prophages are known to impact the
phenotype of their hosts in a number of different ways, that
is collectively referred to as lysogenic conversion. The most
well-known example of this is an increase in virulence, by
the carriage of toxin genes where prophage encoded toxins
can contribute directly to human diseases such as cholera,
shigellosis, diphtheria and botulism. Increased virulence is
not limited to toxins, with other virulence factors encoded

on prophages such as vapE, that increases the virulence of
Streptococcus pneumoniae (6). Beyond lysogenic conversion
prophages also provide a mechanism of horizontal gene
transfer (HGT) between different hosts via generalized, spe-
cialized and lateral transduction (7).

To comprehensively understand the importance of
prophages and further interrogate their multitude of roles,
it is first necessary to predict their presence within prokary-
otic host genomes. Current bioinformatics prediction tools
largely rely on sequence similarities and therefore strug-
gle to identify novel motifs with no close analogs in the
public searchable databases. The current most widely used
and very useful prophage prediction tool is PHASTER (8),
which carries out sensitive comparisons to existing phage
genes by combining sequence similarity searches with gene
presence and synteny. When it comes to extracting viral
sequences from (meta)genomic data, there is a reliance
on well-understood phages and the available tools are de-
pendent on linking databases with sequence similarity ap-
proaches as is partly the case with VirSorter (9) and VI-
BRANT (10) or with features, such as transcription orienta-
tion, protein length and amino acid composition (Prophage
Hunter (11)).

Although some feature-based approaches have been ap-
plied to predict prophages and phages from (meta)genomic
datasets (11–13), they have either been trained on a limited
set of biological features (e.g. only nucleotide frequencies),
or an inadequate amount of training data. Nevertheless,
when applied alongside careful curation of training data,
such approaches yield valuable new information, as demon-
strated through the recent characterization of inoviruses
(14), and significantly reduce prediction times, improving
the speed of experiments and scalability of such models to
big data.

Previously, transcription strand directionality and gene
length have been identified as crucial biological features dif-
ferentiating between phages and bacteria (9,11–13). Mar-
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vel (13) has utilized additional features such as intergenic
distances and gene density (13) and other features have
been used as proxies for structural sequence properties such
as single amino acid frequencies (Prophage Hunter) and
AT/GC skew (PhiSpy). So far, the used amount of sequence
data has remained limited: Marvel, PhiSpy and Prophage
Hunter are trained using 1029, 547 and 718 prokaryotic
genomes, respectively, while VIBRANT uses the informa-
tion from 181 prokaryotic genomes (10–13). It has been
previously noted that no single tool can identify all the
prophages in all bacterial genomes suggesting that multiple
features remain to be learnt from the data (12).

To overcome the current limitations and to increase our
knowledge of phage space we present PhageBoost, a bioin-
formatics machine learning tool for fast, generalizable and
explainable detection and discovery of prophage regions.
PhageBoost extracts the viral signal from the host back-
ground by shifting from sequence space into biological fea-
ture space. As proteins with similar functions can share
attributes, or features, despite being far apart in sequence
space (15), this makes predictions less prone to sequence
similarity limitations.

Our approach calculates and engineers biological fea-
tures from both nucleotide and amino acid sequences for
every gene, and then uses machine learning to predict which
gene belongs to bacteria or phages. The resulting prediction
probabilities are parsed to longer regions, which are consid-
ered viral if their probability distributions differ from the
background. PhageBoost utilizes biological features such
as GC-content, amino acid composition, gene length, gene
direction, intergenic distances and codon adaptation index
(CAI) (full list of features in Supplementary Table S1), and
extreme gradient boosting (XGBoost) (16) to learn the dif-
ferences between the host and phage genes in relation to the
complete genome signal.

MATERIALS AND METHODS

PhageBoost workflow

For a (meta-)genome prediction, PhageBoost starts work-
ing after the gene calling by expecting nucleotides, amino
acids and coordinates as inputs for each gene. We have
currently implemented PhageBoost to start from a fasta-
file and implemented gene prediction using cythonized
Prodigal (17) from Pyrodigal v.0.2.1 (https://github.com/
althonos/pyrodigal). However, any gene caller results can
be used as input. Contrary to the predictions of free phages,
our approach relies on the ‘learning’ of the difference in fea-
tures space between the prophage and the bacterial host se-
quence where PhageBoost will calculate the biological fea-
tures for each gene and transform them relative to the back-
ground of all the genes in the set of contigs before pre-
dicting. This is done by standardizing the features by sub-
tracting the mean and scaling to unit variance before the
probabilistic classification of each gene as phage or bacte-
ria. Afterward, the genes above a probability threshold (de-
fault 0.9) are parsed to regions using multiple adjustable pa-
rameters that allow customizable pattern matching: length
of a minimum number of genes (default 10), the neighbor-
ing genes required to have the same threshold (default 0)
and the allowed gap between genes (default 5). We further

