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Abstract

Motivation: Recombinant protein production is a widely used technique in the biotechnology and biomedical indus-
tries, yet only a quarter of target proteins are soluble and can therefore be purified.

Results: We have discovered that global structural flexibility, which can be modeled by normalized B-factors, accur-
ately predicts the solubility of 12 216 recombinant proteins expressed in Escherichia coli. We have optimized these
B-factors, and derived a new set of values for solubility scoring that further improves prediction accuracy. We call
this new predictor the ‘Solubility-Weighted Index’ (SWI). Importantly, SWI outperforms many existing protein solu-
bility prediction tools. Furthermore, we have developed ‘SoDoPE’ (Soluble Domain for Protein Expression), a web
interface that allows users to choose a protein region of interest for predicting and maximizing both protein expres-
sion and solubility.

Availability and implementation: The SoDoPE web server and source code are freely available at https://tisigner.
com/sodope and https://github.com/Gardner-BinfLab/TISIGNER-ReactJS, respectively. The code and data for repro-
ducing our analysis can be found at https://github.com/Gardner-BinfLab/SoDoPE_paper_2020.

Contact: chunshen.lim@otago.ac.nz

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High levels of protein expression and solubility are two major
requirements of successful recombinant protein production
(Esposito and Chatterjee, 2006). However, recombinant protein
production is a challenging process. Almost half of recombinant
proteins fail to be expressed and half of the successfully expressed
proteins are insoluble (http://targetdb.rcsb.org/metrics/). These fail-
ures hamper protein research, with particular implications for struc-
tural, functional and pharmaceutical studies that require soluble and
concentrated protein solutions (Hou et al., 2018; Kramer et al.,
2012). Therefore, solubility prediction and protein engineering for
enhanced solubility is an active area of research. Notable protein en-
gineering approaches include mutagenesis, truncation (i.e. expres-
sion of partial protein sequences) or fusion with a solubility-
enhancing tag (Chan et al., 2010; Costa et al., 2014; Esposito and
Chatterjee, 2006; Kramer et al., 2012; Trevino et al., 2007; Waldo,
2003).

Protein solubility, in part, depends upon extrinsic factors such as
ionic strength, temperature and pH, as well as intrinsic factors—
the physicochemical properties of the protein sequence and
structure, including molecular weight, amino acid composition,

hydrophobicity, aromaticity, isoelectric point, structural propen-
sities and the polarity of surface residues (Chiti et al., 2003; Diaz
et al., 2010; Tartaglia et al., 2004; Wilkinson and Harrison, 1991).
Many solubility prediction tools have been developed around these
features using statistical models (e.g. linear and logistic regression)
or other machine learning models (e.g. support vector machines and
neural networks) (Habibi et al., 2014; Hebditch et al., 2017;
Heckmann et al., 2018; Hirose and Noguchi, 2013; Sormanni et al.,
2017; Wu et al., 2019; Yang et al., 2019).

In this study, we investigated the experimental outcomes of
12 216 recombinant proteins expressed in Escherichia coli from the
‘Protein Structure Initiative: Biology’ (PSI: Biology) (Acton et al.,
2005; Chen et al., 2004). We showed that protein structural flexibility
is more accurate than other protein sequence properties in solubility
prediction (Craveur et al., 2015; Vihinen et al., 1994). Flexibility is a
standard feature appears to have been overlooked in previous solubil-
ity prediction attempts. On this basis, we derived a set of 20 values
for the standard amino acid residues and used them to predict solubil-
ity. We call this new predictor the ‘Solubility-Weighted Index’ (SWI).
SWI is a powerful predictor of solubility, and a good proxy for global
structural flexibility. In addition, SWI outperforms many existing de
novo protein solubility prediction tools.
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2 Materials and methods

2.1 Data
We retrieved 12 216 PSI: Biology entries from the DNASU database
(Acton et al., 2005; Chen et al., 2004; Seiler et al., 2014). These pro-
teins were previously expressed in E.coli using pET21_NESG or
pET15_NESG expression vectors (N¼8780 and 3436, respective-
ly). For validation, we used the solubility data of E.coli proteins
from eSOL (N¼3198; http://www.tanpaku.org/tp-esol/index.php?
lang¼en) (Niwa et al., 2009). See also Supplementary Figure S1 and
Table S1A.

