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Introduction
Cellular senescence was formally described more than 40 years 
ago as a process that limited the proliferation (growth) of nor-
mal human cells in culture (Hayflick, 1965). This landmark 
paper contained two prescient statements. The first statement 
was “unlimited cellular division or . . . escape from senescent-
like changes . . . can only be achieved by [somatic] cells which 
have . . . assumed properties of cancer cells.” The second was 
“the [cessation of cell growth in culture] may be related to se-
nescence [aging] in vivo.” Thus, nearly half a century ago, the 
process now known as cellular senescence was linked to both 
tumor suppression and aging.

In the ensuing decades, we learned much about what causes 
cellular senescence and the nature of the senescent phenotype. 
Importantly, we are beginning to understand its physiological 
relevance. Recent data validate the early idea that cellular se-
nescence is important for tumor suppression. The data now also 
strongly suggest that cellular senescence contributes to aging, 
and, further, that senescence-associated phenotypes can con-
tribute to both tumor progression and normal tissue repair. They 

also offer insights into why, beyond the simple growth arrest, 
the complex senescent phenotypes may have evolved.

Cellular senescence: a primer
Cellular senescence refers to the essentially irreversible growth 
arrest that occurs when cells that can divide encounter onco-
genic stress. With the possible exception of embryonic stem 
cells (Miura et al., 2004), most division-competent cells, in-
cluding some tumor cells, can undergo senescence when appro-
priately stimulated (Shay and Roninson, 2004; Campisi and 
d’Adda di Fagagna, 2007).

What causes cellular senescence? Senescence-
inducing stimuli are myriad. We now know that the limited 
growth of human cells in culture is due in part to telomere ero-
sion, the gradual loss of DNA at the ends of chromosomes (telo-
meres). Telomeric DNA is lost with each S phase because DNA 
polymerases are unidirectional and cannot prime a new DNA 
strand, resulting in loss of DNA near the end of a chromosome; 
additionally, most cells do not express telomerase, the special-
ized enzyme that can restore telomeric DNA sequences de novo 
(Harley et al., 1990; Bodnar et al., 1998). We also know that 
eroded telomeres generate a persistent DNA damage response 
(DDR), which initiates and maintains the senescence growth  
arrest (d’Adda di Fagagna et al., 2003; Takai et al., 2003; Herbig 
et al., 2004; Rodier et al., 2009, 2011). In fact, many senescent 
cells harbor genomic damage at nontelomeric sites, which also 
generate the persistent DDR signaling needed for the senes-
cence growth arrest (Nakamura et al., 2008). DNA double strand 
breaks are especially potent senescence inducers (DiLeonardo  
et al., 1994). In addition, compounds such as histone deacetylase 
inhibitors, which relax chromatin without physically damaging 
DNA, activate the DDR proteins ataxia telangiectasia mutated 
(ATM) and the p53 tumor suppressor (Bakkenist and Kastan, 
2003), and induce a senescence response (Ogryzko et al., 1996; 
Munro et al., 2004). Finally, many cells senesce when they ex-
perience strong mitogenic signals, such as those delivered by 
certain oncogenes or highly expressed pro-proliferative genes 
(Serrano et al., 1997; Lin et al., 1998; Zhu et al., 1998; Dimri et al., 
2000). Notably, these mitogenic signals can create DNA damage 
and a persistent DDR due to misfired replication origins and Correspondence to Judith Campisi: jcampisi@buckinstitute.org or jcampisi@lbl.gov
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Cellular senescence is an important mechanism for pre-
venting the proliferation of potential cancer cells. Recently, 
however, it has become apparent that this process entails 
more than a simple cessation of cell growth. In addition 
to suppressing tumorigenesis, cellular senescence might 
also promote tissue repair and fuel inflammation associ-
ated with aging and cancer progression. Thus, cellular 
senescence might participate in four complex biological 
processes (tumor suppression, tumor promotion, aging, 
and tissue repair), some of which have apparently op-
posing effects. The challenge now is to understand the 
senescence response well enough to harness its benefits 
while suppressing its drawbacks.
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(b) Senescent cells increase in size, sometimes enlarging 
more than twofold relative to the size of nonsenescent counter-
parts (Hayflick, 1965).