smooth the predictions using Parzen rolling windows (18)
of 20 periods and look at the smoothed probability distribu-
tion across the genome. We disregard regions having either a
summed smoothed probability <0.5, or region less than one
unit of standard deviation away from the negative predic-
tions smoothed average, and finally, we reject those regions
whose the probability distributions differ from the proba-
bility distribution generated from the negative predictions
by using Kruskal–Wallis rank test (default, alpha: 0.001) as
implemented in Scipy (19). The algorithm returns the pre-
dicted probabilities, smoothed probabilities and predicted
regions for each gene. Ultimately, each phage region can
then be filtered out from the input fasta-file using start and
stop coordinates.

Feature generation

We calculated 1587 different features (Supplementary Ta-
ble S1) using the BioPython SeqUtils ProteinAnalysis mod-
ule (20) and in-house scripts for each gene. These features
consist of 400 dipeptide combinations using normal amino
acid alphabets and 1000 tripeptide and 100 dipeptide com-
binations using simplified amino acid alphabets (21), and
87 more generic features. To avoid model bias and make
the model more generalizable, we applied simple feature en-
gineering and selection. We selected the 208 features (see
Supplementary Table S1) that were always present and high
variance throughout the training data genomes. We further
transformed the feature values relative to the genome differ-
ences. We calculated the average gene length and average in-
tergenic distances for a random subset of 10 982 prokaryote
genomes utilized in PhageBoost training and 9435 phage
genomes from GenBank (retrieved 1 April 2018).

Training dataset generation

For a machine learning model to be able to predict if a re-
gion in a bacterial genome is a prophage, the model needs
to be trained on (i) a trusted, preferable experimentally ver-
ified, positive dataset of known prophage regions, (ii) a sim-
ilar trusted negative dataset of strictly prokaryotic regions
and (iii) further validated with a similar dataset that was not
used in any part of the training. In essence, to make sure
the dataset is valid, it should consist of independent and
identically distributed random variables. As no gold stan-
dard dataset is currently available, we constructed a bespoke
dataset in silico which should ideally be as close as possible
to reality. For the training dataset generation, we used all
completely sequenced bacterial and archaeal genomes from
NCBI’s RefSeq (22) up to February 2019 and chose those
chromosomes which had 300 genes or more, resulting in 13
994 genomes (Supplementary Table S2). In order to create a
classification value for the training data, phage regions and
phage-free regions were defined using labels generated from
clusters of orthologous groups (COGs) (23), and prokary-
otic virus orthologous groups (pVOGs) (24). The genomic
regions that were designated as phage regions consisted of
regions where only pVOGs exist throughout a stretch of 10
genes. In contrast, the phage-free regions were defined as
regions where only COGs exist throughout the ten genes
stretch without the presence of any pVOGs. From the 13 994
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genomes used for the model training and test data, we ex-
tracted 31 973 phage regions and 101 747 phage-free regions
totaling 4 007 643 genes. We further validated the training
data using MMSeqs2 (25) to align the genes used in the
training data against the GenBank phage genes (retrieved
1 April 2018). A total of 859 770 of 1 090 269 genes (78.9%)
labeled as phage have a hit to 366 722 non-redundant phage
genes whereas 325 439 of 2 564 993 genes (12.7%) labeled as
bacteria have a hit to 34 625 non-redundant phage genes
(Supplementary Figure S3). The vast majority of bacte-
rial genes which had similarity to phage genes were ‘typi-
cal’ bacteria genes, for example the transcriptional regula-
tor LysR or ABC transporters that were annotated as such
and which are known to be found in albeit at low frequen-
cies in phage genomes (Supplementary Table S7).