In addition, we downloaded the ‘stickiness’ data of 397 E.coli
proteins to examine the effects of surface amino acid residues
(http://www.weizmann.ac.il/Structural_Biology/faculty_pages/
ELevyintDef/interface_def.html) (Levy et al., 2012).

2.2 Protein sequence properties
The standard protein sequence properties were calculated using the
Bio.SeqUtils.ProtParam module of Biopython v1.73 (Cock et al.,
2009). All miscellaneous protein sequence properties were computed
using the R package protr v1.6-2 (Xiao et al., 2015).

2.3 Protein solubility prediction
We used the standard and miscellaneous protein sequence properties
to predict the solubility of the PSI: Biology and eSOL targets. For
method comparison, we chose the protein solubility prediction tools
that are scalable (Table 1). Default configurations were used for run-
ning the command line tools.

To benchmark the wall time of solubility prediction tools, we
selected 10 sequences that span a large range of lengths from the
PSI: Biology and eSOL datasets (from 36 to 2389 residues). All the
tools were run and timed using a single process without using GPUs
on a high performance computer [/usr/bin/time -f ‘%E’
<command>; CentOS Linux 7 (Core) operating system, 72 cores in
2�Broadwell nodes (E5-2695v4, 2.1 GHz, dual socket 18 cores per
socket), 528 GiB memory]. Single sequence fasta files were used as
input files.

2.4 SWI
To improve protein solubility prediction, we optimized Smith et al.’s
normalized B-factors using the PSI: Biology dataset (Fig. 2). To
avoid including homologous sequences in the test and training sets,
we clustered the PSI: Biology targets using USEARCH v11.0.667,
32-bit (Edgar, 2010). His-tag sequences were removed from all
sequences before clustering to avoid false cluster inclusions. We
obtained 5050 clusters using the parameters: -cluster_fast
<input_file> -id 0.4 -msaout <output_file> -threads 4. These clus-
ters were grouped into 10 subsets with �1200 sequences per subset
manually. The subsequent steps were carried out using sequences
with His-tags.

We iteratively refined the weights of amino acid residues
for solubility scoring using a 10-fold cross-validation, in which a
maximized Area Under the ROC Curve (AUC) was the target
(Fig. 2A). Since AUC is non-differentiable, we used the Nelder–
Mead optimization method (implemented in SciPy v1.2.0), which is
a derivative-free, heuristic, simplex-based optimization (Millman
and Aivazis, 2011; Nelder and Mead, 1965; Oliphant, 2007). For
each step in cross-validation, we used bootstrap resamplings con-
taining 1000 soluble and 1000 insoluble proteins. Optimization was
carried out for each sample, giving 1000 sets of weights. The arith-
metic mean of these weights was used to determine the training and
test AUC for the cross-validation step.

2.5 Bit score
To examine the enrichment of amino acid residues in soluble and in-
soluble proteins, we compute the bit scores for each residue in the
PSI: Biology soluble and insoluble groups (Supplementary Fig. S7A).
The count of each residue (x) in each group was normalized by the
total number of residues in that group. We used the normalized

count of amino acid residues using the eSOL E.coli sequences as the
background. The bit score of residue x for soluble or insoluble group
is then given by the following equation:

bit scoreðxiÞ ¼ log 2
fiðxÞ

feSOLðxÞ
; i ¼ ½soluble; insoluble� (5)

where fiðxÞ is the normalized count of residue x in the PSI: Biology
soluble or insoluble group and feSOLðxÞ is the normalized count in
the eSOL sequences.

For a control, random protein sequences were generated with
incremental lengths, starting from a length of 50 residues to 6000
residues with a step size of 50 residues. A hundred random sequen-
ces were generated for each length, giving a total of 12 000 unique
random sequences.

2.6 The SoDoPE web server
To estimate the probability of solubility using SWI, we fitted the fol-
lowing logistic regression to the PSI: Biology dataset:

probability of solubility ¼ 1

1þ expð�ðaxþ bÞÞ (6)

where x is the SWI of a given protein sequence, a¼81.05812 and
b ¼ �62:7775. The P-value of log-likelihood ratio test was below
machine’s underflow level. Equation (6) can be used to predict the
solubility of a protein sequence given that the protein is successfully
expressed in E.coli (Supplementary Table S8).

