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We propose a tool-use model that enables a robot to act toward a provided goal. It is
important to consider features of the four factors; tools, objects actions, and effects at the
same time because they are related to each other and one factor can influence the others.
The tool-use model is constructed with deep neural networks (DNNs) using multimodal
sensorimotor data; image, force, and joint angle information. To allow the robot to learn
tool-use, we collect training data by controlling the robot to perform various object
operations using several tools with multiple actions that leads different effects. Then
the tool-use model is thereby trained and learns sensorimotor coordination and acquires
relationships among tools, objects, actions and effects in its latent space. We can give the
robot a task goal by providing an image showing the target placement and orientation of
the object. Using the goal image with the tool-use model, the robot detects the features of
tools and objects, and determines how to act to reproduce the target effects automatically.
Then the robot generates actions adjusting to the real time situations even though the tools
and objects are unknown and more complicated than trained ones.
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1 INTRODUCTION

1.1 Background
Tool-use is critical for realizing robots that can accomplish various tasks in complex surroundings.
By using tools, humans are capable of compensating for missing bodily functions, greatly
expanding the range of tasks they can perform Gibson and Ingold (1993) and Osiurak et al.
(2010). By using tools, robots can overcome physical limitations and perform complex tasks. They
could also adapt to environments without changing or adding actuators or other mechanisms,
reducing their weight and size and making them safer, less expensive, and easier to be used in the
real world. Robots capable of working alongside humans and performing daily tasks are
increasingly becoming a key research topic in the robotics field Yamazaki et al. (2012) and
Cavallo et al. (2014). Tool-use by robots would result in introducing robots into everyday spaces to
assist human lives.
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Much research has aimed at realizing robots that can perform
tool-use tasks, most using preset environments and pre-made
numerical models for the target tools and objects. Following
those models, the robots calculate and move along optimal
motion trajectories. This approach has realized highly accurate
and fast movements, allowing robots to perform pan tosses Pan
et al. (2018), make pancakes with cooking tools Beetz et al. (2011),
cut bread with a knife Ramirez-Amaro et al. (2015), and serve food
with a spatula Nagahama et al. (2013) in past studies. This approach
can be efficient and realize high performance if the robots are
dedicated to a particular purpose in a specific environment, but as
the number of tools and objects or task types increase, it becomes
difficult to design numericalmodels of properties and environments
for each condition. In addition, it is difficult to deal with the
situations when somethings that did not supposed to happen,
because the robots can only move as initially instructed by humans.

There are unlimited conceivable situations in which robots
might perform various tasks, so preparing tailored tools and
individually teaching robots how to use them is impossible. It is
thus critical for robots to acquire “tool-use ability,” and to
consider how to use tools to achieve a goal without human
assistance, even when tools are seen for the first time. We
therefore develop a robot to plan and make an action by itself
only by showing the goal of the tasks.

1.2 Relationships Among Tools, Objects,
Actions and Effects in Tool-Use
To acquire tool-use ability, considering relationships among
tools, objects, actions and effects is important. According to
Gibson (1977) and J.Gibson (1979), affordance is defined as
the possibility of an act presented to an agent by an object or
environment. The definition of affordance by Gibson is highly
conceptual, so there have been attempts to clarify it Turvey
(1992), Norman (2013), Chemero (2003), and Stoffregen
(2003). Especialy, Chemero argued that affordance is not
unique to the environment and it is a relationship between
agent abilities and environmental features, providing agent
actions. For example, consider a hammer. The hammer head
is suitable for hitting objects with strong blows, and the long
handle is suited to grabbing and swinging. Therefore, when
dealing with nails, the hammer affords hitting. However, if
you do not have a hammer, you could hit a nail with a block
having similar features, such as hardness, ruggedness, and weight.
The hammer can also be used for other purposes. If you want to
pull and obtain something that is out of reach, you can use a
hammer to pull it. So a long hammer can also propose agents to
pull and provide an effect of pulling objects. In other words, tool-
use arises not only from tool features, but also from the operated
objects, actions to take and the expected effects (i.e., goal).
Acquisition of affordance is one of the most essential topic in
the cognitive field Bushnell and Boudreau (1993), Piaget (1952),
Rat-Fischer et al. (2012), and Lockman (2000), and has also been
discussed in robotics field and has gained significant support
Horton et al. (2012), Min et al. (2016), and Jamone et al. (2018).
Inspired from this theory, we construct the tool-use model with
DNNs simultaneously considering features of tools, objects,

actions,and effects. By recognizing the relationships among the
four factors, we expect the robot to deal with tool-use tasks
including those never experienced before.

1.3 Research Objective
Our objective is to develop a robot capable of acquiring
relationships of four factors: 1) tools the robot can use, 2)
target objects that can be manipulated by those tools, 3)
actions performed by the robot, and 4) effects by those
actions. And to allow the robot to conduct tool-use actions
according to the relationships to reproduce providing goals.

We take the approach of developing a robot from own task
conduction experiences and allowing it to acquire the
relationships. The robot is developed in the following steps.
First, multimodal sensorimotor data are recorded while the
robot is controlled to conduct tool-use tasks, like it plays to
repeat manipulating objects. Then deep neural networks (DNNs)
are trained and used to construct a tool-use model, which uses the
recorded dataset to learn sensorimotor coordination and
relationships among tools, objects, actions, and effects. Then
for tests, the robot generates motions for handling novel tools
and objects by detecting their features with the tool-use model,
and acts to achieve its goal. We verified that the robot can detect
the features, recognize its goals, and act to achieve them.

Some of the tools that infants firstly develop to use is stick- or
rake-like tools such as forks or spoons, allowing them to extend
their reach to grasp or move distant objects. Similarly, we start by
allowing the robot to learn to move objects by such simple tools.
Specifically, the robot uses I- or T-shaped tools to extend their
reach and pull or push an object to roll, slide, or topple.

