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Motor Neuron Disease Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda,
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A repeat expansion mutation in the C9orf72 gene causes amyotrophic lateral sclerosis

(ALS), frontotemporal dementia (FTD), or symptoms of both, and has been associated

with gray andwhite matter changes in brain MRI scans.We used graph theory to examine

the network properties of brain function at rest in a population of mixed-phenotype

C9orf72 mutation carriers (C9+). Twenty-five C9+ subjects (pre-symptomatic, or

diagnosed with ALS, behavioral variant FTD (bvFTD), or both ALS and FTD) and

twenty-six healthy controls underwent resting state fMRI. When comparing all C9+

subjects with healthy controls, both global and connection-specific decreases in resting

state connectivity were observed, with no substantial reorganization of network hubs.

However, when analyzing subgroups of the symptomatic C9+ patients, those with bvFTD

(with and without comorbid ALS) show remarkable reorganization of hubs compared to

patients with ALS alone (without bvFTD), indicating that subcortical regions becomemore

connected in the network relative to other regions. Additionally, network connectivity

measures of the right hippocampus and bilateral thalami increased with increasing scores

on the Frontal Behavioral Inventory, indicative of worsening behavioral impairment. These

results indicate that while C9orf72 mutation carriers across the ALS-FTD spectrum have

global decreased resting state brain connectivity, phenotype-specific effects can also be

observed at more local network levels.

Keywords: C9orf72, amyotrophic lateral sclerosis, behavioral variant frontotemporal dementia, pre-symptomatic,

resting state fMRI, graph theory

INTRODUCTION

A repeat expansionmutation in theC9orf72 gene is themost frequent cause of familial amyotrophic
lateral sclerosis (ALS) and familial frontotemporal dementia (FTD) in populations of Northern
European origin (1, 2) accounting for 5–10% of sporadic cases of these disorders (3). Carriers of
the C9orf72 mutation (hereafter referred to as C9+) can present with clinical symptoms of ALS,
FTD, or with combinations of motor, cognitive, and behavioral symptoms (4–7). Compared to
patients with sporadic ALS or FTD, neuroimaging studies in C9+ ALS and FTD patients show
more pronounced atrophy, particularly of subcortical structures and extramotor cortical regions
(4, 8–15). Although subtle structural changes can be detected in groups of pre-symptomatic C9+
carriers (9, 16–18), most structural changes are found later in the disease course, when symptoms
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are manifest. In individual C9+ carriers, the structural changes
may represent a hybrid pattern between those described for
sporadic ALS and sporadic FTD, appearing to reflect the relative
balance of motor and cognitive-behavioral dysfunction (10, 19–
21).

Functional connectivity changes also occur in patients with
ALS and FTD. In sporadic and C9+ FTD, intrinsic functional
connectivity is reduced in the salience networks, frontal and
temporal regions, and thalamic networks (13, 22–24). Findings
from resting state fMRI studies in sporadic ALS are less
consistent. Most reports find increased connectivity, particularly
in the sensorimotor network and default mode network (25–
28). However, others report decreased connectivity (29–32), or
mixtures of increased and decreased network connectivity (33–
36). We hypothesized that functional imaging in C9+ carriers
would show a hybrid pattern on a continuum of those seen
in ALS and FTD reflecting the relative balance of motor and
cognitive-behavioral dysfunction in each patient. To examine
this hypothesis, we evaluated changes in network measures and
their association with clinical measures of motor and cognitive-
behavioral dysfunction using graph theory metrics. In this
analysis, each brain region is represented as a node and the
relationship between two brain regions is represented as an
edge connecting the two nodes (37). Graph theory allows us to
quantify whole-brain network properties, as well as how regions
interact with each other as part of a larger network.

We first compared differences in network measures of
functional connectivity in a heterogeneous group of C9+ carriers
to healthy controls to identify changes associated with the
C9orf72 mutation itself. We then compared C9+ carriers with
ALS alone (C9+ FTD-) to C9+ patients with behavioral variant
FTD (bvFTD) or ALS-FTD within the cohort. We hypothesized
that C9+ with bvFTD/ALS-FTD would exhibit changes in
networks associated with cognitive-behavioral function whereas
C9+ FTD—ALS patients would exhibit changes in motor
networks, and that network measures would correlate with
clinical measures of motor or cognitive-behavioral function.