On this basis, we developed a solubility prediction web service
called SoDoPE (Soluble Domain for Protein Expression). Our web
server accepts either a nucleotide or amino acid sequence. Upon se-
quence submission, a query is sent to the HMMER web server to an-
notate protein domains (https://www.ebi.ac.uk/Tools/hmmer/)
(Potter et al., 2018). Once the protein domains are identified, users
can choose a domain or any custom region (including full-length se-
quence) to examine the probability of solubility, flexibility and
Grand Average of Hydropathy (GRAVY). This functionality enables
protein biochemists to plan their experiments and opt for the
domains or regions with high probability of solubility. Furthermore,
we implemented a simulated annealing algorithm that maximized
the probability of solubility for a given region by generating a list of
regions with extended boundaries. Users can also predict the im-
provement in solubility by selecting a commonly used solubility tag
or a custom tag.

We linked SoDoPE with TIsigner, which is our existing web ser-
ver for optimizing the accessibility of translation initiation site
(Bhandari et al., 2019). This pipeline allows users to predict and op-
timize both protein expression and solubility for a gene of interest.
The SoDoPE web server is freely available at https://tisigner.com/
sodope.

2.7 Statistical analysis
Data analysis was done using Pandas v0.25.3 (McKinney,
2010), scikit-learn v0.20.2 (Pedregosa et al., 2011), numpy
v1.16.2 (van der Walt et al., 2011) and statsmodel v0.10.1
(Seabold and Perktold, 2010). Plots were generated using
Matplotlib v3.0.2 (Hunter, 2007) and Seaborn v0.9.0 (Waskom
et al., 2014).

2.8 Code and data availability
Jupyter notebook of our analysis can be found at https://github.com/
Gardner-BinfLab/SoDoPE_paper_2020. The source code for our
solubility prediction server (SoDoPE) can be found at https://github.
com/Gardner-BinfLab/TISIGNER-ReactJS.
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3 Results

3.1 Global structural flexibility performs well at

predicting protein solubility
We sought to understand what makes a protein soluble, and de-
velop a fast and accurate approach for solubility prediction.
To determine which protein sequence properties can accurately
predict protein solubility, we analyzed 12 216 target proteins
from over 196 species that were expressed in E.coli (Acton et al.,
2005; Chen et al., 2004) (the PSI: Biology dataset; see
Supplementary Fig. S1 and Table S1A). These proteins were
expressed either with a C-terminal or N-terminal polyhistidine fu-
sion tag (pET21_NESG and pET15_NESG expression vectors,
N¼8780 and 3436, respectively). The protein entries were previ-
ously curated and classified as ‘Protein_Soluble’ or
‘Tested_Not_Soluble’ (Seiler et al., 2014), based on the soluble
analysis of cell lysate using SDS-PAGE (Xiao et al., 2010). Both
the expression system and solubility analysis method are routinely
used in the labs (Costa et al., 2014). This large collection of data-
set captures a wide variety of protein solubility issues.

We evaluated nine standard and 9920 miscellaneous protein se-
quence properties using the Biopython’s ProtParam module and
‘protr’ R package, respectively (Cock et al., 2009; Xiao et al., 2015).
For example, the standard properties include the GRAVY, second-
ary structure propensities, protein structural flexibility, etc., whereas
miscellaneous properties include amino acid composition, autocor-
relation, etc. Strikingly, protein structural flexibility outperformed
other features in solubility prediction (AUC¼0.67; Fig. 1,
Supplementary Fig. S2 and Table S2).

3.2 The SWI is an improved predictor of solubility
Protein structural flexibility, in particular, the flexibility of local
regions, is often associated with function (Craveur et al., 2015). The
local flexibility of an amino acid residue i can be written as:

fi ¼
1

5:25
� ½Bi þ 0:8125ðBi�1 þ Biþ1Þ

þ0:625ðBi�2 þ Biþ2Þ þ 0:4375ðBi�3 þ Biþ3Þ
þ0:25ðBi�4 þ Biþ4Þ�

(1)

where Bi denotes the normalized B-factor of amino acid residue
i. These normalized B-factors were previously derived from the
B-factors extracted from protein crystal structures (Karplus and
Schulz, 1985; Ragone et al., 1989; Smith et al., 2003; Vihinen et al.,
1994) (see also Supplementary Material). These normalized
B-factors can be applied to any protein sequences without crystallo-
graphic data for flexibility prediction, e.g. as implemented in
Biopython.