The research goal is to enable the robot to perform tool-use
operations solely from provided goals and reproduce the situations.
The experimenters only present a goal image to the robot. We use
an image because it clearly and easily shows the target position and
orientation of the object. The robot needs to understand the
relationships and detect features of the tool and the object, then
generates an action toward the goal effect. Tomanipulate the object
to the target position at the target orientation, the robotmust adjust
operating movements every time step according to the current
situation. The goal cannot be completed just by replay actions as
same as the trained ones.

The following summarizes our contributions:

• The tool-use model learns relationships of tools, objects,
actions, and effects.

• The robot generates tool-use actions based on the detected
relationships and current situations even with unknown
tools and objects.

• The robot accomplishes tasks solely from a provided goal
image, and reproduce the situations.

2 RELATED WORKS

In this section, we show some related tool-use works except for
which use initially prepared numerical models of actions for fixed
target or environments.
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2.1 Understanding Tool Features
Myers et al. (2015) and Zhu et al. (2015) investigated autonomous
understanding of tool features, introducing frameworks for
dividing and localizing tool parts from RGB-D camera images.
These frameworks identify several tool parts that are critically
involved in tool functions and recognize tool features relying on
those parts. Robots could thereby understand how tools and their
parts can be used. Similarly, we allow robots to recognize tool
features from their appearance. Moreover, we not only allow the
robot to recognize features but also generate tool-use motions.

2.2 Planning Tool-Use Motions With
Analytic Models
Stoytchev (2005), Brown and Sammut (2012), and Nabeshima
et al. (2007) realized robots capable of performing tool-use
motions by constructing analytic models. In particular,
Stoytchev (2005) controlled a robot to move a hockey puck
with various shaped tools, making a table showing object
movements corresponding to the shape and shift direction of
tools used during observations. By following this table, the robot
could carry the object to a target position. Brown and Sammut
(2012) presented an algorithm for discovering tool-use, in which
the system first identifies subgoals, then searches for motions
matching next subgoals one-by-one. They realized a robot
capable of grasping various shaped tools and carrying an
object. Nabeshima et al. (2007) constructed a computational
model for calculating tool shapes and moments of inertia,
developing a robot capable of manipulating tools to pull an
object from an invisible shielded area, regardless of the shape
of the grasped tool. However, these systems need prepared
tables or computational models before using tools, making it
difficult to deal with unknown tools. In addition, modeling
errors may accumulate during execution, often resulting in
fragile systems.

2.3 Generating Tool-Use Motions by
Learning
Another line of research on tool-use motion generation is
learning tool features from tool-use experience, which is the
same as our approach. Nishide et al. (2012) allowed a robot to
experience sliding a cylindrical object with various shaped tools,
training a DNN to estimate trajectories of object movements that
change depending on tool shape and how it slid. Takahashi et al.
(2017) constructed a DNN model for learning differences in
functions depending on tool grasping positions. This allowed a
robot to grasp appropriate tool positions and to generate motions
to move an object to a goal. Mar et al. (2018) considered the
orientation of tools as well. They controlled a robot to push a
designated object in several directions with tools of several shapes
and orientations, and recorded the shift length of object
movements. They detected tool features by a self-organizing
map corresponded to lengths of object shifts. They realized a
robot capable of selecting directions to push the objects
depending on the tool’s shape and orientation. Saito et al.
(2018b) focused on tool selection, setting several initial and

target positions for objects and allowing the robot to
experience moving objects with several tools. They trained a
DNN model that enabled the robot to select a tool of proper
length and shape, depending on the designated direction and
distance to the object. In every of these studies, robots with
learning models learn and recognize tool features and generate
suitable tool-use motions according to tool features. However,
they dealt with one specified target object and thus did not
consider relationships between tools and objects. These tool-
use situations are thus limited, because if a different object is
provided, it would be difficult to operate it. Goncalves et al. (2014)
and Dehban et al. (2016) conducted research to enable robots to
consider four factors: tools, objects, actions, and effects.
Goncalves et al. (2014) constructed Bayesian networks that
express relationships among the four factors, predicting the
effect when the other three factors are input. However, they
aimed to determine features of tools and objects based on
categories such as area, length, and circularity, which were set
in advance by the experimenters. It was therefore difficult for the
robot to autonomously self-acquire features without requiring
predefined feature extraction routines, and also difficult to
manipulate arbitrary objects with arbitrary tools without
human assistance. Dehban et al. (2016) also expressed
relationships among the four factors using DNNs, realizing a
robot that could predict or select one factor when the other three
are given. In other words, the robot could predict an effect or
select an action or tool to use. However, the action types were
fixed in advance, so the robot could only select and follow the
predesignated motions, making it difficult to deal with objects
and tools in unknown positions or objects not moving as
expected.

To address these problems, we construct a tool-use model
that allows the robot to self-acquire the relationships among the
four factors. The model is expected to detect the features of
provided tools and objects and to generate actions depending on
the situations. The present study is an extension of Ref. Saito
et al. (2018a). to improve two points. The first improvement is
related to goal images. In the previous study, provided goal
images showed situations just after task executions, namely the
final position of the robot arm, making it easy for the tool-use
model to predict what kind of actions should be conducted. In
the present study, we make the robot arm return to its initial
joint position after task completion. The goal images thus show
the arm at the initial position, and there are no hints regarding
actions to take from the images except for object position and
orientation. Second, we introduce a force sensor to realize task
executions even when the object is occluded by the robot arm or
tools. In the previous study, they used only image data as
sensory input, making it difficult to operate small objects
that can be occluded during movement. Many papers have
shown that using both vision and force can improve the
accuracy of object recognition in both cognitive field and
robotics field Fukui and Shimojo (1994), Ernst and Banks
(2002), Liu et al. (2017), and Saito et al. (2021). By
constructing the tool-use model with multimodal DNNs, we
realize the robot to operate much more complex tools and
objects than in the past study.
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3 TOOL-USE MODEL

In this section, we describe the method for constructing the tool-
use model with DNNs.