Training sample weights

We used the individual genes found in the regions to train
the classifier model. As not all bacterial genomes were
equally present in the training data, this can skew the ma-
chine learning algorithm to toward prophage regions from
the most abundant bacteria. Additionally, this can cause the
machine learning model to learn patterns driven by partic-
ular taxonomical lineage or gene homology. To give equal
importance to less abundant bacteria, and in order to limit
model bias caused by redundant genes, we calculated clus-
ters to generate sample weights during training. MMseqs
(25) and MCL (26) (inflation parameter set to 2) were used
to assign the genes to the gene clusters in a similar fashion
as previously described (27). We applied majority voting to
eliminate model bias caused by having the same features as-
sign to both phage and prokaryote. Thus, to limit the bias
caused by gene clusters without the majority group, we re-
moved the gene cluster when the dominant group propor-
tion was <0.7 and pooled the gene clusters with <10 mem-
bers for more even sample weight generation. We managed
the potential bias caused by taxonomy grouping genes be-
longing to the same family if more than 5000 genes present
for the family. From the 116 512 controlled gene clusters,
we generated 23 329 unique labels for calculating sample
weights (see ‘Training of the model’ section).

Training of the model

After filtering steps during the sample weight generation of
the 4 007 643 genes, we trained the model using 3 672 101
genes as the training data. We used a test dataset of 23 329
genes for early stopping during training. These 23 329 genes
were generated by random sampling of single genes from
each gene cluster (see ‘Training sample weights’). After tak-
ing a sample from each group as test data for early stop-
ping of model training, the sample weights used in the ac-
tual training were computed using the balanced mode from
Scikit-learn v0.22.1 (28). The datasets are available as sup-
plementary data. The final gradient boosting decision tree
model using XGBoost v.1.0.2 (16) was trained on 3 672 101
genes until no further model improvement was observed for
ten boosting rounds on the test data using classification er-
ror as the evaluation metric. The model hyperparameters
were manually fine-tuned to avoid generating false positives

while driving the log-likelihood score lower after getting the
initial idea of parameters through a ten-fold cross-validated
search with Bayesian optimization framework Optuna v. 0.9
(29).

In order to benchmark PhageBoost, we removed 54
genomes from the training data and recalculated the sam-
ple weights but used the same hyperparameters (see Bench-
marking and comparisons using 54 genomes). This resulting
dataset consisted of 3 655 262 genes, 23 278 clusters and 23
278 test genes for stopping the boosting (data available in
Supplementary Data).

Model explanations

Explaining the model predictions was done by utilizing the
Shapley additive explanations for ensembles of trees from
shap v.0.35.0 (30) and the builtin method for current XG-
Boost versions for easy access to the same feature contri-
butions and interactions for the predictions. To understand
how the model learned during the training, we computed
and visualized the feature contribution for the training data,
as well as the link between the Shapley value and the feature
value in Figure 1E and Supplementary Figure S1, includ-
ing individual figures, and raw Shapley value data in sup-
plementary data. We used the predicted feature contribu-
tions and extracted sorted order of the feature importance
on models local output by using the standard approach tak-
ing the averages on the absolute values of the Shapley val-
ues. For Figure 1E, the feature value and Shapley value in-
teraction were simplified using the Pearson correlation co-
efficient, while the figures in supplementary data have raw
data visualized in a scatter plot. See Supplementary Fig-
ure S1 for the barplot of the impact of each feature during
training. For Figure 1B–D, we smoothed the predictions by
using Parzen (18) window rolling averages of twenty peri-
ods. We summed the raw contributions for each gene (Fig-
ure 1C), and visualized the smoothed ten features with the
most contribution in the training dataset (with the highest
absolute average) (Figure 1D), and summed total features
followed by smoothing (Figure 1B). The workflow on how
to create the images in Figure 1 is found in the Jupyter note-
books in GitHub: https://github.com/ku-cbd/PhageBoost/
tree/master/notebooks.

Benchmarking and comparisons using 54 genomes. We
took the approach of using the previously reported 267
prophages from 54 genomes (31) that have been previously
used to benchmark prophage prediction tools (8,9,32).
We extracted the list of the validated prophages from the
PHASTER website (Table 4, https://phaster.ca/statistics).
For each genome in the 54 validation set for all the predic-
tors, we used the regions begin and end coordinates (base
pairs) to count the sensitivity (recall) and positive predicted
values (PPV/precision) as previously suggested for phage
dataset validation (8). We have further included the F1-
score and false positive rate (FPR). The sensitivity, positive
predictive value (PPV), FPR, accuracy and F1-score were
defined as follows:

sensitivity = TP/(TP + FN)

PPV = TP/(TP + FP)

https://github.com/ku-cbd/PhageBoost/tree/master/notebooks
https://phaster.ca/statistics
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Figure 1. PhageBoost prophage predictions (in orange) along a bacterial chromosome (Haemophilus influenzae, NC 000907.1) (blue) (A) with total feature
influence (B). The biological feature content varies among the prophage regions and from the bacterial genome (C). Individual feature contributions can
be used to explain the model predictions (D) (30). This allows the extraction and validation of biological signals. Panel E shows the 10 most important
features learned during the training phase that the model uses to discriminate between prophage and bacterial regions. Panels C and D show the influence
of the same ten features along the predicted region. Colorbar: Pearson correlation coefficient between the feature values and Shapley values.