To predict global protein structural flexibility F (as in Fig. 1),
F can be calculated as the sliding window average of normalized

B-factors (i.e. the arithmetic mean of fi) (Cock et al., 2009; Vihinen
et al., 1994).

F ¼ hfii (2)

Therefore, we can simplify Equation (1) by setting f 0i ¼ Bi like a
zeroth-order Markov model. The simplified global flexibility F0 is
then the arithmetic mean of normalized B-factors (see
Supplementary Material for mathematical proof).

F0 ¼ hf 0ii ¼ hBii (3)

We found a strong correlation between F and F0 for the PSI:
Biology dataset (Spearman’s rho¼0.98, P-value below machine’s
underflow level). Hence, the sliding window approach [Equations
(1) and (2)] is not necessary for this purpose.

We applied this arithmetic mean approach (i.e. sequence
composition scoring) to the PSI: Biology dataset using four sets
of previously published, normalized B-factors (Bhaskaran and
Ponnuswamy, 1988; Ragone et al., 1989; Smith et al., 2003;
Vihinen et al., 1994). Among these sets of B-factors, sequence com-
position scoring using the most recently published set of normalized
B-factors produced the highest AUC score (AUC¼0.66;
Supplementary Fig. S3).

To improve the prediction accuracy of solubility, we iteratively
refined the weights of amino acid residues using the Nelder–Mead
optimization algorithm (Nelder and Mead, 1965) (Fig. 2). Smith
et al.’s normalized B-factors were used as initial weights. To avoid
testing and training on similar sequences, we generated 10 cross-
validation sets with a maximized heterogeneity between these sub-
sets (i.e. no similar sequences between subsets). We clustered all
12 216 PSI: Biology protein sequences by a 40% similarity threshold
using USEARCH to produce 5050 clusters with remote between-
cluster similarity (see Section 2 and Supplementary Fig. S4). The
clusters were grouped into 10 cross-validation sets of �1200 sequen-
ces each. As about 12% of clusters contain a mix of soluble and in-
soluble proteins, we avoided selecting a representative sequence for
each cluster (Supplementary Fig. S4C). Furthermore, to avoid over-
fitting due to sequence similarity and imbalanced classes, we per-
formed 1000 bootstrap resamplings for each cross-validation step
(Fig. 2A and Supplementary Fig. S5). We calculated the solubility
scores using the optimized weights and the AUC scores for each
cross-validation step as shown in Figure 2A. Our training and test
AUC scores were 0.72 6 0.00 and 0.71 6 0.01, respectively, show-
ing a 7.5% improvement over flexibility in solubility prediction
(mean 6 standard deviation; Fig. 2B and Supplementary Table S3).

The final weights were derived from the arithmetic means of the
weights for individual amino acid residues obtained from cross-
validation (Fig. 2 and Supplementary Table S4). We observed over a
20% change on the weights for cysteine (C) and histidine (H) resi-
dues (Fig. 2C and Supplementary Table S4). These results are in
agreement with the contributions of cysteine and histidine residues
as shown in Supplementary Figure S2B. We call the solubility score
of a protein sequence calculated using the final weights the SWI:

SWI ¼ hWii (4)

where Wi is the optimized weight of residue i.
To validate the cross-validation results, we used a dataset inde-

pendent of the PSI: Biology known as eSOL (Niwa et al., 2009)
(Supplementary Table S1B). This dataset consists of the solubility
percentages of E.coli proteins determined using an E.coli cell-free
system (N¼3198). Our solubility scoring using the final weights
showed a significant improvement in correlation with E.coli protein
solubility over the initial weights (Smith et al.’s normalized
B-factors) [Spearman’s rho of 0.50 (P¼2:51� 10�205) versus 0.40
(P¼4:57� 10�120)]. We repeated the correlation analysis by
removing extra amino acid residues including His-tags from the
eSOL sequences (MRGSHHHHHHTDPALRA and GLCGR at the
N- and C-termini, respectively). This artificial dataset was created
based on the assumption that His-tags have little effect on solubility.
We observed a slight decrease in correlation for this artificial dataset
(Spearman’s rho¼0.47, P¼3:67� 10�176), which may be due to