3.1 Overview of the Tool-Use Model
3.1.1 Task Conduction With the Tool-Use Model
Figure 1 shows the way to control the robot using the model,
which is extended from Ref. Saito et al. (2018a) to deal with both
image and force sensor data efficiently. The tool-use model
comprises two modules, a feature extraction module and a
motion generation module. Since the number of dimensions in
image data is considerably larger than in other data, the feature
extraction module compresses image data, making the
multimodal learning well-balanced at low computational cost.
Then, the motion generation module simultaneously learns all
time-series data, that is image feature data, joint angle data and
force data. This module is expected to learn the relationship
among the four factors by using the latent space values Cs(0),
which detect features of them from given goal images. It is also
expected to generate tool-use actions adjusting in real time by
outputting the next joint angle data andmove the robot according
to the angle data.

3.1.2 Training of the Tool-Use Model
To collect training data, we remotely control a robot to conduct
object manipulation tasks with several tools and record the image
data, joint angle data, and force data in advance. As for training,
in the first step, the image data is used for training the feature
extraction module. After that, the motion generation module is
trained with time series of the image feature data obtained
through the trained feature extraction module, joint angle data
and force data.

3.2 Feature Extraction Module
We use a convolutional autoencoder (CAE) Masci et al. (2011) to
construct the feature extraction module. The CAE is a
multilayered neural network with convolutional and fully
connected layers, so it has advantages of both a convolutional
neural network (CNN) Krizhevsky et al. (2012), which has high
performance in image recognition, and an autoencoder (AE)
Hinton and Salakhutdinov (2006), which has a bottleneck
structure and can reduce data dimensionality. After training,
the trained module can represent appearance features such as the
shape, size, position, and orientation of tools and objects even
when unknown images are input.

Table 1 shows the CAE structure, in which input data pass
through the center layer with the fewest nodes, then outputs data
with the original number of dimensions. The module is trained so
that the output (y) restores the input image (x), by minimizing the
mean squared error (MSE) Bishop (2006) as

E � 1
N

∑(y − x)2. (1)

Image feature data can be extracted from the center-layer nodes
with low dimension. We use a sigmoid function as the activation
function for only the center layer, whereas we use the ReLU
function for all other layers. The CAE is trained using MSE with
the optimizer for the Adaptive Moment Estimation (Adam)
algorithm Kingma and Ba (2014).

We tested changing the numbers of the center-layer nodes by
10, 15, 20, 25, and finally set it 20 because it was the smallest
number that could sufficiently express the different features of
camera images. Therefore, the feature extraction module
compresses high-dimensional (9,216 dimensions (64 width ×
48 height × 3 channels)) raw image data to 20 dimensions.
The module is trained for 5,000 epochs.

FIGURE 1 | The tool-use model to control the robot to conduct tasks. It comprises a feature extractionmodule and amotion generation module. In tests, at first, the
internal latent space value Cs(0) is explored using a goal image. The Cs(0) detects and expresses features of the tool, object, and actions needed to produce the target
effects. For generating a motion, the feature extraction module compresses the number of dimensions in image data and extracts low-dimensional image feature data.
Then the motion generation module simultaneously learns image feature data, joint angle data, and force data at the moment, and predicts next-step data. The
robot is controlled according to the predicted joint angle data step-by-step.
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3.3 Motion Generation Module
For the motion generation module, we use a multiple timescale
recurrent neural network (MTRNN) Yamashita and Tani (2008),
attaching additional fully connected layers. AMTRNN is a type of
recurrent neural network that can predict the next state from a
current and previous state. It contains three node types with
different time constants: input–output (IO) nodes, fast context
(Cf) nodes, and slow context (Cs) nodes. Cf nodes with small time
constants learn movement primitives in the data, whereas Cs
nodes with large time constants learn sequences. By combining
these three node types, long, complex time series data can be
learned, the usefulness of which for manipulation has been
confirmed in several studies Yang et al. (2016), Takahashi
et al. (2017), and Saito et al. (2018b,a, 2020, 2021).

The motion generation module integrates time series of image
feature data output from the feature extraction module (ximage),
joint angle data (xmotor), and force data (xforce), and predicts next
time-step data. Since image data contain more complex and varied
information than do other data, we connect fully connected layers
before and after IO nodes of only image feature data.

Table 2 shows the structure of the motion generation module,
which has settings for the time constants and numbers of each
node. We tried to vary numbers of Cs nodes in the range of 8–12,
the time constant of Cs nodes in the range of 30–60 in increments

of 10, and numbers of Cf nodes in the range of 30–60 in increments
of 10. Finally the combination that minimized training error is
adopted. If these numbers are too small, complex information
cannot be learned, and if they are too large, the module is
overtrained and cannot adapt to untrained data. The time
constant of Cf had little effect, even when it was changed to
around 5. The module is trained for 20,000 epochs.

3.3.1 Forward Calculation
In forward calculations of this module, the internal value is first
calculated by fully connected layers (F1, F2, F3) as

yimage
i (t) �

tanh ∑j∈F1wijx
image(t)( ) i ∈ F2

tanh ∑
j∈F2

wijyj(t)( ) i ∈ F3

⎧⎪⎪⎨⎪⎪⎩ , (2)

where ximage(t) is the input image feature data, t is the time step,
wij is the weight of the connection between the jth and ith neuron,
and xj(t) is the value input to the ith neuron by the jth neuron.

We concatenate the value, motor data, and force data, then
input to the IO nodes of the MTRNN as

xIO(t) � concatenate(yimage
F3 (t), xmotor(t), xforce(t)). (3)

We then input the concatenated data to the MTRNN. First, the
internal value of the ith neuron ui is calculated as

ui(t) � 1 − 1
τi

( )ui(t − 1) + 1
τi

∑
j∈N

wijxj(t)⎡⎢⎢⎣ ⎤⎥⎥⎦, (4)

whereN is the index sets of neural units and τi is the time constant
of the ith neuron (i ∈ IO,Cf, Cs). Then the output value is
calculated as

yi(t) � tanh ui(t)( ) (5)

Then the output value yIO(t) is then divided into three parts in
charge of image feature data, motor data and force data by their
dimensions as

yIO(t) � divide(yimage
IO (t), ymotor(t), yforce(t)). (6)

Then the output value for an image feature data (yimage
IO (t)) is

recalculated with fully connected layers (B1, B2, B3) as

TABLE 1 | The CAE structure. The module includes convolution layers and fully connected layers with linear processing. An input data pass through the center layer with the
fewest nodes, then outputs data with the original number of dimensions.

