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Metabolic profiling reveals
new serum signatures
to discriminate lupus
nephritis from systemic
lupus erythematosus

Yamei Zhang1†, Lingling Gan1†, Jie Tang1, Dan Liu2,
Gang Chen1*† and Bei Xu1*†

1Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of
Electronic Science and Technology of China, Mianyang, China, 2Department of Pathology,
Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang, China
Background: Lupus nephritis (LN) occurs in 50% of patients with systemic lupus

erythematosus (SLE), causing considerable morbidity and even mortality.

Previous studies had shown the potential of metabolic profiling in the

diagnosis of SLE or LN. However, few metabonomics studies have attempted

to distinguish SLE from LN based on metabolic changes. The current study was

designed to find new candidate serum signatures that could differentiate LN

from SLE patients using a non-targeted metabonomics method based on ultra

high performance liquid chromatography tandem mass spectrometry

(UPLC-MS/MS).

Method: Metabolic profiling of sera obtained from 21 healthy controls, 52 SLE

patients and 43 LN patients. We used SPSS 25.0 for statistical analysis. Principal

component analysis (PCA), partial least squares discriminant analysis (PLS-DA)

and metabolic pathway analysis were used to analyze the metabolic data.

Results: Upon comparison of SLE and LN groups, 28 differential metabolites

were detected, the majority of which were lipids and amino acids.

Glycerolphospholipid metabolism, pentose and glucuronate interconversions

and porphyrin and chlorophyll metabolism were obviously enriched in LN

patients versus those with SLE. Among the 28 characteristic metabolites, five

key serum metabolites including SM d34:2, DG (18:3(9Z,12Z,15Z)/20:5

(5Z,8Z,11Z,14Z,17Z)/0:0), nervonic acid, Cer-NS d27:4, and PC (18:3(6Z,9Z,12Z)/

18:3(6Z,9Z,12Z) performed higher diagnostic performance in discriminating LN

from SLE (all AUC > 0.75). Moreover, combined analysis of neuritic acid, C1q, and

CysC (AUC = 0.916) produced the best combined diagnosis.

Conclusion: This study identified five serum metabolites that are potential

indicators for the differential diagnosis of SLE and LN. Glycerolphospholipid

metabolism may play an important role in the development of SLE to LN. The
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metabolites we screened can provide more references for the diagnosis of LN

and more support for the pathophysiological study of SLE progressed to LN.
KEYWORDS

systemic lupus erythematosus, lupus nephritis, non-targeted metabonomics, high
performance liquid chromatography tandem mass spectrometry, serum signatures
Introduction

Systemic lupus erythematosus (SLE) is an autoimmune

disease in which the immune system attacks its own tissues,

causing widespread inflammation and tissue damage in the

affected organs. Lupus nephritis (LN) is seen in 50% of SLE

patients and is a major cause of morbidity and mortality (1).

Renal biopsy is considered the gold standard for the diagnosis of

LN (2), but for its invasive, repeated biopsy is not safe and is

rarely monitored. Thus, in LN patients,

In recent years, serum or urine biomarkers, such as serum

creatinine, immune related molecules, complement component

C3b and anti-C1q antibodies, which are commonly used in the

evaluation of renal function in patients with LN, have emerged.

However, the markers are not sufficiently sensitive and specific

to reflect the real-time immunopathological reactions of the

renal (3, 4). Accurate diagnosis and active treatment can

maintain the renal function of LN patients, delay the process

of renal fibrosis, and thus delay the occurrence and development

of end-stage renal disease (ESKD) (5). Therefore, new

biomarkers are needed to accurately reflect the diagnostic

efficacy and real-time pathophysiology during the progression

from SLE to LN.

Metabolomics is the analysis of concentration profiles of

low molecular weight metabolites present in biological fluids,

which is a relatively new field including autoimmunity (6). The

prevenient studies had shown the latent capacity of metabolic

profiling in the distinguishing SLE/LN from HC, and multiple

biomarkers have been identified (7–9). In comparison to

healthy individuals, Yuhua Li, et al. found that ceramide,

trimethylamine N-oxide, xanthine, and hydrocortisone were

dramatically altered in SLE serum (8). Additionally, a panel of

three metabolomics (theophylline, oxidized glutathione and

capric acid) was identified as biomarkers of LN (7). In contrast,

small-molecule biomarkers derived from metabolomics have

been rarely studied when it comes to distinguishing SLE from

LN. Until now, only two studies had tested metabolomics for

identifying metabolic changes between SLE and LN (10, 11).