Fig. 1. Global structural flexibility outperforms other standard protein sequence

properties in protein solubility prediction. ROC analysis of the standard protein se-

quence features for predicting the solubility of 12 216 recombinant proteins

expressed in E.coli (the PSI: Biology dataset). The ROC curves are shown in two

separate panels for clarity. AUC scores (perfect¼1.00, random¼0.50) are shown

in parentheses. Dashed lines denote the performance of random classifiers. See also

Supplementary Figure S2 and Table S2. AUC, Area Under the ROC Curve;

GRAVY, Grand Average of Hydropathy; PSI: Biology, Protein Structure Initiative:

Biology; ROC, Receiver Operating Characteristic
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Table 1. Comparison of protein solubility prediction methods and software

Approaches Features Wall time

(s per sequence)a

PSI: Biology

(AUC)b

eSOL

[Rs (P-value)]

SWI Arithmetic mean (this study).

Sequence composition scoring using a set of 20

values for amino acid residues derived from

Smith et al.’s normalized B-factors.

Trained and tested using the PSI: Biology data-

set curated by DNASU (Seiler et al., 2014).

Available at https://tisigner.com/sodope and

https://github.com/Gardner-BinfLab/

SoDoPE_paper_2020.

1 0.00 6 0.00 0.71 6 0.01 0.50 (2.51� 10�205)

Protein-Sol Linear model (Hebditch et al., 2017).

Trained and tested using eSOL dataset

(Niwa et al., 2009).

Available at https://protein-sol.manchester.ac.

uk/.

10 1.16 6 0.75 0.68 6 0.02 0.54 (2.37 3 102240)

Flexibility A sliding window of nine amino acid residues

using Vihinen et al.’s normalized B-factors.

Available at https://github.com/biopython/

biopython.

1 0.38 6 0.04 0.67 6 0.02 0.37 (7.73� 10�106)

DeepSol S2 Neural network models (Khurana et al.,

2018)c.

Trained and tested using a PSI: Biology

dataset curated by ccSOL omics (Agostini

et al., 2014).

Available at https://github.com/sameerkhur

ana10/DSOL_rv0.2.

57 (11 types) 2069.77 6 1613.63 0.67 6 0.02 0.23 (5.82� 10�41)

DeepSol S3 2075.93 6 1613.80 0.66 6 0.02 0.35 (7.48� 10�91)

DeepSol S1 2081.93 6 1612.71 0.64 6 0.03 0.39 (9.52� 10�116)

CamSol intrinsic

web server

Linear and logistic regression models

(Sormanni et al., 2015, 2017).

Trained and tested using previously

published datasets (Famı́lia et al.,

2015).Available at http://www-vendruscolo.

ch.cam.ac.uk/camsolmethod.html.

4 NA 0.66 6 0.01 0.44 (4.53� 10�148)

PaRSnIP Gradient boosting machine model (Rawi et al.,

2018).

Trained and tested using a PSI: Biology dataset

curated by ccSOL omics (Agostini et al.,

2014).

Available at https://github.com/RedaRawi/

PaRSnIP.

8477 (14 types) 2055.50 6 1621.11 0.61 6 0.02 0.29 (3.57� 10�65)

Wilkinson–Harrison

model

Linear model using charge average and turn-

forming residue fraction (Wilkinson and

Harrison, 1991; Davis et al., 1999;

Harrison, 2000).

Available at https://github.com/brunoV/bio-

tools-solubility-wilkinson.

2 0.09 6 0.00 0.55 6 0.03 –0.06 (1.16� 10�4)

ccSOL omics web

server

Support vector machine model (Agostini et al.,

2014).

Trained and tested using a PSI: Biology dataset

curated in-house.

Available at http://s.tartaglialab.com/new_sub

mission/ccsol_omics_file.

5 NA 0.51 6 0.01 –0.02 (0.18)

Note: Boldface values are the best results.