F1 − score = 2 × sensitivity ∗ PPV/(sensitivity + PPV)

FPR = FP/(FP + TN)

accuracy = (TP + TN)/(TP + FP + FN + TN),

where TN = genome length (bp)––TP–FP–FN.
Where true positive (TP) equals the nucleotide found in

both validation set and with the corresponding prophage
prediction tool, false positive (FP) equals nucleotides found
only in the predictions; false negative (FN) nucleotides
found only from validation. However, we would like to
point out, as already noted in 2016 by the developers of
PHASTER, ‘[. . . ] given that the ‘gold standard’ annotations
used for evaluation are [. . . ] old, many prophages identi-
fied as ‘false positives’ relative to this standard are likely
to be true prophages.’ (8). Thus, more than the reported
prophages as in the genomes would negatively influence the
PPV score (8,32). To link the prediction performance for
each phage region and take into account the different sizes
of the viral regions, we also calculated the proportion of
region retained. We generated in-house python scripts to
compute all three values.

We benchmarked PhageBoost against VirSorter (9), VI-
BRANT (10), Prophage Hunter (11) and PHASTER (8).
We used the default settings for PhageBoost v.0.1.2, VI-
BRANT v.1.2.1 and VirSorter v.1.0.5 with the database
db2 (9), while we manually submitted 54 genomes to
the PHASTER web server using their URLAPI (https://
phaster.ca/instructions) and chose not to use precomputed

results. The genomes were uploaded to Prophage Hunter
using their web user interface and annotated both with and
without similarity matching. Results have been deposited to
Supplementary Data.

Virome mapping

We mapped the short reads from 223 published marine vi-
ral metagenomic samples (33) to the 5539 single ampli-
fied genomes (34) Supplementary Table S4. These virome
samples come from 65 Tara stations. We used the Anvi’o
v.6.1 (35) platform for the work. We merged all the single-
amplified genomes (SAGs) to a multi-fasta file, after which
we mapped each short-read sample to the concatenated
SAGs file using Bowtie2 v.2.3.5 (36) with the -a flag to return
all the possible matches and otherwise default parameters
to avoid signal dilution. The read recruitment varied from
0 to 5.22 percent (Supplementary Table S5). Afterward, by
using the gene calling done by the original authors of the
dataset (34), we extracted the coverage and detection infor-
mation for each gene (Supplementary Data). Using the de-
tection information, we extracted the regions found by the
viral mapping with a custom in-house script. We defined a
region found with a minimum number of five genes with de-
tection of 1.0. We parsed the regions for each virome sample
separately (supplementary data). We additionally extracted
the prophage-like regions from the SAGs by selecting the
regions that were at least 10 kb long and located 10 kb away
from the edges.

https://phaster.ca/instructions
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We searched for similarity-based evidence by looking for
resemblance of these regions to the GenBank phage genes,
using MMSeqs2 (25) and retaining hits above 25% identity.
We then calculated the total proportion of each region to
any phage genomes. The average proportion was only 15%
(Supplementary Figure S4). Since the prophages or temper-
ate phages integrated to host genome could have a few lyso-
genic markers, we searched the following previously (11,37)
suggested keywords for integration: ‘recombinase, excise,
exciase, excisionase, recombination, transposase, lysogenic,
prophage, temperate, integrase, repressor’. We found that
only 102 regions (13.7%) had one or more of these gene an-
notations. However, this is a 62.8% increase from the orig-
inal 22 659 virome regions where 1899 (8.4%) regions had
a keyword hit or more. The overall low amount of keyword
hits is not surprising given the low average proportion of
regions mapped to phage genomes.