METHODS

Participants
Twenty-five carriers of theC9orf72 expansionmutation (Table 1)
were recruited from across the United States though online
advertising, organizational outreach, and physician referrals
between 2013 and 2016. All subjects gave written informed
consent in accordance with an IRB-approved protocol. Inclusion
criteria required the C9+ subjects to have >30 repeats in
the C9orf72 gene as established by repeat prime polymerase
chain reaction in a CLIA certified lab. They were not excluded
for having other comorbid conditions. All C9+ subjects
were examined by an experienced neurologist and underwent
electromyography and cognitive testing to determine their
clinical diagnosis as previously reported (10). ALS was diagnosed
using the 2015 revised El Escorial criteria (38). The International
Consensus Criteria for behavioral variant FTD (39) were used for
diagnosis of possible, probable, or definite bvFTD. The cohort
consisted of C9+ subjects classified as being pre-symptomatic

TABLE 1 | Demographic information of study groups and sub-groups.

N (males) Age (years) ALSFRS-R FBI

All C9+ 25 (14) 51.74 ± 11.95 42.8 ± 6.7 0.16 ± 0.17

ALS 9 (4) 51.85 ± 9.95 41.6 ± 3.8 0.08 ± 0.08

ALS-FTD 6 (6) 60.72 ± 10.19 41.8 ± 5.3 0.31 ± 0.08

bvFTD 3 (3) 60.59 ± 5.11 46.0 ± 2.7 0.36 ± 0.2

HC 26 (16) 52.33 ± 8.79 - -

(N = 7), or as having ALS only (N = 9), bvFTD only (N = 3), or
both ALS and bvFTD (N = 6). C9+ patients were administered
the revised ALS functional rating scale [ALSFRS-R; (40)] to
quantify motor impairment related to ALS and the frontal
behavioral inventory [FBI; (41)] to assess behavioral impairment
related to bvFTD. Twenty-six healthy controls (HC) underwent
the same imaging protocol as the C9+ patients as part of a
separate IRB-approved study. All healthy controls had normal
neurological examinations and a normal cognitive screening test.

Imaging Protocol
Participants underwent MRI scanning on a GE 3T scanner. Two
T1 FSPGR anatomical scans were collected (TI = 450ms, α =

13◦, voxel size= 1× 0.938× 0.938mm). Resting state functional
scans were collected during which subjects were instructed to stay
awake, keep their eyes open, and think random thoughts (TR =

2,000ms, TE= 30ms, flip angle= 77, voxel size= 3.75× 3.75×
3.8mm, FOV= 64× 64 cm, 40 slices, 214 volumes).

Image Processing
Anatomical MRI data were processed in FreeSurfer and each
subject’s gray matter was parcellated into 82 volumes of interest
(VOIs). These VOIs consisted of 34 cortical regions per
hemisphere based on the Desikan-Killiany atlas (42) plus 14
subcortical VOIs, excluding the cerebellum (Table 2). Resting
state functional data were preprocessed using FSL and custom
MATLAB scripts. Preprocessing steps included motion and slice
time correction, volume scrubbing based on motion outliers
(identified by FSL’s calculation of framewise displacement and the
derivative of the time-course of root mean square intensity across
voxels [DVARS; (43)], regression of motion parameters and white
matter and CSF signals, and bandpass filtering between 0.01 and
0.1Hz. Each subject’s functional image was registered to their
structural image. The anatomical parcellation and segmentation
were applied to the functional time series to extract the 82 VOIs,
and all the voxels within each VOI were averaged at every time
point to create a time series of average signal for each VOI.

Graph Theory Analysis and Statistics
A connectivity matrix was formed with each row and column
representing a node (VOI) and each cell representing an edge
with strength equal to the Pearson correlation coefficient (R)
of the row/column pair. Fisher transformation was applied to
permit multiple linear regression of age and gender effects,
followed by back transformation to R. The matrices were then
thresholded by setting all connections below a specific R to
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TABLE 2 | Volumes of interest used in the analysis and their abbreviations and color scheme as displayed in Figure 3.