Layer Input Output Processing Kernel size Stride Padding

1 (64, 48, 3) (32, 24, 32) Convolution (4,4) (2,2) (1,1)
2 (32, 24, 32) (16, 12, 64) Convolution (4,4) (2,2) (1,1)
3 (16, 12, 64) (8, 6, 128) Convolution (4,4) (2,2) (1,1)
4 (8, 6, 128) (4, 3, 256) Convolution (4,4) (2,2) (1,1)
5 3,072 254 Linear - - -
6 254 20 Linear - - -
7 20 254 Linear - - -
8 254 3,072 Linear - - -
9 (4, 3, 256) (8, 6, 128) Deconvolution (4,4) (2,2) (1,1)
10 (8, 6, 128) (16, 12, 64) Deconvolution (4,4) (2,2) (1,1)
11 (16, 12, 64) (32, 24, 32) Deconvolution (4,4) (2,2) (1,1)
12 (32, 24, 32) (64, 48, 3) Deconvolution (4,4) (2,2) (1,1)

TABLE 2 | The structure of the MTRNN attaching fully connected layers. MTRNN
contains three node types with different time constants: input–output (IO)
nodes, fast context (Cf) nodes, and slow context (Cs) nodes. Since image data
contain more complex and varied information than do other data, we connect fully
connected layers before and after IO nodes of only image feature data (F1, F2,
F3, B3, B2, and B1).

Node name Number of nodes Time constant

F1, B3 20 (number of image features) -

F2, B2 30 -

F3, B1 15 -

IO nodes 24 1

Cf nodes 50 5

Cs nodes 10 40
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yimage
i (t) �

yimage
IO (t) i ∈ B1

tanh ∑j∈B1wijy
image
j (t)( ) i ∈ B2

tanh ∑j∈B2wijy
image
j (t)( ) i ∈ B3.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7)

Finally, the predicted image feature data can be obtained as

yimage(t) � yB3(t). (8)

3.3.2 Next-step Data Prediction
The next-step predicted data is calculated as

X̂(t + 1) � (1 − α) × Y(t) + α × T(t + 1) (9)

X̂(t) � concatenate(x̂image(t), x̂motor(t), x̂force(t))
Y(t) � concatenate(yimage(t), ymotor(t), yforce(t)){ ,

where 0 ≤ α ≤ 1 is the feedback rate and T(t) is an input datum,
which means training data when we train the module, which in
turn means actual data recorded when testing the tool-use model
while moving the robot. The predicted value X̂(t + 1) is calculated
by multiplying the output of the preceding step Y(t) and the
datum T(t) by the feedback rate α. The first term presents “closed-
loop prediction,” in which the robot associates a data series with
past data but not real-time information, which is like a robot
simulating inside its head without moving its body. The second
term presents “open-loop prediction,” by which the robot
repeatedly predicts next-step data from the current situation
one-by-one. We can use the feedback rate to adjust
predictions. When we train the data, we set feedback rate α �
0.1, meaning 90% of input data are previous closed-loop
predictions and 10% are recorded training data. When testing
a moving robot with actual data, we set the feedback rate α � 0.2,
meaning 80% of input data are closed-loop predictions and 20%
are real-time raw data.

We can control the robot according to predicted joint angle
data, namely the value of x̂motor(t + 1). We then input X (t + 1)
data to Eqs. 2, 3 as next input to the motion generation module.
In other words, the predicted image feature data and force data
(x̂image(t + 1) and x̂force(t + 1)) are not used directly to control the
robot but internally used to predict future data with closed-loop
predictions. Repeating this process step-by-step, the robot can
generate actions.

3.3.3 Backward Calculation
In backward calculation, we use the back propagation through
time (BPTT) algorithm Rumelhart and McClelland (1987) to
minimize the training error (E), calculated as

E � ∑FinalStep

t�1
(Y(t − 1) − T(t))2. (10)

We then update the weights as

wn+1
ij � wn

ij − η
zE

zwn
ij

, (11)

where η is the learning rate, which we set as η � 0.001, and n is the
number of iterations. The initial value of the Cs layer (Cs(0)) is

simultaneously updated to store features of the dynamics
information as

Csn+1(0) � Csn(0) − η
zE

zCsn(0). (12)

At this time, we start training the module, setting all Cs(0) values
to 0. We thus expect that features of tools, objects, actions, and
effects will accumulate and self-organize in Cs(0) space, allowing
the tool-use model to understand the relationship among the four
factors. Therefore, we use the Cs(0) value as latent space. By
inputting proper Cs(0) values to the trained network, it is possible
to generate actions corresponding to the features of the four
factors.

3.3.4 Exploring the Latent Space for Detecting
Features From a Goal Image
When the robot deals with unknown tools or objects while testing
this tool-use model, the Cs(0) value that best matches the task can
be calculated from the trained network, setting error as

E � (Y(0) − T(1))2
+ (yimage(FinalStep − 1) − Timage(FinalStep))2 (13)

We need to provide initial image, joint angle and force data (T
(1)) and final image data (Timage (FinalStep)), which is the goal
image. At this time, the output value yimage (FinalStep −1) is
calculated by setting the feedback rate α � 0 in Eq. 9, which is fully
closed-loop predictions. Then, by altering Cs(0) to minimize
error as same as Eq. 12, the model can explore a proper Cs(0)
value. This calculation is conducted for 20,000 epochs, by which
time it has fully converged.

4 EXPERIMENTAL SETUP

4.1 System Design
We use a humanoid robot, NEXTAGE OPEN developed by
Kawada Robotics KAWADA-Robotics (2020) and control it to
conduct tasks with its right arm, which has 6 degrees of freedom.
The robot has two cameras on its head, which have 9,216
dimensions (64 width × 48 height × 3 channels). We used
only its right eye camera. A force sensor developed by
WACOH-TECH WACOH-TECH (2020) attached to its wrist
records 3-axis force data. A gripper developed by SAKE Robotics
SAKE-Robotics (2020) is also attached.