We further searched for evidence of attachment sites
around the region by finding the longest string matches at
the ends of the region extending it 5 kb outwards and 0.5 kb
inwards. We then compared the generated distribution to
random samples from the whole SAG dataset and found
that the length of the string match is significantly (Z-test)
higher in the prophage-like filtered region subset than ran-
dom samples from the whole dataset. Repeats longer than
12 bp are commonly used to indicate the presence of the po-
tential attachment sites (32,11). We found that 439 regions
had a string size longer than or equal to 15 bp (Supplemen-
tary Figure S7).

Predicting viral signal from the SAGs

For the dataset of 5537 SAGs (34), we used the default
settings for PhageBoost v.0.1.1 predictions. These are min-
imum region length 10, 5 allowed gaps and probabil-
ity threshold 0.9. We used the default settings for Vir-
Sorter v.1.0.5 (9) predictions with the database db2 us-
ing all the phage hidden Markov models (HMMs) and cu-
rated HMMs. For the PHASTER (8) predictions, we sub-
mitted genomes to the PHASTER web server using their
URLAPI (https://phaster.ca/instructions), and thus could
not be benchmarked in the same way as other tools in terms
of time. We chose and chose not to use pre-computed results
together with a multi-fasta option. For VIBRANT v.1.2.1
(10), we used the default settings. To link the predictions to
the regions found by viral read recruitment and to take into
account the different sizes of the viral regions, we calculated
the proportion of region retained.

Ecological significance

We further wanted to investigate the ecological significance
of the filtered dataset regions found by linking this to
the prediction tool. We took the metadata associated with
the isolation and sampling locations for both the viromes
and the SAGs and generated the data for each potential
prophage region (Supplementary Table S4). Using kepler-gl
v.2.2.0 (https://kepler.gl/), we visualized the sites by latitude
and longitude metadata of the sampling spots of both vi-
romes and SAGs for each prophage prediction tool (Figure
3). An interactive map is provided in supplementary data.

For VIBRANT, the six SAGs came all from a single sam-
pling location; these were mapped to 121 virome sampling
sites. PHASTER found seven unique locations for SAGs
and 67 virome locations, whereas VirSorter found five lo-
cations for SAGs and 124 locations for viromes, and Phage-
Boost had most considerably more ecological signals with
11 locations for SAGs and 125 locations for viromes (Sup-
plementary Data). These results suggest that some of the
prophages might be more globally present than previously
understood using the current tools.

We used both GNU parallel v20200322 (38) and joblib
v.0.14.1 to speed up the computation throughout the model
preparation, parsing, and processing data for this paper.
All the data visualization and figures were generated us-
ing either kepler-gl, Matplotlib (39) or Seaborn (40) and
were manually fine-tuned for publication using Inkscape
(http://www.inkscape.org/).

RESULTS AND DISCUSSION

Biological explanation of discriminative features

To evaluate the model behavior, explanations of the indi-
vidual predictions of the machine learning model’s outputs
were created based on Shapley additive explanations (41).
This approach allows an assessment of the general feature
importance generated during model training and the subse-
quent exploration of which interactions inform predictions.
Thus, we can then relate biological significance to the key
feature contributions identified in our models.

To distinguish between prophage or bacterial origins,
PhageBoost generates prediction probabilities for each gene
across the bacterial genome or metagenomic contig (Figure
1). Of the many hundreds of biological features used, it is
often smaller subsets drive the prophage prediction (Figure
1B–D). During the training phase, by explaining (30) the
predictor local output, we can identify subsets of discrimi-
nating features which are shown in the order of relative im-
portance in Figure 1E. A key strength of our approach is
that the feature contribution can be related to the actual
feature values in order to extract a biological signal that de-
fines the prediction (Figure 1E).

Although regression tree boosting models are more com-
plex than linear univariate models, biological insights can
be gained from the ranking of the feature importances. The
strongest feature, which PhageBoost uses to discriminate
between prophage and bacterial regions, is the CAI, which
measures the synonymous codon usage bias for genes with
respect to a set of reference genes. Originally, the CAI is
based only on highly expressed genes, but here we used
the genome data as we did not have expression data (42).
Temperate phages generally adapt their codon usage to be
concordant with their hosts with time, as they utilize the
host translational machinery. There is evidence for this in
a small set of coliphages that have been examined, with
greater adaptation in temperate phages compared to vir-
ulent phages (43). However, adaptation is further compli-
cated by the phage carriage of tRNAs that may reduce the
need to evolve codon usage. Why a low CAI is such a strong
feature is not immediately obvious, it may be that the iden-
tified phages are very recent acquisitions and did not have
time to evolve. Other relevant features are the length of