(c) Senescent cells express a senescence-associated  
-galactosidase (SA-Bgal; Dimri et al., 1995), which partly 
reflects the increase in lysosomal mass (Lee et al., 2006).

(d) Most senescent cells express p16INK4a, which is 
not commonly expressed by quiescent or terminally differ-
entiated cells (Alcorta et al., 1996; Hara et al., 1996; Serrano 
et al., 1997; Brenner et al., 1998; Stein et al., 1999). In some 
cells, p16INK4a, by activating the pRB tumor suppressor, 
causes formation of senescence-associated heterochromatin 
foci (SAHF), which silence critical pro-proliferative genes 
(Narita et al., 2003). p16INK4a, a tumor suppressor, is in-
duced by culture stress and as a late response to telomeric 
or intrachromosomal DNA damage (Brenner et al., 1998;  
Robles and Adami, 1998; Ramirez et al., 2001; te Poele et al., 
2002; Jacobs and de Lange, 2004; Le et al., 2010). Moreover, 
p16INK4a expression increases with age in mice and humans 
(Zindy et al., 1997; Nielsen et al., 1999; Krishnamurthy  
et al., 2004; Ressler et al., 2006; Liu et al., 2009), and its ac-
tivity has been functionally linked to the reduction in progeni-
tor cell number that occurs in multiple tissues during aging 
(Janzen et al., 2006; Krishnamurthy et al., 2006; Molofsky 
et al., 2006).

(e) Cells that senesce with persistent DDR signaling harbor 
persistent nuclear foci, termed DNA segments with chromatin 
alterations reinforcing senescence (DNA-SCARS). These foci 
contain activated DDR proteins, including phospho-ATM and 
phosphorylated ATM/ataxia telangiectasia and Rad3 related 
(ATR) substrates (d’Adda di Fagagna et al., 2003; Herbig et al., 
2004; Rodier et al., 2009), and are distinguishable from tran-
sient damage foci (Rodier et al., 2011). DNA-SCARS include 
dysfunctional telomeres or telomere dysfunction–induced foci 
(TIF; d’Adda di Fagagna et al., 2003; Takai et al., 2003; Herbig 
et al., 2004; Kim et al., 2004).

replication fork collapse (Bartkova et al., 2006; Di Micco et al., 
2006; Mallette et al., 2007). Thus, many senescence-inducing 
stimuli cause epigenomic disruption or genomic damage.

Senescence can also occur, however, without detect-
able DDR signaling. “Culture stress,” the natural and in vivo 
equivalent of which are unknown, causes a senescence ar-
rest without significant telomere erosion (Ramirez et al., 
2001). These stresses could include inappropriate substrata 
(e.g., tissue culture plastic), serum (most cells experience 
plasma, not serum, in vivo), and oxidative stress (e.g., cul-
ture in atmospheric O2, which is hyperphysiological; Fusenig 
and Boukamp, 1998; Yaswen and Stampfer, 2002; Parrinello 
et al., 2003). Cells also senesce without a DDR upon loss 
of the Pten tumor suppressor, a phosphatase that counteracts 
pro-proliferative/pro-survival kinases (Alimonti et al., 2010). 
Additionally, ectopic expression of the cyclin-dependent ki-
nase inhibitors (CDKis) that normally enforce the senescence 
growth arrest, notably p21WAF1 and p16INK4a, cause se-
nescence without an obvious DDR (McConnell et al., 1998; 
Rodier et al., 2009).

What defines a senescent cell? Senescent cells are 
not quiescent or terminally differentiated cells, although the 
distinction is not always straightforward. No marker or hall-
mark of senescence identified thus far is entirely specific to the 
senescent state. Further, not all senescent cells express all pos-
sible senescence markers. Nonetheless, senescent cells display 
several phenotypes, which, in aggregate, define the senescent 
state (Fig. 1). Salient features of senescent cells are:

(a) The senescence growth arrest is essentially perma-
nent and cannot be reversed by known physiological stimuli. 
However, some senescent cells that do not express the CDKi 
p16INK4a can resume growth after genetic interventions that 
inactivate the p53 tumor suppressor (Beauséjour et al., 2003). 
So far, there is no evidence that spontaneous p53 inactiva-
tion occurs in senescent cells (whether in culture or in vivo),  
although such an event is not impossible.