AUC, Area Under the ROC Curve; NA, not applicable; PDB, Protein Data Bank; PSI: Biology, Protein Structure Initiative: Biology; ROC, Receiver Operating

Characteristic; Rs, Spearman’s rho; SWI, Solubility-Weighted Index; s, seconds.
aThe wall time was reported at the level of machine precision (mean seconds 6 standard deviation). A total of 10 sequences were chosen from the PSI: Biology

and eSOL datasets, related to Figure 4B and Supplementary Table S7 (see Section 2).
bFor SWI, mean AUC 6 standard deviation was calculated from a 10-fold cross-validation (see Section 2). For other tools, no cross-validations were done as

the AUC scores were calculated directly from the individual subsets used for cross-validation.
cDeepSol reports solubility prediction as probability and binary classes. The probability of solubility was used to calculate AUC and Spearman’s correlation

due to better results.
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the effects of His-tags in solubility and/or the limitation(s) of our ap-
proach that may overfit to His-tag fusion proteins.

We performed Spearman’s correlation analysis for both the PSI:
Biology and eSOL datasets. SWI shows the strongest correlation
with solubility compared to the standard and 9920 miscellaneous se-
quence properties (Fig. 3 and Supplementary Fig. S2, respectively;
see also Supplementary Tables S2B, S5 and S6). SWI strongly corre-
lates with flexibility, suggesting that SWI is also a good proxy for
global structural flexibility.

We asked whether protein solubility can be predicted by surface
amino acid residues. To address this question, we examined a previ-
ously published dataset for the protein surface ‘stickiness’ of 397
E.coli proteins (Levy et al., 2012). This dataset has the annotation
for surface residues based on previously solved protein crystal struc-
tures. We observed little correlation between the protein surface
‘stickiness’ and the solubility data from eSOL (Spearman’s
rho¼0.05, P¼0.34, N¼348; Supplementary Fig. S6A). Next, we
evaluated if amino acid composition scoring using surface residues is
sufficient, in which optimizing only the weights of surface residues
should achieve similar or better results than SWI. As above,

we iteratively refined the weights of surface residues using the
Nelder–Mead optimization algorithm. The method was initialized
with Smith et al.’s normalized B-factors and a maximized correl-
ation coefficient was the target. However, a low correlation was
obtained upon convergence (Spearman’s rho¼0.18,
P¼7:20� 10�4; Supplementary Fig. S6B). In contrast, the SWI of
the full-length sequences has a much stronger correlation with solu-
bility (Spearman’s rho¼0.46, P¼2:97� 10�19; Supplementary Fig.
S6C). These results show that the full-length of sequences contrib-
utes to protein solubility, not just surface residues, suggesting that
solubility is modulated by cotranslational folding (Davis et al.,
1999; Natan et al., 2018).

To understand the properties of soluble and insoluble proteins,
we determined the enrichment of amino acid residues in the PSI:
Biology targets relative to the eSOL sequences (see Section 2). We
observed that the PSI: Biology targets are enriched in charged resi-
dues lysine (K), glutamate (E) and aspartate (D), and depleted in
aromatic residues tryptophan (W), albeit to a lesser extend for insol-
uble proteins (Supplementary Fig. S7A). As expected, cysteine resi-
dues (C) are enriched in the PSI: Biology insoluble proteins,

Fig. 2. Derivation of the SWI. (A) Flow chart shows an iterative refinement of the weights of amino acid residues for solubility prediction. Each cross-validation step used separ-

ate sequence similarity clusters for training and testing. Furthermore, bootstrapping was used to resample each training set, avoiding training and testing on similar sequences.

The solubility scores of protein sequences were calculated using a sequence composition scoring approach. These scores were used to compute the AUC scores for training and

test datasets. (B) Training and test performance of solubility prediction using optimized weights for 20 amino acid residues in a 10-fold cross-validation (mean

AUC 6 standard deviation). Related data and figures are available as Supplementary Table S3 and Figures S4 and S5. (C) Comparison between the 20 initial and final weights

for amino acid residues. The final weights W ¼ hVii; 1 � i � 10 were used to calculate the solubility score of a protein sequence (SWI) in the four subsequent analyses. Filled

circles, which represent amino acid residues, are colored by hydrophobicity (Kyte and Doolittle, 1982). Solid black circles denote aromatic residues phenylalanine (F), tyrosine

(Y), tryptophan (W). Dotted diagonal line represents no change in weight. See also Supplementary Table S4. AUC, Area Under the ROC Curve; ROC, Receiver Operating

Characteristic. (Color version of this figure is available at Bioinformatics online.)