https://phaster.ca/instructions
https://kepler.gl/
http://www.inkscape.org/
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genes and the lengths of the regions in between the genes
in the observed region––which is not surprising as phage
genes tend to be shorter (640 ± 132 bp) than prokaryotic
genes (936 ± 67 bp) and phage genomes are more compact,
thereby having shorter intergenic distances (prokaryotes:
511 ± 493 bp, phages: 78 ± 14 bp). Other important fea-
tures consist of the GC content at the third position in the
codon, the molecular weight and the percentages of threo-
nine, histidine and cysteine, where more cysteine and histi-
dine residues are signatures of prophages, and higher con-
tents of threonine are attributes of bacterial regions. The
Shannon entropy has already been shown to be discrimina-
tive between bacterial genomes and phage genomes (44) and
has previously been used for detecting prophages in bacte-
rial genomes (12). The grand average index of hydropathy
(GRAVY) which is essentially a measure of hydrophobic-
ity of proteins, and it had been shown that phage proteins
used in phage display may be more hydrophobic (45). For
a full set of feature importances see Supplementary Figure
S1 and Table S3.

Benchmarking and validation of novel predictions

We chose to benchmark PhageBoost in two ways (Figure
2)––by comparing its performance to existing state-of-the-
art methods and by discovering previously unknown viral
signals by mapping marine viral fractions on to single am-
plified marine microbial genomes.

Experimentally verified prophages from 54 prokaryotic
genomes. We used the genomes of 54 prokaryotes that
have at least the previously reported 267 prophages (31) as
the validation set and retrained the PhageBoost model after
omitting these genomes from the training data. We bench-
marked this model against four prediction tools VIBRANT
(10), VirSorter (9), Prophage Hunter (11) and PHASTER
(8) using three predefined metrics: number of regions found,
sensitivity and positive predictive value (PPV) (8,32) (Fig-
ure 2A), and other common machine learning metrics such
as F1-Score (Supplementary Figure S8), false positive rate
(Supplementary Figure S9) and accuracy (Supplementary
Figure S10, averaged results in Supplementary Table S10).
VIBRANT, PHASTER and Prophage Hunter were more
conservative when making predictions and had the high-
est PPV values of 0.83, 0.69 and 0.57, respectively, but they
also found the least amount of the validated phages. Phage-
Boost with a PPV of 0.44 was higher than VirSorter with a
PPV of 0.31. Given that the validation genomes could have
more than the reported prophages (8), negative conditions
(true negatives and false positives) are impossible to accu-
rately verify. Thus, identifying these prophages would neg-
atively influence the PPV. PhageBoost identified the most
validated prophage regions with 231, whereas PHASTER
identified 224, VirSorter 221, VIBRANT 192 and Prophage
Hunter 173. Only eight prophage regions were uniquely
found by PhageBoost, however the shared amounts of two
tools or more showcase the accumulation of prophage re-
gions to the PhageBoost side (Supplementary Figure S2).
Only 13 prophages were found by two tools but not by
PhageBoost. VirSorter and PHASTER, which found the
second most regions these were 18 and 22 prophages re-

spectively. We believe PhageBoost results in the future could
be improved by generating a more comprehensive train-
ing dataset. While PhageBoost reached a higher sensitivity
(0.82) than Prophage Hunter (0.66), PHASTER (0.78) and
VIBRANT (0.73), VirSorter (0.85) had the highest sensitiv-
ity finding larger proportions of the validated regions (Fig-
ure 2A). This is evident by manually investigating the pre-
diction regions for each tool (Supplementary Table S6). We
note that while PhageBoost predicts the most prophages,
the region borders could be further finetuned by looking
at the potential attachment sites and in general the regions
should be verified by other means such as virome coverage
data or looking at the functional annotations if any.

We further calculated the nucleotide-level accuracy (Sup-
plementary Figure S9) and false positive rate (FPR) (Sup-
plementary Figure S10). We found that VIBRANT was the
best performing (0.987) with the least false predicted base
pairs (0.007), while overall, the accuracy was over 90% re-
gardless of the predictor (See Supplementary Table S10 for
averaged set of metrics). PhageBoost had the lowest mini-
mum accuracy score for each genome (Supplementary Fig-
ure S9). Regarding false positive predictions, PhageBoost
barely fitted under 5% margin (0.049), while VirSorter had
the highest (0.079) (Supplementary Figure S10 and Ta-
ble S10). The compactness of score distributions of accu-
racy and FPR for PHASTER (0.016), Prophage Hunter
(0.023), and VIBRANT was surprisingly dense. This might
suggest the utilization of the 54 prokaryotic genomes and
their prophages during their final model development. VI-
BRANT includes at least seven of these genomes in the
training data (10). For PHASTER and Prophage Hunter,
the used genomes are not evident through literature search
(8,11,32). While this is making predictor comparison biased
with these genomes as benchmarking using these genomes,
we see that utilizing all the information available for the de-
ployed predictor is justified. However, external evaluation
sets are thus needed.