Region name Abbreviation Region name Abbreviation

Frontal pole Front-pole Caudate

Superior frontal gyrus SFG Putamen

Lateral orbitofrontal cortex Lat-OFC Accumbens area Accumbens

Medial orbitofrontal cortex Med-OFC Pallidum

Rostral middle frontal gyrus Rost-MFG Temporal pole Temp-pole

Pars triangularis Pars-tri Superior temporal gyrus STG

Pars orbitalis Pars-orb Transverse temporal gyrus Transverse

Pars opercularis Pars-operc Banks of the superior temporal sulcus Banks-STS

Caudal middle frontal gyrus Caud-MFG Middle temporal gyrus MTG

Precentral gyrus Precentrals Inferior temporal gyrus ITG

Paracentral lobule Paracentral Fusiform gyrus Fusiform

Rostral anterior cingulate cortex Rost-ACC Insula

Caudal anterior cingulate cortex Caud-ACC Post-central gyrus Post-central

Posterior cingulate cortex PCC Supramarginal gyrus Supramarg

Isthmus of the cingulate cortex Isth-CC Superior parietal cortex SPC

Amygdala Inferior parietal cortex IPC

Thalamus Precuneus

Hippocampus Cuneus

Entorhinal cortex Entorhinal Lateral occipital cortex Lat-OC

Parahippocampal gyrus Parahipp Pericalcarine cortex Pericalc

Lingual gyrus Lingual

Each region had a right and left representation.

Blue, frontal lobe; green, limbic system; yellow, basal ganglia; orange, temporal lobe; red, parietal lobe; purple, occipital lobe.

zero. Thresholds from 0 to 0.7 were tested in increments of
0.1; thresholds >0.7 resulted in matrices too sparse for the
calculation of may graph metrics. Thresholds between 0 and 0.4
yielded similar statistical results in global metrics, so R ≥ 0.2
was selected as the representative threshold for reporting. Graph
theory metrics were calculated using custom MATLAB scripts
and the Brain Connectivity Toolbox [https://sites.google.com/
site/bctnet (37)].

Two group analyses were performed: (1) all C9+ vs.
HC and (2) a sub-analysis of C9+ subjects in which
symptomatic bvFTD+ patients (bvFTD and ALS-FTD, n =

9) were compared to symptomatic ALS-only patients (ALS
only, n = 9). Group differences for both analyses were
evaluated using global, nodal, and edge metrics (Table 3).
Global metrics included network density, mean connection
strength, mean node clustering coefficient, mean node path
length, and modularity score. Nodal measures included node
strength, closeness centrality, betweenness centrality, within-
module degree Z score, and participation coefficient. Hubs,
or nodes that are particularly highly connected and involved
within the network, were identified with a composite hub
score that was calculated by summing the Z scores of the five
nodal measures.

Permutation testing was used to calculate effective p-values
(44). In each permutation, subjects’ group assignments were
randomly shuffled and the difference in the metric of interest
between the two shuffled groups was calculated. The effective p-
value was defined as the fraction of total permutations in which
the shuffled groups had a larger magnitude of difference in the

TABLE 3 | Description of graph analysis metrics.

Global Metric Description

Network density Fraction of all possible connections above the

connection threshold

Mean connection strength Average connection strength of connections

above the connection threshold

Clustering Coefficient Extent of node clustering; a measure of how

often the neighbors of a node are also

neighbors of each other

Path Length Lowest number of connections required to

travel between each node pair in the network

Modularity score Ability of the network to be segregated into

discrete modules

Nodal Metric Description

Node strength Sum of the strength of connections to all other

nodes in the network

Closeness centrality Nearness to all other nodes in the network

Betweenness centrality Frequency at which the node lies on the

shortest path between two other nodes

Within-module degree Z-score Connectedness of a node within its own

module

Participation coefficient Connectedness of a node to nodes in other

modules

graph metric than the actual study groups. 1× 103 permutations
were used to ensure a sufficient number of significant figures
for reporting.
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RESULTS

Comparison of C9+ Carriers With Healthy
Controls
Global Graph Metrics—C9+ vs. HC
Analysis of global measures revealed that the C9+ carrier group
had significantly lower global network density than HC, with
fewer connections with strength greater than the correlation
threshold (Figures 1, 2). Those edges that survived thresholding
had a significantly lower mean connection strength for C9+ than
HC (Figure 2). The clustering coefficients were also significantly
different between groups (p = 0.018). However, because path
length and modularity score are sensitive to network density
(45), any significant differences are likely to be influenced by the
different network densities, so they were not further explored.

Network Hubs—C9+ Carriers vs. Healthy Controls
There was minimal reorganization of hub nodes in C9+ carriers
compared to the healthy control group. The composite hub
score showed that 75% of the nodes comprising the top 20% of
hub scores were the same for HC and C9+ carriers (Table 4).
Moreover, with the exception of one node in the top 20% in each
group, hubs were ranked within the top 30% in the other group or
were the contralateral pair to one of the top 20% nodes. The single

hub that was highly ranked in healthy controls but not C9+ was
the left lateral orbitofrontal cortex. The single hub that ranked
highly in the C9+ carrier group but not healthy controls was the
left thalamus.