We record joint angle data, an image, and force data every
0.1 s, namely at a sampling frequency of 10 Hz. Before
inputting to the tool-use model, force data value are
rescaled to [ − 0.8, 0.8], and joint angle data are rescaled to
[ − 0.9, 0.9]. Image data are first simply scaled to [0, 255] for
the feature extraction module. Then the output image feature
data are rescaled to [ − 0.8, 0.8] and input to the motion
generation module.

4.2 Objects Used in the Experiments
Figure 2 shows the tools and objects used in our experiments. For
training, we prepare two kinds of tools (I- and T-shaped) and five
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kinds of objects (ball, small box, tall box, lying cylinder, and
standing cylinder), all basic and simple shapes. We choose these
to provide a variety of shapes and heights to cause different
effects. As the two pictures on the left side of Figure 3 show, tools
or objects can change the effects. In the left picture, even though
the object and the action are the same, the ball will not move if it is
pulled with the I-shaped tool, but will roll if pulled with the
T-shaped tool. In the middle picture, if we push left with the
I-shaped tool, the box will slide but the ball will roll.

For evaluation experiments, some similar tools and objects,
shown in the middle low in Figure 2, are prepared. We also
prepared some totally different and more complex tools and
objects, such as an umbrella, a wiper, a tree branch, a box much
smaller than the trained one, a spray bottle, and a PET bottle.
These are shown at the bottom of Figure 2.

4.3 Task Design
The robot’s task is to use a tool tomove an object to the position and
orientation shown in a goal image. The robot must generate actions
with the right direction and the right positional height. For example,
as on the right in Figure 3, even when using the same box and same
I-shape tool, the effect of object behavior will differ depending on the
height at which the robot pushes the box, toppling if pushed at a high
point or sliding if pushed at a low point.Moreover the robot needs to
flexibly adjust the arm angles in real time not just fixing the direction
and the height at once. Objects are easy to move with a little force
and sometimes behave differently as expected.

We placed one object on a table in front of the robot so that its
center position is set in the same position. In all tasks, the robot
starts and ends movements at the same home position. We pass
the robot a tool before it starts a task, so it initially grips it. This
grip is maintained during all movements.

4.4 Training Dataset
To record training data, we remotely control the robot with a 3-
dimensional mouse controller. For the training data, we designed
four kinds of trajectories: sliding sideways or pulling toward the
robot, with each action performed at either a high or low position,
designed by the remote control. Then the robot is controlled to
move according to the trajectories 5 times in each combination of
tools and objects. Therefore, there are 200 training datasets (2
tools × 5 objects × 4 actions × 5 trials for each task).

By keeping the robot stationary at its position after task
completion until 10.7 s from the start, we record the sensory
motor data for 10.7 s in every task, sampling each 0.1 s. There
thus are 107 steps for each data.

Table 3 roughly categorizes the effects and summarizes each
combination of tools, objects, and actions. There are several
effects like “shift to the left,” “shift to the front,” “roll to the
left,” “roll to the front,” “topple to the left,” “topple to the front,”
and “do not move.” Although we categorized the effects to make
them easy to understand, the actual effects differ one by one.

There are two differences between “shift” and “roll.” “Shift” is
a movement where an object moves beside a tool and stops
movement just after the robot stretches its arm to its full extent. In
contrast, “roll” is a movement where an object precedes the arm
movement and keeps moving for a while after the robot fully

FIGURE 2 | Tools and objects used in the experiments. The upper
images show the training setup. The middle images show untrained tools and
objects similar to trained ones. These are used to evaluate accuracy of the
tool-use model. Images at bottom show untrained tools and objects
completely different from trained ones, used to test the model’s
generalizability.

FIGURE 3 | Examples in which effects will differ by tools, objects, and
actions. In the left picture, even though the object and the action are the same,
the ball will not move if it is pulled with the I-shaped tool, but will roll if pulled
with the T-shaped tool. In the middle picture, if we push left with the
I-shaped tool, the box will slide but the ball will roll. In the right picture, even
when using the same box and same I-shape tool, the effect of object behavior
will differ depending on the height at which the robot pushes the box, toppling
if pushed at a high point or sliding if pushed at a low point.
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extends its arm, so the object moves differently every time and
there are a variety of goal positions.

4.5 Experimental Evaluation
When testing the tool-use model with actual data taken during
moving robot, the setup for recording data and constructing the
model is same as in training. However, we set the feedback rate
α � 0.2 as described in section 3.3.2. Therefore, 80% of input data
are closed-loop predictions and 20% are real-time raw data. By
increasing the feedback rate from that in training, the robot more
easily adjusts to real-time situations.

Three evaluations are conducted:

• analyze the training results,
• evaluate task execution accuracy with similar objects or
tools, and

• evaluate generalizability with totally different tools and objects.

4.5.1 Analysis of Training Results
At first, we check if the training can be conducted well. We first
confirm that the feature extraction module with the CAE can
properly extract image features. We reconstruct the images input
by the module and confirm whether the reconstructed images are
similar to the input. If the module performed reconstruction well,
that means it could accumulate the essential characteristics of
images in low-dimensional image feature data.

Second, we evaluate whether the motion generation module
with the MTRNN can acquire relationships among tools, objects,
actions and effects. We analyze the latent space, the initial step of
Cs neuron value (Cs(0)) of each training data trained by Eq. 12 by
principal component analysis (PCA). Cs(0) values for similar
training data are expected to be clustered and different values
should be apart, meaning the Cs(0) space can well express features
of the factors of each task. In other words, we can confirm whether
the features are self-organized. We analyze three maps of Cs(0)
values, each presenting features of tools, objects, and actions.

4.5.2 Accuracy Evaluation
We then conduct evaluation experiments moving the robot. Task
execution accuracy is evaluated using unknown objects and tools

which are similar to trained ones, shown in the middle of
Figure 2. To carefully confirm the robot’s ability to detect
both objects and tools, the experiments are conducted with
combinations of trained tools and unknown objects, and with
unknown tools and trained objects.