Figure 1.  Hallmarks of senescent cells. Senescent cells differ from other nondividing (quiescent, terminally differentiated) cells in several ways, although 
no single feature of the senescent phenotype is exclusively specific. Hallmarks of senescent cells include an essentially irreversible growth arrest; expression 
of SA-Bgal and p16INK4a; robust secretion of numerous growth factors, cytokines, proteases, and other proteins (SASP); and nuclear foci containing DDR 
proteins (DNA-SCARS/TIF) or heterochromatin (SAHF). The pink circles in the nonsenescent cell (left) and senescent cell (right) represent the nucleus.
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from these lesions (Bartkova et al., 2005; Michaloglou et al., 
2005). Likewise, in mouse models of oncogenic Ras expression 
or Pten deletion, senescent cells were abundant in premalignant 
lesions, but scarce in the cancers that eventually developed 
(Braig et al., 2005; Chen et al., 2005; Collado et al., 2005). Fur-
ther, dismantling the senescence response by inactivating p53 
caused a striking acceleration in the development of malignant 
tumors (Chen et al., 2005).

In addition, some tumor cells retain the ability to senesce 
(Shay and Roninson, 2004), and do so in vivo in response to 
chemotherapy (Schmitt et al., 2002; Coppé et al., 2010) or, in 
some tissues, after reactivation of p53 (Ventura et al., 2007; Xue 
et al., 2007). In these cases, the senescence response is associ-
ated with tumor regression. Of note, the regressing tumor elicits 
an inflammatory response that stimulates the innate immune 
system, which eliminates the senescent cells. As we discuss in 
subsequent sections, the generation of local inflammation may 
explain other biological activities of senescent cells.

Although it is clear that cellular senescence arrests incipi-
ent tumors at a premalignant stage, it is not clear how tumors 
eventually, albeit infrequently, emerge from these lesions. Do 
they arise from senescent cells in which mutations, epigenetic 
changes, or signals from the tissue reverse the senescence growth 
arrest? Or do they arise from nonsenescent cells in the premalig-
nant lesion that are dormant or temporarily unable to proliferate 
and eventually bypass apoptosis or senescence? Whatever the 
case, the examples above, and a growing list of similar stud-
ies (Collado and Serrano, 2010), argue that cellular senescence 
restrains cancer by imposing a cell-autonomous block to the 
proliferation of oncogenically damaged/stressed cells (Fig. 2). 
It was surprising, then, to learn that senescent cells also can pro-
mote cancer progression. As discussed in the next section, this 
activity derives largely from cell nonautonomous mechanisms.

Cellular senescence and tumor promotion
At first glance, the idea that cellular senescence, an established 
anticancer mechanism, can promote cancer seems paradoxical. 

(f) Senescent cells with persistent DDR signaling se-
crete growth factors, proteases, cytokines, and other factors 
that have potent autocrine and paracrine activities (Acosta  
et al., 2008; Coppé et al., 2008, 2010; Kuilman et al., 2008). 
As we discuss later, this senescence-associated secretory pheno
type (SASP) helps explain some of the biological activities of 
senescent cells.

Cellular senescence and tumor suppression
It is now clear that cellular senescence is a crucial anticancer 
mechanism that prevents the growth of cells at risk for neoplas-
tic transformation.

The stimuli that elicit a senescence response all have the 
potential to initiate or promote carcinogenesis. Moreover, to 
form a lethal tumor, cancer cells must acquire a greatly ex-
panded growth potential and ability to proliferate while express-
ing activated oncogenes (Hanahan and Weinberg, 2000), traits 
that are suppressed by the senescence program. Further, cellular 
senescence depends critically on two powerful tumor suppres-
sor pathways: the p53 and pRB/p16INK4a pathways (Hara et al., 
1991; Shay et al., 1991; Bond et al., 1994; Lin et al., 1998; 
Schmitt et al., 2002; Beauséjour et al., 2003; Collins and  
Sedivy, 2003; Oren, 2003; Herbig et al., 2004; Jacobs and  
de Lange, 2004; Ohtani et al., 2004; Chen et al., 2005; Campisi 
and d’Adda di Fagagna, 2007; Rodier et al., 2007). Both path-
ways integrate multiple aspects of cellular physiology to deter-
mine and orchestrate cell fate. In humans and mice, most, if not 
all, cancers harbor mutations in one or both these pathways. 
Moreover, defects in either pathway compromise cellular abil-
ity to undergo senescence, and greatly increase organismal sus-
ceptibility to cancer.