Edge Analysis—C9+ vs. HC
Figure 3 displays the edges that had significantly decreased
functional connectivity in C9+ carriers compared to HC
(p < 0.001 uncorrected). There were no impaired intra-
hemispheric connections in the left hemisphere. All connections
with decreased functional connectivity were either inter-
hemispheric or intra-hemispheric within the right hemisphere.
More cortical connections were affected than subcortical
connections. The right frontal lobe had the greatest number
of reduced connections. Reduced connectivity was also seen
for connections with the basal ganglia, temporal lobe, and
parietal lobes. These edges connect regions involved in a
broad range of cognitive functions. Additionally, several edges
connecting motor-related regions were affected, including the
right precentral and paracentral lobules. Other regions having
multiple differing connections were the pars opercularis, pars
triangularis, supramarginal gyrus, inferior temporal gyrus, and
the left putamen.

FIGURE 1 | Resting state functional connectivity matrix thresholded at R ≥ 0.2. Bottom left: HC mean connectivity matrix. Top right: C9+ mean connectivity matrix.

Scale bar shows Pearson correlation coefficient.
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FIGURE 2 | Global network measures in which C9+ carriers significantly

differed from HC.

Comparison of C9+ bvFTD/ALS-FTD
Carriers With C9+ ALS Alone (bvFTD-)
Global Graph Metrics—bvFTD+ vs. ALS-only
Within the symptomatic group of C9+ carriers, there were
no significant differences in global metrics (network density,
mean connection strength, clustering coefficient, path length, and
modularity) between the nine patients with ALS alone and the
nine patients with bvFTD or ALS-FTD.

Network Hubs—bvFTD+ vs. ALS-only
The ALS-only group had similar hubs to healthy controls, with
the addition of the precentral gyri and right caudate. In contrast,
the bvFTD+ group had several nodes with hub scores that
were ranked much lower than in the ALS-only group and
healthy controls. These hubs included bilateral thalamus, right
hippocampus, and right lateral occipital cortex. Hubs are listed
in Table 5.

The correlations between the hub score and the FBI and
ALSFRS-R scores were computed for each of the unique hubs
within each group. Three of the unique hubs in bvFTD+
patients correlated with FBI scores across all symptomatic C9+,

TABLE 4 | Group hubs, defined as the top 20% of nodes based on a composite

hub score (Z) for Healthy Controls and C9+ carrier groups.

HC C9+

VOI Zcomposite VOI Zcomposite

L Fusiform gyrus 6.740 R Middle temporal

gyrus

8.226

L Middle temporal

gyrus

5.090 R Fusiform gyrus 6.753

R Inferior temporal

gyrus

4.952 R Lingual gyrus 6.692

R Lateral

orbitofrontal cortex

4.701 R Superior temporal

gyrus

6.135

R Middle temporal

gyrus

4.303 L Posterior cingulate

cortex

5.693

R Fusiform gyrus 4.180 L Putamen 5.541

L Putamen 4.068 R Superior frontal

gyrus

5.294

L Lateral orbitofrontal

cortex

4.007 L Lingual gyrus 4.707

L Inferior parietal

cortex

3.904 L Superior frontal gyrus 4.628

R Superior frontal

gyrus

3.722 L Inferior parietal

cortex

4.409

L Lingual gyrus 3.630 L Superior temporal

gyrus

4.211

R Posterior cingulate

cortex

3.608 L Precentral gyrus 4.111

R Lingual gyrus 3.514 L Fusiform gyrus 3.235

L Superior temporal

gyrus

3.489 R Lateral

orbitofrontal cortex

3.112

R Superior temporal

gyrus

3.345 L Inferior temporal

gyrus

3.110

L Posterior cingulate

cortex

3.042 L Thalamus 3.046

L, left, R, right; shared hubs shown in bold; hubs where the same contralateral region

is a hub shown in italics; hubs that were not highly ranked in the comparison group are

underlined. Zcomposite is the composite score of each node’s Z scores in the five hub

measures described above.

indicating that behavioral impairment was associated with higher
node strength (Figure 4). These hub nodes were the left thalamus
(R= 0.443, p= 0.066), right thalamus (R= 0.471, p= 0.049), and
right hippocampus (R= 0.525, p= 0.025).