Solubility-Weighted Index 4695

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa578#supplementary-data


supporting previous findings that cysteine residues contribute to
poor solubility in the E.coli expression system (Diaz et al., 2010;
Wilkinson and Harrison, 1991).

In addition, we compared the distributions of the SWI scores of
soluble and insoluble proteins in the PSI: Biology and eSOL datasets.
We included an analysis of random sequences to confirm whether
SWI can distinguish between biological and random sequences. In
general, the SWI scores of soluble proteins are higher than those of
insoluble proteins (Supplementary Fig. S7B), and the SWI scores of

true biological sequences are higher than those of random sequen-
ces, addressing our concern about the potential flaw of this position
independent, sequence composition scoring approach.

3.3 SWI outperforms many protein solubility

prediction tools
To confirm the usefulness of SWI in solubility prediction, we compared
SWI with the existing tools CamSol v2.1 (Sormanni et al., 2015,

Fig. 3. SWI strongly correlates with protein solubility. (A) Correlation matrix plot of the solubility of recombinant proteins expressed in E.coli and their standard protein se-

quence properties and SWI. These recombinant proteins are the PSI: Biology targets (N¼12 216) with a binary solubility status of ‘Protein_Soluble’ or ‘Tested_Not_Soluble’.

Related data are available as Supplementary Table S5. (B) Correlation matrix plot of the solubility percentages of E.coli proteins and their standard protein sequence properties

and SWI. The solubility percentages were previously determined using an E.coli cell-free system (eSOL, N¼3198). Related data are available as Supplementary Table S6.

GRAVY, Grand Average of Hydropathy; PSI: Biology, Protein Structure Initiative: Biology; Rs, Spearman’s rho; SWI, Solubility-Weighted Index

Fig. 4. SWI outperforms existing protein solubility prediction tools. (A) Prediction accuracy of solubility prediction tools using the above cross-validation sets (Fig. 2A). For

SWI, the test AUC scores were calculated from a 10-fold cross-validation (i.e. a boxplot representation of Fig. 2B). For other tools, no cross-validations were done as the AUC

scores were calculated directly from the individual subsets used for cross-validation. CamSol and ccSOL omics are only available as web servers (no fill colors). (B) Wall time

of protein solubility prediction tools per sequence (log scale). All command line tools were run three times using 10 sequences selected from the PSI: Biology and eSOL datasets.

Related data are available as Supplementary Table S7. AUC, Area Under the ROC Curve; PSI: Biology, Protein Structure Initiative: Biology; ROC, Receiver Operating

Characteristic; SWI, Solubility-Weighted Index; s, seconds. (Color version of this figure is available at Bioinformatics online.)
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2017), ccSOL omics (Agostini et al., 2014), DeepSol v0.3 (Khurana
et al., 2018), PaRSnIP (Rawi et al., 2018), Protein-Sol (Hebditch et al.,
2017) and the Wilkinson–Harrison model (Davis et al., 1999;
Harrison, 2000; Wilkinson and Harrison, 1991). We did not include
the specialized tools that model protein structural information such as
surface geometry, surface charges and solvent accessibility because
these tools require prior knowledge of protein tertiary structure. For
example, Aggrescan3D and SOLart accept only PDB files that can be
either downloaded from the Protein Data Bank or produced using a
homology modeling program (Hou et al., 2019; Kuriata et al., 2019).

SWI outperforms other tools except for Protein-Sol in predicting
E.coli protein solubility (Fig. 4A and Table 1). The test AUC scores
of SWI were also less variable than most of the other tools, suggest-
ing that SWI is less prone to overfitting (Figs 2A and 4A). Our SWI
C program is also the fastest solubility prediction algorithm
(Fig. 4B, Table 1 and Supplementary Table S7).