Studies of human tissues and cancer-prone mice argue 
strongly that cellular senescence suppresses cancer in vivo. Pre-
malignant human nevi and colon adenomas contained cells that 
express senescence markers, including SA-Bgal and DDR sig-
naling; however, senescent cells were markedly diminished in 
the malignant melanomas and adenocarcinomas that develop 

Figure 2.  Biological activities of cellular 
senescence. Senescent cells arrest growth 
owing to cell autonomous mechanisms, 
imposed by the p53 and p16INK4a/
pRB tumor suppressor pathways, and cell  
nonautonomous mechanisms, imposed by 
some of the proteins that comprise the SASP. 
The growth arrest is the main feature by 
which cellular senescence suppresses malig-
nant tumorigenesis but can contribute to the 
depletion of proliferative (stem/progenitor) 
cell pools. Additionally, components of the 
SASP can promote tumor progression, facili-
tate wound healing, and, possibly, contrib-
ute to aging.
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tumors in vivo. However, senescent, but not nonsenescent, fibro-
blasts stimulate premalignant epithelial cells, which do not ordinar-
ily form tumors, to form malignant cancers when the two cell types 
are co-injected into mice (Krtolica et al., 2001). Further, co- 
injection of senescent, but not nonsenescent, cells with fully 
malignant cancer cells markedly accelerates the rate of tumor 
formation in mice (Krtolica et al., 2001; Liu and Hornsby, 2007; 
Bhatia et al., 2008; Bartholomew et al., 2009; Coppé et al., 
2010). Thus, at least in mouse xenografts, senescent cells have 
been shown to promote malignant progression of precancerous, 
as well as established cancer cells, in vivo (Fig. 2). In the future, 
a more critical test of the idea that senescent cells can promote 
the development of cancer, especially the progression of age- 
related cancers, will require strategies to eliminate senescent 
cells or effects of the SASP from cancer-prone tissues in vivo.

Although paracrine activities of many SASP proteins can 
promote phenotypes associated with malignancy, the SASP is 
complex and thus not all components are cancer promoting. For 
example, senescent keratinocytes secrete the anti-angiogenic 
factor maspin (Nickoloff et al., 2004). Further, senescent human 
melanocytes secrete IGFBP7, which induces senescence in a 
fraction of nonsenescent melanocytes and apoptosis in certain 
melanoma cell lines (Wajapeyee et al., 2008), at least in some 
cases (Decarlo et al., 2010). In addition, each SASP factor may 
have effects that depend on the cell and tissue context. For ex-
ample, the IL-6, IL-8, and plasminogen activator inhibitor-1 
(PAI-1) that are secreted by senescent fibroblasts can promote 
tumor suppression by reinforcing the senescence growth arrest 
induced by activated oncogenes or oxidative stress (Fig. 2; 
Kortlever et al., 2006; Acosta et al., 2008; Kuilman et al., 2008). 
However, IL-6 and IL-8 have also been shown to promote ma-
lignant tumorigenesis in cooperation with certain activated on-
cogenes (Sparmann and Bar-Sagi, 2004; Ancrile et al., 2007).

Cellular senescence and aging
Cancer is an age-related disease, but differs from most other 
age-related pathologies in at least one fundamental aspect. To 
form a lethal tumor, cancer cells must acquire new, albeit aber-
rant, phenotypes (Hanahan and Weinberg, 2000). In contrast, for 
most age-related diseases, normal cellular/tissue functions fail. 
Thus, most age-related pathologies are degenerative, whereas 
cancer can hardly be considered a degenerative disease. Does 
cellular senescence, then, contribute to aging and age-related 
diseases other than cancer? There is mounting, although not yet 
definitive, evidence that the answer to this question is yes.