One was the Chronic Kidney Disease Research Center of

Tehran Medical University in Iran (10), but their sample size

was relatively limited, and the experiment was carried out on

urine samples, which the changes in urinary pH, varies of the
02
concentrations of urine, the presence of bacteriuria or urinary

infections could alter the result (12). The other one found

that compared to SLE patients, the LN patients had increased

serum levels of lipid metabolites (including low-density

lipoprotein/very low density lipoprotein) and creatinine, and

decreased levels of acetate (11). Both the two studies were

used 1 H NMR spectroscopy to characterize the altered

metabolic profiles. Together, the in-depth research on small

molecule metabolites and specific metabolic pathways was

relatively insufficient.

Ultra high performance liquid/gas chromatography-tandem

mass spectrometry (UPL/GC-MS/MS respectively) and nuclear

magnetic resonance (NMR) spectroscopy are the most

widespread used analysis in metabolomics research. These

methods have the potential to identify new biomarkers that

had great discrimination to disease status or bioturbation

(13–16). Mass spectrometry is a widely used metabolomics

technology because of its high detection sensitivity,

metabolome coverage and rapid data acquisition turnover.

Moreover, UPLC-MS/MS is especially suitable for large-scale

untargeted metabolic profiling (7). Therefore, this study aims to

explore whether serum metabolomics analyzed by UPLC-MS/

MS can reveal the specific characteristics of the progression from

SLE to LN, so as to provide new candidate serum signatures for

predicting the renal complications of SLE and understanding the

metabolic pathway in the pathogenesis of LN.
Materials and methods

Design, setting and participants

This study had obtained the regulatory approval by the

Ethics Committee of Mianyang Central Hospital. From July to

December in 2021, a total of 116 subjects were enrolled in this

study. The participants were categorized as three groups, healthy

subjects without systemic active disease and renal history were

recruited as the healthy control group (HC group), patients

diagnosed with simple systemic lupus erythematosus without

renal involvement who met the following inclusion criteria were

treated as SLE group and those with renal involvement were

treated as LN group. The HC group included 21 patients, SLE
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group included 52 patients and the LN group included 43

patients All subjects were females.

(1) Inclusion criteria: SLE was diagnosed based on the

systemic lupus erythematosus guidelines by the Ad Hoc

Committee of the American College of Rheumatology (ACR)

(17), defined if at least 4 of the following 11 criteria are met

continuously or simultaneously: the concrete details were

described as previously (17). Patients with clinical and

laboratory representation that satisfied the ACR lupus nephritis

screening, treatment and management guidelines were defined as

LN (18), including continuous proteinuria > 0.5 g/24 hour, or

greater than 3 + if quantitation not perform, and/or cellular casts

(red cell, hemoglobin, granular, tubular, or mixed).

(2) Exclusion criteria: Patients with cancerous tumors,

primary nephrosis, diabetes, cardiovascular diseases, other

rheumatic immune diseases and respiratory diseases.
Sample collection and preparation

Whole blood (5 mL) was collected in sterile coagulation BD

vacuum blood collection tubes in the morning after an overnight

fast. Then gently reversed and mixed the sample for 10 times.

We separated the serum by centrifuge (3000 rpm, 15 min) thirty

minutes later at room temperature. Then about 10ml of

randomly cleaned middle urine should be collected for the

determination of urinary albumin and creatinine ratio

(UACR). The clinical experiment should be accomplished

within 2 hours after the serum samples were centrifuged, and

the metabolomics analysis serum samples should be stored in the

-80°C (19) refrigerator for standby.
Measurement of common kidney
function indicators