4 Discussion

The profile of normalized B-factors along a protein sequence can be
used to infer the flexibility and dynamics of the protein structure
(Karplus and Schulz, 1985; Vihinen et al., 1994). Protein structural
flexibility has been associated with conformal variations, functions,
thermal stability, ligand binding and disordered regions (Ma, 2005;
Radivojac, 2004; Schlessinger and Rost, 2005; Teague, 2003;
Vihinen, 1987; Yin et al., 2011; Yuan et al., 2005). However, the
use of flexibility in solubility prediction has been overlooked al-
though their relationship has previously been noted (Tsumoto et al.,
2003). In this study, we have shown that flexibility strongly corre-
lates with solubility (Fig. 3). Based on the normalized B-factors used
to compute flexibility, we have derived a new position and length in-
dependent weights to score the solubility of a given protein sequence
(i.e. sequence composition-based score). We call this protein solubil-
ity score as SWI.

Upon further inspection, we observe some interesting properties
in SWI. SWI anti-correlates with helix propensity, GRAVY, aroma-
ticity and isoelectric point (Figs 2C and 3), suggesting that SWI
incorporates the key propensities affecting solubility. Amino acid
residues with a lower aromaticity or hydrophilic are known to im-
prove protein solubility (Han et al., 2019; Kramer et al., 2012;
Niwa et al., 2009; Trevino et al., 2007; Warwicker et al., 2014;
Wilkinson and Harrison, 1991). Consistent with previous studies,
the charged residues aspartate (D), glutamate (E) and lysine (K) are
associated with high solubility, whereas the aromatic residues
phenylalanine (F), tryptophan (W) and tyrosine (Y) are associated
with low solubility (Fig. 2C and Supplementary Fig. S7). Cysteine
residue (C) has the lowest weight, probably because disulfide bonds
could not be properly formed in the E.coli expression hosts (Aslund
and Beckwith, 1999; Jia and Jeon, 2016; Rosano and Ceccarelli,
2014; Stewart et al., 1998). The weights are likely different if the
solubility analysis was done using the reductase-deficient, E.coli
Origami host strains or eukaryotic hosts.

Higher helix propensity has been reported to increase solubility
(Huang et al., 2012; Idicula-Thomas and Balaji, 2005). However,
our analysis has shown that helical and turn propensities anti-
correlate with solubility, whereas sheet propensity lacks correlation
with solubility, suggesting that disordered regions may tend to be
more soluble (Fig. 3). In accordance with these, SWI has stronger
negative correlations with helix and turn propensities. Our findings
also suggest that protein solubility can be largely explained by over-
all amino acid composition, not just the surface amino acid residues.
This idea aligns with our understanding that protein solubility and
folding are closely linked, and folding occurs cotranslationally, a
complex process that is driven various intrinsic and extrinsic factors
(Chiti et al., 2003; Davis et al., 1999; Diaz et al., 2010; Natan et al.,
2018; Tartaglia et al., 2004; Wilkinson and Harrison, 1991).
However, it is unclear why sheet propensity has little contribution
to solubility as b-sheets have been shown to link closely with protein
aggregation (Idicula-Thomas and Balaji, 2005).

We conclude that SWI is a well-balanced index that is derived
from a simple sequence composition scoring method. To demonstrate

the usefulness of SWI, we developed a web server called SoDoPE
(https://tisigner.com/sodope). SoDoPE calculates the probability of
solubility of a user-selected region based on SWI, which can either be
a full-length or a partial sequence (see Section 2 and Supplementary
Table S8). This implementation is based on our observation that
some protein domains tend to be more soluble than the others, and
these soluble domains may enhance protein solubility as a whole. To
demonstrate this point, we used SoDoPE to analyze three commercial
monoclonal antibodies and the proteomes of the severe acute respira-
tory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) (Marra
et al., 2003; Wang et al., 2009; Wu et al., 2020) (Supplementary Figs
S8 and S9). SoDoPE also provides options for solubility prediction at
the presence of solubility-enhancing tags. Similarly, these fusion tags
may act as soluble ‘protein domains’ that can outweigh the aggrega-
tion propensity of insoluble proteins. However, some soluble fusion
proteins may become insoluble after proteolytic cleavage of solubility
tags (Lebendiker and Danieli, 2014). In addition, SoDoPE is inte-
grated with TIsigner, a web service for optimizing protein expression
(Bhandari et al., 2019). This pipeline provides a holistic approach to
improve the outcome of recombinant protein expression.
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