We provide the tool-use model with goal images and explore
proper Cs(0) value by Eq. 13. The model then generates actions
using the explored Cs(0) values, and we confirm whether the
robot can reproduce the expected effects. We measure success
rates according to object behaviors during robot actions, and the
final positions and orientations of the objects. Regarding object
behavior, we confirm whether they clearly roll, shift, or topple.
Regarding final positions, we regard shift trials as successful if the
final object position is within one-thirds distance from the home
position to the goal position. Regarding orientation, we regard
trials as successful if the difference in inclination between final
and target orientations is less than 30°.

We also analyze explored Cs(0) values and check if the tool-use
model can detect and express the features of tools, objects and
expected actions by comparison with Cs(0) values in the training
data. This is confirmed by superimposing PCA results for the
explored Cs(0) on the three Cs(0) training datamaps described above.

This experiment is conducted by providing 12 goal images
with an I-shaped tool, and 16 goal images with a T-shaped tool to
show different effects. There are 20 combinations of objects and
actions, but there are some same “does not move” effects, as
shown in Table. 3. With the T-shaped tool there are also “roll to
the left” and “roll to the right” effects that result in random goal
positions. Therefore, there are 12 effects for the I-shaped tool and
16 for the T-shaped tool. All tasks are conducted 3 times in both
experiments, with combinations of trained tools and unknown
objects, and unknown tools and trained objects. Thus the
experiment is performed 168 trials ((12 + 16) × 3 × 2).

4.5.3 Generalization Evaluation
In the last evaluation experiment, generalizability of the tool-use
model is confirmed. The procedure is same as in Accuracy
Evaluation, except that both tools and objects are totally different,
as shown at the bottomofFigure 2.We set goal images expecting the
robot to slide a very small box in a low position to the left with an
umbrella, slide a spray bottle in a high position to topple it with a

TABLE 3 | Forty dataset combinations for training whose sensorimotor data is recorded in advance by remote controlling the robot. Effects are roughly categorized and
colored differently. We allowed the robot to experience these combinations of tools, objects, actions, and effects for training the tool-use model.

Tool
Actions

I-shape T-shape

object Slide
to the
left
low

Slide
to the
left
high

Pull
to the
front
low

Pull
to the
front
high

Slide
to the
left
low

Slide
to the
left
high

Pull
to the
front
low

Pull
to the
front
high

Small box Shift tothe left Does not move Does not move Does not move Shift to the left Does not move Shift to the front Does not move

Tall box Shift to the left Topple to the left Does not move Does not move Shift to the left Topple to the left Shift to the front Topple to the front

Lying cylinder Roll to the left Does not move Does not move Does not move Roll to the left Does not move Shift to the front Does not move

Standing cylinder Shift to the left Topple to the left Does not move Does not move Shift to the left Topple to the left Shift to the front Topple to he front

Ball Roll to the left Does not move Does not move Does not move Roll to the left Does not move Roll to the front Does not move
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wiper, and pull a PET bottle in high position to topple it with a tree
branch. The experiment is conducted 3 times each, so there are nine
trials (3 × 3).

5 RESULT

In this section, we show the result of the training and two
evaluation experiments: Accuracy Evaluation and
Generalization Evaluation.

5.1 Training Analysis
The reconstructed images in Figure 4 suggest that the trained
feature extraction module could reproduce the original input
images. The input images shown in the figure are test data not
used for training. All are well reconstructed, demonstrating that
the feature extraction module could well express image features in
output from the center layer.

We performed PCA on the internal latent space values, Cs(0)
of the training data. The results are shown in Figure 5 as solid
circles. The plots are colored according to each feature in the three
maps: tools, objects, and actions. As a result, in every map plots of
different features are separated and same features are clustered,
demonstrating that positions in Cs(0) value maps can express the
features. Focusing on the map axes, we can also say that PC1 and
PC2 represent action features, with PC1 indicating action type
(sliding or pulling) and PC2 representing heights. PC3 represents
tool features, and PC4 and PC5 represent object features. Cs(0)
values could simultaneously express tools, objects, and actions
which can reproduce goal effects.

5.2 Accuracy Evaluation
In the experiment of Accuracy Evaluation, the robot is expected
to use similar unknown objects or tools. We confirmed whether

the robot can reproduce situations in goal images. For example,
as Figure 6 shows, the goal image shows the small yellow box
shifted to the left. The DNN model explored proper Cs(0)
values using the goal images, allowing the robot to generate
motions. Figure 6 shows camera images while the robot is
moving. In this example, the robot moved properly to make the
final image similar to the goal image, matching the success
definition rule. We also show the generated trajectory with
dotted lines. The lines are similar to but sometimes shifted from
the solid lines, that is training trajectory for shifting the trained
small box to the left. Therefore, we can say that the robot could
detect proper action type and adjust it depending on the real
time situation.

Table 4 summarizes success rates. The robot succeeded in
performing 83% (70/84) of tasks with unknown objects and 79%
(66/84) of tasks with unknown tools. Notably, the robot had more
difficulty dealing with tall objects and T-shaped tools. We assume
that the reason for this is that they contain topple effects. If we
look only at tasks for that effect, the success rate is further reduced
to 61% (22/36). The topple effect causes sudden changes in image
and force sensor data, causing large sudden changes in DNN
model input, making this much more difficult to learn than other
effects.