Altered p53 function and aging. Among the more 
compelling evidence that senescent cells can drive degenera-
tive aging pathologies are the phenotypes of transgenic mice 
with hyperactive p53. Several years ago, two landmark papers 
described mouse models in which constitutive expression of an 
artificially (Tyner et al., 2002) or naturally (Maier et al., 2004) 
truncated p53 protein resulted in chronically elevated p53 activ-
ity. These mice were exceptionally cancer-free, which was not 
surprising, as p53 is a critical tumor suppressor. What was sur-
prising was their shortened life span and premature aging. Like 
all progeroid models, these mice did not completely phenocopy 
normal aging. Nonetheless, between the two models, the mice 

However, the evolutionary theory of antagonistic pleiotropy stip-
ulates that a biological process can be both beneficial and del-
eterious, depending on the age of the organism (Williams, 1957; 
Rauser et al., 2006). It is important to remember that cancer is 
primarily an age-related disease (Campisi, 2003; Balducci and 
Ershler, 2005). Age is the largest single risk factor for develop-
ing a malignant tumor, and cancer incidence rises approximately 
exponentially after about age 50 (in humans). In these respects, 
cancer is very similar to the degenerative diseases of aging.

The rationale for antagonistic pleiotropy rests on the fact 
that most organisms evolve in environments that are replete 
with fatal extrinsic hazards (predation, infection, starvation, 
etc.). Under these conditions, aged individuals are rare, and so 
selection against processes that promote late-life disability or 
disease is weak. That is, age-associated phenotypes, including 
age-related diseases, have escaped the force of natural selec-
tion. Thus, a biological process that was selected to promote  
fitness in young organisms (e.g., suppressing cancer) can be 
detrimental in aged organisms (promoting late-life disease, in-
cluding cancer).

Why might cellular senescence be antagonisti-

cally pleiotropic? More specifically, how might the senes-
cence response promote late-life cancer? There are as yet no 
definitive answers to these questions. However, recent evidence 
supports the idea that senescent cells can at least in principle 
fuel cancer, and provides a potential mechanism by which this 
might occur.

First, senescent cells increase with age in a variety of 
mammalian tissues (Dimri et al., 1995; Paradis et al., 2001; 
Melk et al., 2003; Erusalimsky and Kurz, 2005; Jeyapalan et al., 
2007; Wang et al., 2009). It is not known whether this rise is 
caused by increased generation, decreased elimination, or both. 
Whatever the genesis, the age-related increase in senescent cells 
occurs in mitotically competent tissues, which, of course, are 
those that give rise to cancer.

Second, as noted in the section on what defines a senes-
cent cell, senescent cells develop a secretory phenotype (SASP) 
that can affect the behavior of neighboring cells. Strikingly, 
many SASP factors are known to stimulate phenotypes associ-
ated with aggressive cancer cells. For example, senescent fibro-
blasts secrete amphiregulin and growth-related oncogene (GRO) 
, which, in cell culture models, stimulate the proliferation of 
premalignant epithelial cells (Bavik et al., 2006; Coppé et al., 
2010). Senescent cells also secrete high levels of interleukin 6 
(IL-6) and IL-8, which can stimulate premalignant and weakly 
malignant epithelial cells to invade a basement membrane 
(Coppé et al., 2008). Further, senescent fibroblasts and meso-
thelial cells secrete VEGF (Coppé et al., 2006; Ksiazek et al., 
2008), which stimulates endothelial cell migration and invasion 
(a critical step in tumor-initiated angiogenesis), and senescent 
fibroblasts and keratinocytes secrete matrix metalloproteinases 
(MMPs; Millis et al., 1992; Kang et al., 2003; Coppé et al., 
2010), which facilitate tumor cell invasiveness. So, do senes-
cent cells stimulate or inhibit tumorigenesis in vivo?

Senescent cells can stimulate tumorigenesis  

in vivo. It is not yet known whether naturally occurring  
senescent cells stimulate the progression of naturally occurring 
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circulating hormone Klotho age prematurely (Kuro-o et al., 
1997). The primary cause of the progeroid phenotypes of Klotho-
deficient mice is not known, but Klotho mediates calcium- 
regulated parathyroid hormone secretion (Imura et al., 2007), 
stimulates FGF signaling in the kidney (Urakawa et al., 2006), 
and dampens WNT signaling (Liu et al., 2007); the unopposed 
WNT signaling in Klotho-deficient mice is associated with the 
premature senescence of progenitor cells in several tissues.