Superimposition of TARA Ocean viral samples on single-cell
genomic marine microbes. As there are no universal con-
served marker genes for phages, we utilized recently pub-
lished marine datasets (33,34) to demonstrate that Phage-
Boost can discover previously unseen prophage signals. We
reason that prophage regions in marine bacteria will have
similarities to marine phages and by superimposing marine
phage sequences on marine bacterial genomes, we will be
able to enrich for prophage regions without sequence simi-
larities to existing databases.

We mapped the sequence reads from 223 metagenomic
marine viral fractions samples (viromes) from 65 different
TARA oceans stations (33) to 5537 marine SAGs (34). This
gave a total of 22 659 unique regions with a signal out of 236
405 contigs (Supplementary Tables S4 and 5) that were con-
sistently detected by at least 1× coverage. We then filtered
regions that were at least 10 kb long and located 10 kb away
from the edges, resulting in 746 regions which we hypothe-
size could be prophage regions within the marine microbial
genomes.

Thereafter, we predicted viral signals from all 5537
SAGs using PhageBoost and three other leading predic-
tion tools––PHASTER, VirSorter and VIBRANT (Ta-
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Figure 2. Software benchmarking. Validation against a previously reported dataset of prophages from 54 prokaryotes (31)# with a total found regions,
positive predictive value (PPV), and sensitivity measured for single genomes as well as phage proportion (in bp) found per prophage. (A) Virome (33)
mapping validated phage signals marine SAGs (34) and a filtered subset with a prophage-like pattern. (B)# Prophage Hunter failed to run NC 003155
both with and without sequence similarity (SM).

Table 1. Prediction software comparisons for the marine SAGs

Viral regions Contigs SAGsc Time per SAG (mins) Total time (h)

PhageBoost 5757 5081 2539 0.36 ± 0.2 33.37
PHASTER 2402 2303 1905 -a 401
VirSorter 3889 3872 2552 6.8 ± 4.9 627.21
VIBRANT 943 942 715 3.3 ± 1.5 301.8b

Total 234593 5537

aJobs to web server submissions took 2 h 10 February 2020 20:02–22:00, results received 13 February 2020–27 February 2020 13:20; b the elapsed time for
5515 genomes, the remaining 242 failed to finish; c Single-amplified genomes.

ble 1). The run times varied between the different pro-
grams where PhageBoost was clearly the fastest. Phage-
Boost finished the prediction in ∼33.5 h and was 9×
faster than VIBRANT, and ∼19× faster than VirSorter
with PHASTER taking more than two weeks to get re-
sults back from the server (Table 1). The number of pre-
dictions also varied widely, with PhageBoost predicting the
highest numbers of virome mapped regions overall and
for the potential prophage regions, with VirSorter second,
and VIBRANT and PHASTER predicting notably fewer
hits mostly finding some of the regions that were found in
multiple virome samples (Figure 2B), which could indicate
that these regions have already been deposited to virome
databases. VirSorter was often found assigning the whole
contig as phage, whereas PhageBoost classified smaller
regions.

We further used MMSeqs2 to search for in silico vali-
dation through similarity-based evidence from the phage
genes. We analyzed all 22 659 unique regions found by the
marine virome read recruitment of the SAGs that were an-
notated to SAR11-clade or Prochlorococcus by the origi-
nal authors of dataset (34). The regions found from both
lineages give hits to the phages. The most frequent phage

references for both are Synechococcus phages (Supplemen-
tary Tables S8 and 9).

For the Prochlorococcus regions, PhageBoost and Vir-
Sorter find a comparable number of regions, whereas
PHASTER and VIBRANT find relatively few. Evidently
multiple regions do not share resemblance to the phage
genes (Supplementary Figure S5), and those which do are
mostly annotated as hypothetical protein (31%) (Supple-
mentary Table S8). For the SAR11 regions, PhageBoost
finds most hits while VirSorter is the clear second, whereas
PHASTER and VIBRANT find few. Multiple regions share
less resemblance to the phage genes than the Prochloro-
coccus regions (Supplementary Figure S6), and 30% of the
genes are annotated as hypothetical protein in the reference
(Supplementary Table S9).