We also analyzed the explored Cs(0) values and plotted them
on the space of trained ones, as shown in Figure 5. There are three
trials of each task, but we plotted only one with successful results.
All tasks succeeded at least once. Cs(0) values for tasks using
unknown objects are shown as hollow circles, and tasks using
unknown tools are shown as hollow triangles. Plots of tools and
objects are colored according to their shape features. For actions,
the plots are categorized and colored according to the most
similar trained actions: pull low, pull high, slide low, or slide
high. Almost all plots are properly represented in the same feature
spaces, meaning the tool-use model could explore proper Cs(0)

FIGURE 4 | Images reconstruction by the feature extraction module with the CAE. Upper images are original test data with training tools and objects, which are
input to the module. The bottom images are reconstructed by the module. All images show their shape and size well, which demonstrates that the feature extraction
module can well express image features in output from the center layer.
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FIGURE 5 | Results of PCA for the internal latent space values, Cs(0). We change the axis to show for expressing map of tools, objects and actions. Trained tasks
(solid circles) are separated and clustered according to the features of tools, objects, and actions. Focusing on the map axes, we can also say that PC1 and PC2
represent action features, with PC1 indicating action type (sliding or pulling) and PC2 representing heights. PC3 represents tool features, and PC4 and PC5 represent
object features. Cs(0) values could simultaneously express tools, objects, and actions which can reproduce goal effects. Values for explored Cs(0) in the tested
tasks are superimposed on the maps as hollow circles and triangles, and black stars, inverted triangles, and diamonds. Many plots are plotted in the proper regions,
suggesting good feature detection.

FIGURE 6 | Example result of Accuracy Evaluation using unknown objects and tools shown in the middle of Figure 2. These pictures show camera images while
the robot was conducting the task. We provided a goal image showing the untrained small yellow box, shifted to the left from the initial position. The robot then detected
features of the tool and the object and predicted a suitable action, generating an action that would properly slide the box in a low position to move it left, reproducing the
goal situation. The bottom graph shows the generated angle trajectories with solid lines. We compare the lines to trained angle trajectories for shifting the small box
shown in the upper of Figure 2 to the left with dotted lines. The trajectory lines are almost same but sometimes shifted. We can say that the robot could detect proper
action type and adjust it depending on the real time situation.
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values and detect features of tools and objects, and expect suitable
actions to conduct in untrained tasks.

When plotting Cs(0) values for failed tasks as a test, there were
three types of mistaken distributions. Many were plotted at totally
different far spaces, indicating the tool-use model could not
detect the features. Some were plotted on the middle of
feature clusters especially in the action map. This often occurs
for the “does not move” effect, where multiple actions are possible
to achieve the target. For example, we allowed the robot to
experience “pull high,” “pull low,” and “slide high” as training
data for behaviors that can reproduce the “does not move” effect
in a combination of the ball and the I-shaped tool. We therefore
suspect that the robot could not select one action from among the
candidates. When we forcibly moved the robot with the ambiguous
Cs(0) value, it sometimes mixed some actions and other times just
waved its arm near the initial position. Finally, regarding the third
mistaken distribution, Cs(0) values are plotted in mistaken
combinations of clusters. For example, when the real
combination was “T-shaped tool, standing cylinder, slide high,
topple to the left,” the model detected this relationship as the
combination “T-shaped tool, standing cylinder, pull low, topple
forward.”This happened because the robot correctly understood the
relationships among the four factors, but misunderstood the effects.

5.3 Generalization Evaluation
In Generalization Evaluation, we used totally different tools and
objects. These tools and objects are more complex than trained
ones, and thus the objects behave differently from trained
situations. Therefore the task cannot be completed just by
replay the training actions and the robot needs to adjust its
movement step-by-step to manipulate the object with the tool.
Figures 7–9 show the results of the robot’s action generation. In
the first task, the robot slid the umbrella to the left from a low
position and shifted the very small box to the left. In the second
task, the robot slid the wiper to the left from a high position and
toppled the spray bottle to the left. In the third task, the robot
pulled the tree branch to the front from a high position and
toppled the PET bottle forward. In all the case, the robot could

properly move and reproduce the goal situations, adjusting to the
features of tools and objects, and the real time situations. We
confirmed tool-use ability of the robot with the tool-use model
that can be generalized to use unknown tools and objects.

Figure 5 shows the explored Cs(0) value plotted on the space
of trained ones. Black stars show the combination of the very
small box and the umbrella, black inverted triangles show the
combination of the spray bottle and the wiper, and black
diamonds show the combination of the PET bottle and the
tree branch. The results suggest recognition by the robot,
which had to detect each combination as “tool close to
I-shape, ball like object, slide to the left from a low position”
in the first task, “tool close to I-shape, tall box like object, slide to
the left from a high position” in the second task, and “tool close to
T-shape, standing cylinder like object, pull forward from a high
position” in the third task. The tools and objects are recognized as
ones similar in shape, and actions are also correctly matched.
Most importantly, these detected combinations result in the
expected effects. These results indicate that the tool-use model
could detect the features of tools, objects, actions, and effects
considering the four relationships, even if the provided tools and
objects are unknown.

Figure 10 shows the decoded images using predicted image
feature data output by the motion generation module. The
original camera images are taken during the Generalization
Evaluation experiments. The decoded images represent the
shape, size, position, and orientation of the tools and objects
used. They also show the position of the robot arm. It can be
confirmed that the motion was generated while capturing the real
time state during the movement. Note that, the color and
appearance of the tools or objects in the reconstructed images
are close to the ones of training data because the feature
extraction module recognizes the feature of the tool or object
based on the training data.

6 DISCUSSION

For summary, the tool-use model has two neural network
modules: 1) a feature extraction module with a CAE trained to
extract visual features from captured raw images, and 2) a motion
generation module with a MTRNN and fully connected layers
that integrates and predicts multimodal sensory-motor
information. Through training of image reconstruction by the
feature extraction module, the robot could extract image features
from raw images captured by its camera. The motion generation
module learns coordination of image feature data, joint angle
data, and force sensor data, and performs next-step data
predictions. In addition, the motion generation module can
express the relationship of tools, objects, actions and effects
with an internal latent space value, Cs(0). Using a provided
goal image, the robot can generate actions by exploring Cs(0)
values matched to the task.

Analyzing after training the DNN using task experience data,
the tool-use model is able to self-organize tools, objects, and
actions, and to automatically create maps representing their
features in the Cs(0) space. With Cs(0) values, the tool-use

TABLE 4 | Success rates for Accuracy Evaluation using unknown objects and
tools shown in the middle of Figure 2. We confirm whether the robot can
reproduce the expected effects. We measure success rates according to object
behaviors during robot actions, and the final positions and orientations of the
objects.