A short retreat from the senescence-centric 

view of aging. Although these mouse models and other find-
ings indicate a strong association between aging phenotypes and 
pathologies and cellular senescence, other processes undoubt-
edly also contribute to aging and age-related disease. One such 
process is cell death. For example, in one of the mouse mod-
els of constitutive p53 activity, there was also excessive p53- 
dependent apoptosis, which was also proposed to contribute to 
the progeroid phenotypes shown by these mice (Tyner et al., 
2002). In addition, some cells in aging organisms simply lose 
functionality, which certainly also contributes aging phenotypes. 
Neurons, for example, lose the ability to form synapses, despite 
cell bodies remaining viable, which is an important component 
of many neurodegenerative pathologies (Esiri, 2007). Likewise, 
cardiomyocytes lose synchronicity of gene expression, which 
almost certainly affects heart function (Bahar et al., 2006).

How might senescent cells promote age-related 

pathologies? There are three possible scenarios by which senes
cent cells might drive aging.

First, as suggested by at least one of the defects shown by 
Klotho-deficient mice (Liu et al., 2007), cellular senescence can 
deplete tissues of stem or progenitor cells. This depletion will 
compromise tissue repair, regeneration, and normal turnover, 
leading to functional decrements (Drummond-Barbosa, 2008).

Second, the factors that senescent cells secrete affect vital 
processes–cell growth and migration, tissue architecture, blood 
vessel formation, and differentiation–and so are tightly regu-
lated. The inappropriate presence of these factors can disrupt tis-
sue structure and function. For example, the MMP3 secreted by 
senescent fibroblasts inhibits the morphological and functional 
differentiation of breast epithelial cells (Parrinello et al., 2005) 
and can promote tumor growth (Liu and Hornsby, 2007).

Third, the SASP includes several potent inflammatory 
cytokines (Freund et al., 2010). Low-level, chronic, “sterile” 
inflammation is a hallmark of aging that initiates or promotes 
most, if not all, major age-related diseases (Franceschi et al., 
2007; Chung et al., 2009). Chronic inflammation can destroy 
cells and tissues because some immune cells produce strong 
oxidants. Also, immune cells secrete factors that further alter 
and remodel the tissue environment, which can cause cell/tissue 
dysfunction and impair stem cell niches. Inflammatory oxidative 
damage can also initiate carcinogenesis, and the inflammatory 
milieu can promote cancer by suppressing immune surveillance 
and/or stimulating malignant phenotypes (Allavena et al., 2008; 
Grivennikov et al., 2010). Thus, senescent cells might fuel can-
cer and other age-related pathologies by the same mechanism 
(the SASP; Fig. 2).

Cause or effect? Evidence that senescent cells  
drive aging remains circumstantial. The classical approach to  

showed premature degenerative changes, including loss of fer-
tility, osteoporosis, sarcopenia, dermal thinning, loss of subcu-
taneous fat, reduced hair growth, and retarded wound healing. 
Notably, cells from these mice underwent rapid senescence in 
culture (Maier et al., 2004). Moreover, tissues from these mice 
rapidly accumulated senescent cells, and, in lymphoid tissue, 
the p53 response shifted from primarily apoptotic to primarily 
senescent in vivo (Hinkal et al., 2009). Thus, there was a strong 
correlation between excessive cellular senescence and prema-
ture aging phenotypes.

It should be noted that another mouse model of elevated 
p53 activity showed unusual cancer resistance but normal lon-
gevity, with no signs of premature aging (García-Cao et al., 
2002). In this model, extra copies of the wild-type p53 locus 
were introduced into the mouse genome. So, rather than being 
constitutively expressed, p53 was regulated normally, reaching 
higher levels only upon activation. This heightened p53 activa-
tion synergized with other transgenes to extend mean life span 
(Matheu et al., 2004, 2007; Tomás-Loba et al., 2008), thus p53 
can be pro-aging or pro-longevity, depending on the physiologi-
cal context (de Keizer et al., 2010).

Other gene functions and aging. Other mouse 
models also suggest that cellular senescence can drive age- 
related pathologies other than cancer.