Edge Analysis—C9+ bvFTD+ vs. ALS-only
Several edges had reduced connectivity strength in the ALS-
only group compared to the bvFTD+ group. All statistically
significant differences consisted of decreases in connection
strength in the ALS-only group compared with the bvFTD+
group. The frontal and temporal regions exhibited the greatest
number of decreased connections (Figure 5).

DISCUSSION

In this study, we used graph theory metrics to explore
alterations in network organization in C9orf72mutation carriers
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FIGURE 3 | Edges with reduced connectivity strength in C9+ carriers compared with HC. Significance was determined using permutation testing at p < 0.001

uncorrected. See Table 2 for region name abbreviations.

and network correlations with motor and cognitive-behavioral
functional measures. Graph theory allows exploration of
network organization and functionality as a whole, rather than
correlations between activity in discrete regions. We found that
global network measures of connectivity were reduced in a
cohort of C9+ carriers with heterogenous symptoms compared
to healthy controls. Because C9orf72 expansion mutations cause
motor and cognitive-behavioral symptoms across the ALS-FTD
spectrum, we had anticipated that brain regions known to
be affected in sporadic forms of both diseases would exhibit
connectivity changes. This was mostly confirmed, with reduced
connectivity specifically found in connections involving the
frontal and temporal regions and the right motor cortex, regions
known to be involved in cognitive and motor function. These
findings are consistent with many prior studies in sporadic
and C9+ FTD (13, 15, 22, 33, 35, 46–51). However, as
previously noted, the literature on resting state connectivity in

sporadic ALS has many discordant results. Our findings are
consistent with studies showing decreased connectivity in ALS
(29, 30, 32, 35, 52). The nodes with the greatest numbers of
impaired connections in the C9+ population represented regions
that are involved in networks previously described as being
affected in ALS and bvFTD. These regions–the right precentral,
paracentral, supramarginal, and inferior temporal gyri, the pars
opercularis, pars triangularis, and the left putamen–are parts
of the sensorimotor, salience, and central executive networks
(53, 54).

Interestingly, while overall connectivity was decreased in the
C9+ group, there appeared to be no substantial reorganization of
network hubs. This indicates a relatively diffuse global decline in
connectivity. Further underscoring this point, the edge analysis
found no regions with increased connectivity in the C9+
network compared to HCs. This relative preservation of network
organization may be interpreted as supporting the proposal
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TABLE 5 | Group hubs, defined as top 20% of nodes based on composite hub

score for symptomatic patients with and without bvFTD.

C9+ bvFTD+ (n = 9) C9+ ALS-only (n = 9)

VOI Zcomposite VOI Zcomposite

L Posterior cingulate

cortex

9.512 R Superior temporal

gyrus

8.346

L Superior temporal

gyrus

7.121 R Lingual gyrus 7.159

R Superior frontal

gyrus

6.652 R Middle temporal

gyrus

6.744

L Superior frontal

gyrus

6.437 L Middle temporal

gyrus

6.483

L Putamen 6.391 L Superior temporal

gyrus

5.412

R Superior temporal

gyrus

5.528 R Caudate 5.135

R Fusiform gyrus 5.102 R Banks STS 4.803

R Thalamus 5.022 R Inferior parietal

cortex

4.639

L Thalamus 4.732 R Superior frontal

gyrus

4.535

R Lingual gyrus 4.629 R Precentral gyrus 4.425

R Lateral occipital

cortex

4.124 L Lingual gyrus 4.330

L Pericalcarine cortex 4.069 R Caudal anterior

cingulate cortex

3.925

L Inferior temporal

gyrus

3.797 L Superior frontal

gyrus

3.862

R Middle temporal

gyrus

3.732 R Isthmus of the

cingulate cortex

3.810

R Inferior parietal

cortex

3.728 R Inferior temporal

gyrus

3.734

R Hippocampus 3.626 L Precentral gyrus 3.596

L, left, R, right; shared hubs shown in bold; hubs where the same contralateral region

is a hub shown in italics; hubs that were not highly ranked in the comparison group are

underlined. Zcomposite is the composite score of each node’s Z scores in the five hub

measures described above.

that networks can compensate for low grade degeneration for a
substantial period in order to maintain clinical function (55, 56).
An alternative possibility is that pooling C9+ ALS, ALS-FTD,
bvFTD, and pre-symptomatic carriers into one analysis group
masked phenotype-specific network alterations.