By investigating the sampling locations of the SAGs
where a potential prophage region was found, we further
observed a substantial increase in predictions making it eco-
logically significant. The predicted prophage fragments are
spread around to multiple locations in the ocean thereby
increasing the ecological phage space. (Figure 3 and on-
line methods). The regions that were most similar to the
known phages in the GenBank databases were also the re-
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Figure 3. The sampling locations of the SAGs with potential prophage regions found by different prophage predictors and confirmed by virome reads. The
coordinates are jittered if multiple prophage predictors overlap. The size of the point is dependent on the number of SAGs found from those coordinates.

gions where most tools often agreed (Supplementary Figure
S4). As the homology-based approaches cannot go beyond
the current known sequence space, our results show that by
utilizing the biological feature space and machine learning,
PhageBoost is able to generalize and detect previously un-
known viral signals for novel hosts such as Prochlorococcus
and SAR11. Furthermore, as the viromes’ ecological signal
doesn’t get saturated with positive predictions, this suggests
that a repository of new prophages awaits to be discovered.

Strengths and limitations of PhageBoost. PhageBoost is a
new tool for predicting prophages, where the aim is not
to replace other available tools but to add a high-speed
and accurate prophage detection, which makes it suitable
for high-throughput sequencing projects. As PhageBoost is
feature-based, it does not rely on sequence similarities or
hallmark genes for the prediction, making it able to gen-
eralize and identify novel prophages that would otherwise
have been missed by sequence similarity-based techniques.
However, PhageBoost needs the bacterial background to
identify the prophages, it will not detect prophages if they
are present independently without a background. Also, as
it is a gene-based workflow, it will not determine the exact
prophage boundaries. PhageBoost is, in general, returning a
prediction, which is a combination of what other currently
available tools are predicting, including additional novel
prophage genomes. Some of these could be overpredictions
originating from the training data (Supplementary Figures
S11–13) but without clear biological bias (Supplementary
Figure S13 and Table S11). In the case of prophages, the
overpredictions are very hard to assess as not even in the

commonly used 54 genome validation dataset, it is guar-
anteed that all prophages have been identified. Therefore,
it is challenging to verify positive predictions, both com-
putationally and experimentally (31). For the validation,
we excluded the 54 genomes from the PhageBoost train-
ing dataset, but as we used the public versions of the other
prophage predictors to compare against, we cannot be sure
that they have not been trained with the 54 validation
genomes included in their training dataset.

PhageBoost seeks to explain what features have been im-
portant for the decision if a given region is a prophage or
not. Some high-ranking features, like the CAI have earlier
been demonstrated as indicators of HGT and genomic is-
lands (46–48) and there is the possibility that part of the
overpredictions could be due to recent HGT. As prophage
integration is one of the main mechanisms of HGT (7,46),
by investigating the local feature importance interactions of
predictions, we show that the combination of features to-
gether with CAI is tuned for selecting prophages rather than
only just HGTs or genomic islands (Figure 1D).

In conclusion, PhageBoost is a fast prophage predictor,
which is independent of sequence similarity, able to general-
ize and therefore is able to predict from new unseen data to
facilitate the discovery of previously unknown prophages.
We have applied PhageBoost on 5537 single-cell genomics
data and have found consistently more viral regions and
considerably faster than with the current state-of-art tools.
This finding was validated with available marine virome
data. In order to support larger sequencing projects, Phage-
boost can work on multiple file formats, including com-
pressed files, and is freely available as an interactive online
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prediction server and a command-line tool. This allows fu-
ture work for generating and inferring insights from large
datasets which could help for example solve the state of
lysogenic activity as well as providing new approaches to
study the phylogeny of phages and host-phage interactions.

DATA AVAILABILITY

The PhageBoost predictor is available as an online predic-
tion server at http://www.phageboost.dk and freely avail-
able to academic users at GitHub: https://github.com/ku-
cbd/PhageBoost. The PB13994 training datasets are avail-
able at a frozen archive as https://doi.org/10.17894/ucph.
64136536--6353-430b-96ca-701ce89921c4.

The PhageBoost source code is available at GitHub:
https://github.com/ku-cbd/PhageBoost.
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