One example is conditional ablation of a single allele  
encoding the p53-related protein p63, which caused extensive 
cellular senescence and multiple age-related pathologies (Keyes  
et al., 2005). Another example is mice that express a hypo-
morphic form of the mitotic checkpoint protein BubR1. These 
mice experience genotoxic stress, which induced widespread 
cellular senescence and several age-related degenerative pathol-
ogies; further, genetic manipulations that attenuated (p16INK4a 
deficiency) or exacerbated (deficiency in p19ARF) the senes-
cence response also attenuated or exacerbated the pathology 
(Baker et al., 2008). Likewise, a mouse model of Hutchinson-
Gilford progeria syndrome (HGPS), a childhood premature aging 
syndrome caused by aberrant lamin A processing, developed 
phenotypes that overlap with those of HGPS children and do 
not include cancer; cells from these mice showed chronic DDR 
signaling, chronic p53 activation, and cellular senescence (Varela 
et al., 2005). Further, administration of drugs such as statins 
and aminobisphosphonates reduced DDR signaling in the cells, 
and also alleviated some of the progeroid symptoms in the mice 
(Varela et al., 2008). In all these (and other) models of both 
accelerated and normal aging, it is important to note that the 
crucial roles for the p53 and/or p16INK4a/pRB pathways are 
not singular. There is mounting evidence that these pathways 
interact and modulate each other (Zhang et al., 2006; Leong  
et al., 2009; Su et al., 2009; Yamakoshi et al., 2009).

Finally, mouse models without obvious activated DDR 
signaling also suggest that senescent cells can drive aging pheno
types. One example is mice that lack CHIP (carboxy termi-
nus of Hsp70-interacting protein), a chaperone/ubiquitin ligase 
that helps eliminate damaged proteins. CHIP-deficient animals 
rapidly accumulate senescent cells, and rapidly develop age- 
related phenotypes, including thin skin and loss of adiposity 
and bone density (Min et al., 2008). Likewise, mice that lack the 
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cell migration, differentiation, and survival. Surprisingly, heal-
ing wounds accumulated senescent fibroblasts and myofibro-
blasts; this did not occur in mice in which wild-type CCN1 
alleles were exchanged for mutant alleles encoding CCN1 pro-
teins that cannot bind fibroblasts (Jun and Lau, 2010). Wounds 
in the mutant mice were excessively fibrotic, but the fibrosis 
was reversed upon topical application of wild-type CCN1 pro-
tein; topical CCN1 induced cellular senescence and the ex-
pected expression of MMPs, which presumably helped resolve 
the fibrosis in the wound.

Together, these studies suggest that cellular senescence, 
although undoubtedly an important tumor suppressive response, 
is not simply a failsafe mechanism that is redundant to apopto-
sis. Rather, the senescence response may also be necessary for 
resolving normal tissue damage (Fig. 2). This new senescence-
associated function in tissue repair suggests that the growth  
arrest was selected during evolution to suppress tumorigenesis, 
and possibly excessive cell proliferation or matrix deposition 
during wound repair. In contrast, the SASP most likely was se-
lected to allow damaged cells to interact with the tissue micro-
environment. In addition, some SASP components may have 
been selected to reinforce the senescence growth arrest.

Four faces of cellular senescence
So, how does cellular senescence participate in four complex 
processes (tumor suppression, tumor promotion, aging, and tis-
sue repair), some of which have apparently opposing effects? 
We envision the senescent phenotype progressing through tem-
porally regulated steps that orchestrate its activities (Fig. 3).

In cultured cells synchronously induced to senesce by 
ionizing radiation, the senescent growth arrest establishes rap-
idly, generally within 24–48 h (DiLeonardo et al., 1994; Rodier  
et al., 2009, 2011). Cells given a nonsenescence-inducing ionizing 

demonstrating cause and effect in biology—eliminate a gene or 
process, and determine the phenotype—cannot be applied in 
this case. Organisms in which cells fail to undergo senescence 
do not live longer; rather, they die prematurely of cancer (Rodier 
et al., 2007). Another approach might be to engineer mice in 
which senescent cells can be eliminated as they are formed.  
Although this feat has not yet been accomplished, recent short-
term manipulations in mice revealed another surprising aspect 
of the senescence response: a role in tissue repair.