To explore this possibility, we compared subgroups of C9+
symptomatic patients with and without FTD. This analysis found
no significant differences in global network measures between
subgroups, indicating that the global decrease in connectivity
observed in the full C9+ cohort was likely not solely driven by a
large change in one of the phenotypic subgroups. However, nodal
graph theory metrics revealed some organizational differences
between subgroups. Both of the symptomatic phenotypic
subgroups had several hubs that that were unique in comparison
with the healthy controls and from the other subgroup. In
the ALS-only group (i.e., patients without FTD), the bilateral
precentral gyri emerged as group-specific hubs. This implies that
the ALS-only subgroup either had small increases inmotor cortex
connectivity or that the motor cortex connectivity remained

FIGURE 4 | Correlation across all symptomatic C9+ carriers of Frontal

Behavioral Inventory Scores with node strength of hubs that were more highly

ranked in the bvFTD+ group than ALS-only group. (A) Left thalamus, R =

0.443, p = 0.066 (B) Right thalamus, R = 0.471, p = 0.049 (C) Right

hippocampus, R = 0.525, p = 0.025.

relatively stable in the face of declining connectivity of the more
active nodes. This phenomenon is consistent with resting state
studies of patients with sporadic ALS that demonstrate localized
increases in connectivity of motor regions (15, 25, 28, 57),
and could represent a compensatory mechanism or the relative
resilience of the motor network.

The bvFTD+ group had a greater number of subcortical
hubs. The bilateral thalami and the right hippocampus were
hub nodes in the bvFTD+ group and were not highly ranked
in the ALS-only group or in healthy controls. The greater
dependence on subcortical nodes could arise as a consequence of
structural changes, including cortical atrophy (10, 15, 58, 59). The
emergence of the thalamus as an important hub in C9+ bvFTD
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FIGURE 5 | Edges with reduced connectivity strength in ALS-only group compared with bvFTD+/ALS-FTD. Significance was determined using permutation testing at

p < 0.001 uncorrected. See Table 2 for region name abbreviations.

was somewhat surprising given that thalamic atrophy occurs in
bvFTD (13, 16, 60) and in C9+ patients (8, 10, 15, 21). It also
seems to conflict with resting state studies of bvFTD that report
decreases in thalamic connectivity (47, 61). This may reflect
differences between seed-based analysis methods (which may
neglect global neuromodulatory changes) vs. the whole-brain
approach used here. On balance, these modulated connections
could result in the thalamus having a more prominent role as a
network hub. The emergence of the hippocampus as a hub may
account for the preservation of memory in the first few years of
bvFTD symptoms (39, 60), although there are a few reports of
hippocampal atrophy in bvFTD (48, 62).

To investigate the relationship between disease severity and
network hub changes, we evaluated the correlation between
hub scores of hubs unique to each subgroup and the FBI
and ALSFRS-R scores of symptomatic C9+ carriers. The hub
scores of the bilateral thalami and right hippocampus correlated

with behavioral impairment as measured by the FBI. There
was also significantly higher connectivity between the right
hippocampus and the right and left middle frontal gyrus in
the analysis of individual connections in the bvFTD+ group.
Therefore, as the thalamus and hippocampus became more hub-
like, patients exhibited more severe behavioral impairment. In
contrast, there was no association between the hub scores and
the ALSFRS-R scores for the unique hubs in the ALS-only
group. The connectivity of these motor regions appears to change
independently from this measure of motor symptom severity.

There are limitations in the present study that warrant
discussion. First, because no subjects with sporadic disease were
considered for this study, it is impossible to determine if any
effects described here are unique to familial (and specifically
C9-linked) disease. Second, as a result of our relatively small
sample size, there is a large amount of heterogeneity in the
study population and functional connectivity data. Subjects were
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grouped according to meeting diagnostic criteria for ALS and/or
bvFTD; however, minor symptoms that were insufficient to meet
criteria for a clinical diagnosis could nevertheless affect neural
activity. Future studies with larger subgroups are warranted.
Third, due to the wide variation in disease severity and duration
amongst subjects, our cross-sectional design may not capture the
full extent of functional connectivity changes in C9+ disease; a
longitudinal study would be better suited to explore the evolution
of functional connectivity changes across the ALS-FTD spectrum
over time.

CONCLUSION

Carriers of the C9orf72 repeat expansion mutation have
decreased functional connectivity at rest compared
with healthy controls. Global network organization is
generally preserved, although local network alterations
emerge in C9+ carriers with ALS vs. FTD. Subcortical
regions, including the bilateral thalami and the right
hippocampus, emerge as hubs associated with the severity of
behavioral impairment.
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