Untrained
objects or tools

Success rate

Small box 15/15 (100%)
Tall box 16/21 (76%)
Toppled cylinder 13/15 (87%)
Standing cylinder 14/21 (67%)
Ball 12/12 (100%)

Total untrained objects 70/84 (83%)

I-shaped tool 31/36 (86%)
T-shaped tool 35/48 (73%)

Total untrained tools 66/84 (79%)

Combined total 136/168 (81%)
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model expresses the combination of the tools, objects, and actions
needed to produce the target effects. In other words, the tool-use
model understands combinations of the tools, objects, actions,
and effects, not individually, meaning it acquires the relationships
among the four factors. Then, we performed two experiments
that confirmed the learning model’s accuracy and
generalizability. The robot succeeded in 81% of tasks with

unknown similar objects or tools. Moreover, the robot
demonstrated task executions that reproduced target situations
with unknown, complicated, totally different tools and objects.
The results demonstrate that the features of tools and objects can
be detected, and optimal actions can be generated based on the
acquired relationships and the real time situations. In summary,
the robot gained the relationships through its own experience,

FIGURE 7 | Result of Generalization Evaluation with a very small box and an umbrella shown in the bottom of Figure 2. The pictures are the robot’s eye camera
images and the whole view taken by an external camera. We provided a goal image showing the very small box shifted left. The robot could properly detect features and
generate a motion to slide to the left, reproducing the situation in the goal image.

FIGURE 8 |Result of Generalization Evaluation with a spray bottle and a wiper shown in the bottom of Figure 2. We provided a goal image showing the spray bottle
toppled to the left. The robot could properly detect features and generate motions to push to the left from a high point and reproduce the situation in the goal image.

FIGURE 9 | Result of Generalization Evaluation with a PET bottle and a tree branch shown in the bottom of Figure 2. We provided a goal image showing the PET
bottle toppled forward. The robot could properly detect features and generate motions to pull forward from a high position, reproducing the situation in the goal image.
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allowing it to consider combinations of tools, objects, and actions
necessary to achieve its goal effects. This study is valuable as a
novel robot control system. At first, the tool-use model does not
require pre-calculation or pre-definition of tools and objects, nor
motor command instructions from humans. We can assign tasks
just by providing a goal image. Second, we can construct the tool-
use model with relatively small training cost and make the model
adaptable to unknown targets. Our work requires 200 training
data for 10.7 s each. It took us only half a day to record that data.
On the other hand, like methods using reinforcement learning
require a large amount of training data, and it is difficult to record
the data with actual robots. Studies that use simulation
environments can overcome the difficulty of collecting data,
however the difficulty of having to make up for the gaps from
the real environment remains. In addition, our tool-use model
shows broader generalization capabilities compared to previous
studies. By acquiring the relationships among the four factors, our
model has achieved what was not realized in many other research:
it can handle both tools and objects which are unknown, and it
can flexibly adjust actions in real time. Finally, multimodal
learning solved the occlusion problem, and increased the range
of objects that can be handled and the actions that can be taken.
In the previous study Ref. Saito et al. (2018a), the adopted
sensor was only image without force, so they could not use small
objects and had many restrictions on the types of actions,
because if an object was occluded by the arm, it would be
misrecognized. Thanks to these achievement, our model can
contribute to the realization of robots that can handle various
tasks, it can greatly impact practical applications for robots in
everyday environments. It is also useful for production at small
quantities and wide variety.

However, there are some limitations in this work. First, tools
and objects that change features like color, shape, or size during
movement cannot be used, because it is difficult to explore Cs(0)
values and detect the features if the goal image significantly differs
from the initial image. Second, if objects or tools significantly differ
from the trained ones, it will be difficult to handle them. If the
appearances of them or effects are completely different, the feature
extraction module and the motion generation module need to be

trained again. Moreover, if their weights are too light or friction is
too small, making them too easy to move. The robot would then
struggle to operate them, because the motion generation model
cannot predict next joint angles that largely differ from current
ones, so there is a limit to the speed range that can be output.

In future studies, we will improve the tool-use model so that
robots select tools suited to the situations and objects. In this
model, the robot is initially grasping a tool, so while the robot
considers how to move to accomplish its task, it does not consider
tool selection. Reference Saito et al. (2018b) focused on only tool
selection without considering relationships between objects, so we
will combine these two studies so that robots must consider both
how to move and which tool is best suited to accomplishing the
task. Another area for future work is to have robots come up with
novel ways to use tools. Realizing that ability would allow robots to
use whatever tools happen to be available without instructions on
their use, possibly generating unexpected behaviors.

7 CONCLUSION

We realized a robot that could acquire the relationships among
tools, objects, actions and effects enabling tool-use, even for tools
and objects being seen for the first time. The tool-use model
learns sensorimotor coordination and the relationships among
the four factors by training with data recorded during tool-use
experiences. Unlike previous studies, our DNN model can
simultaneously consider tools, objects, actions, and effects with
no pre-definitions. Moreover, the robot can treat unknown tools
and objects based on the relationships by generalizability of the
tool-use model. Another advantage is that the robot can generate
motions step-by-step, not just by choosing and replaying
designed motor commands, so the robot can adjust its
motions to cope with uncertain situations. Finally, the robot
can find task goals and accomplish them just by providing goal
images. This is one of the easiest ways to demonstrate to the robot
the desired position and orientation. We confirmed the accuracy
and generalization ability of the tool-use model with real robot
experiments.

FIGURE 10 | Decoded images using predicted image features output from the motion generationmodule. The original camera images are taken during the movement
dealing with the unknown tools and the objects shown in the bottom of Figure 2. Although the decoded images shows similar color of the training tools and objects since the
feature extraction module recognizes their features based on the training ones, they represent the shape, size, position, and orientation of the tools and objects in the robot
camera view. They also show the position of the robot arm. It can be confirmed that the motion was generated while capturing the real time state during the movement.
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