Cellular senescence and tissue repair
From even a cursory perusal of factors that comprise the SASP, it 
is obvious that many are important for tissue repair: growth fac-
tors and proteases that participate in wound healing, attractants 
for immune cells that kill pathogens, and proteins that mobilize 
stem or progenitor cells. Thus, the SASP may serve to communi-
cate cellular damage/dysfunction to the surrounding tissue and 
stimulate repair, if needed. Two recent studies support this idea.

Upon acute liver injury in mice, hepatic stellate cells ini-
tially proliferate and secrete ECM components, which produce 
a fibrotic scar that eventually resolves. Shortly after the prolif-
erative stage, stellate cells in the injured liver undergo senes-
cence (Krizhanovsky et al., 2008). This senescence response is 
accompanied by a decline in ECM production and, as expected 
from the SASP, increased secretion of several MMPs, which are 
known to degrade ECM proteins. This finding suggested that 
the senescence response helps resolve the fibrotic scar. Consis-
tent with this idea, when stellate cells are compromised for their 
ability to undergo senescence (because of deficiencies in p53 or 
p16INK4a and p19ARF), mice developed severe fibrosis after 
acute liver injury.

Similarly, in a mouse model of cutaneous wound healing, 
the ECM protein CCN1 is highly expressed and important for 

Figure 3.  Temporal organization of the senes­
cent phenotype. Upon experiencing a poten-
tially oncogenic insult, cells assess the stress 
and must “decide” whether to attempt repair 
and recovery, or undergo senescence. After an 
interval (decision period), the length of which 
is imprecisely known, the senescence growth  
arrest becomes essentially permanent, effec-
tively suppressing the ability of the stressed cell 
to form a malignant tumor. One early manifes-
tation of the senescent phenotype is the expres-
sion of cell surface–bound IL-1. This cytokine 
acts in a juxtacrine manner to bind the cell 
surface–bound IL-1 receptor, which initiates a 
signaling cascade that activates transcription 
factors (NF-B, C/EBP). The transcription 
factors subsequently stimulate the expression 
of many secreted (SASP) proteins, including 
increasing the expression of IL-1 and induc-
ing expression of the inflammatory cytokines 
IL-6 and IL-8. These positive cytokine feedback 
loops intensify the SASP until it reaches levels 
found in senescent cells. SASP components such 
as IL-6, IL-8, and MMPs can promote tissue repair, but also cancer progression. Some SASP proteins, in conjunction with cell surface ligands and adhesion 
molecules expressed by senescent cells, eventually attract immune cells that kill and clear senescent cells. A late manifestation of the senescent phenotype is 
the expression of microRNAs (mir-146a and mir-146b), which tune down the expression IL-6, IL-8, and possibly other SASP proteins, presumably to prevent 
the SASP from generating a persistent acute inflammatory response. Despite this dampening effect, the SASP can nonetheless continue to generate low-
level chronic inflammation. The accumulation of senescent cells that either escape or outpace immune clearance and express a SASP at chronic low levels 
is hypothesized to drive aging phenotypes. Thus, senescent cells, over time (yellow line), develop a phenotype that becomes increasingly complex (blue 
triangle), with both beneficial (tumor suppression and tissue repair) and deleterious (tumor promotion and aging) effects on the health of the organism.
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which are required for the expression of many SASP proteins 
(Fig. 3; Acosta et al., 2008; Kuilman et al., 2008; Freund et al., 
2010). Some of these second-wave SASP proteins reinforce the 
growth arrest, whereas others facilitate tissue repair and drive 
cancer progression (Fig. 3).

We imagine these activities antecede the expression of 
proteins that permit the immune system to clear senescent cells 
(Fig. 3). Senescent cells express surface-bound ligands and ad-
hesion molecules that target them for attack by natural killer 
and other immune cells (Krizhanovsky et al., 2008), although it 
is not known when these proteins are expressed relative to the 
SASP. Because senescent cells increase with age, either clear-
ance is incomplete (and so senescent cells gradually accumu-
late) or aged individuals generate senescent cells faster than 
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From cell culture phenomenon to orchestrator of tumor 
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cence has a rich history, marked by unexpected complexity. 
Some aspects of its physiological significance remain conjec-
ture, and several aspects of its regulation remain enigmatic.  
As biologists further unravel the foundations and consequences 
of cellular senescence, they will likely reveal a deepening com-
plexity and additional surprises.
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