We used LABOSPECT008 AS automatic biochemical

analyzer to detect the levels of serum urea (Urea), creatinine

(SCreat), cystatin C (CysC) and complement component 1q

(C1q). Urea was tested with the urease method, SCreat with the

sarcosine oxidase method, CysC and C1q with transmission

turbidimetry. We used SIEMENS BN II specific protein analyzer

to detect the serum levels of C3, C4 by the method of immune

scattering turbidimetry, EUROIMMUN Sprinter XL to detect

serum anti-dsDNA level by immunofluorescence method. The

estimated glomerular filtration rate (eGFR) was calculated by

our research group based on the population of China using the

eGFR formula developed (20), as shown below:

eGFR = 78:64� CysC−0:964

We used a fully automated specific protein analyzer model

A25 to measure the urinary albumin (UAlb) and urinary
Frontiers in Immunology 03
creatinine (UCreat) levels respectively by immunoturbidimetry

and sarcosine oxidase technique. The UACR was calculated as

below:

UACR = UAlb=UCreat
Sample preparation for
UPLC-MS/MS analysis

The serum samples were taken out from the -80°C

refrigerator and slowly reconstituted on ice. The internal

standard for positive and negative ion modes were prepared

from the mixture of clenbuterol and chloramphenicol

respectively. Then a mixture of serum samples (100 mL),
internal standard (5 mL) and methanol-acetonitrile (1:1 v/v)

(400 mL) was incubated at -20°C for 1 hour. The supernatant was

obtained as previously described (21). After the compound was

swirled and centrifuged, the resulting solutions were sterile

filtered using 0.22 µm rated microfiltration membranes. The

filtrate was transferred into an autosample vial, and a 5 µL

aliquot were injected into the UPLC-MS/MS system for

metabolomic analysis. Aliquots of all serum samples (10 µL)

were pooled as part of the system adjustment and quality control

(QC) process to prepare QC samples. The QC samples were

treated in the same manner as the analytical samples and were

introduced every 10 samples in the analytical sequence to

evaluate the reliability of the large-scale metabolomics

analysis (22).
Instrumentation and conditions for
UPLC-MS/MS analysis

Metabolomics analysis was performed on an ultra-

performance liquid chromatography (UPLC) system

(Agilent1290 Infinity II; Agilent Technologies Inc., CA,

USA) connecting to a high-resolution tandem mass

spectrometer (TripleTOF 5600 Plus; AB SCIEX,Framingham,

MA, USA). An ACQUITY HSS T3 column (100 × 2.1 mm, i.d.

1.8 µm; Waters, Milford, USA) were equipped for reversed-

phase separation. Mobile phases were solvent A (water

containing 0.1% formic acid (v/v)) and solvent B

(acetonitrile with 0.1% formic acid (v/v)). Separation was

achieved with the following gradient program: a linear

gradient of 99% A over initial-1.2 min; 99-30% A, 1.2-

4.5 min; 30-1% A, 4.5-13.0 min; 1% A, 13.0-16.5 min; 1-99%

A, 16.5-16.6 min; 99% A, 16.6-20.0 min. The instrumental set-

up included the flow rate at 0.30 mL/min and the temperature

of the column oven was at 30°C. The electrospray ionization

(ESI) probe was operated in both negative (ESI−) and positive

(ESI+) polarity modes. Instrument parameters included as
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follows: declustering potential of ± 80 V; collision energy of ±

10 V; source temperature of 550°C; curtain gas flow of 35 psi;

ion source gas 1 (GS1) and GS2 of 55 psi; and accumulation

time of 0.15 s.
Data analysis of differential metabolites

Data acquisition and processing were performed with the

acquisition software Analyst TF (version 1.7.1, AB SCIEX, USA).

The metabolomics data processing was consists of a serial of

processes, including peak selection, quality assurance,

normalization, missing value interpolation, conversion and

scaling (23, 24). The processed molecular weights of the

metabolites (molecular weight error< 20 ppm) were

confirmed, matched and annotated using a standard database,

custom databases (Metlin, HMDB and ONE-MAP databases),

and other integrated databases to achieve accurate metabolite

characterization. Metabolic pathways associated with SLE and

LN were found categorized using the KEGG database and

MetaboAnalyst (25).
Statistical analysis

We used SPSS 25.0 (International Business Machines Corp.,

USA) for statistical analysis. Normally distributed data were

expressed as mean ± SD. The one-way analysis of variance

(ANOVA) was used for comparisons among multiple groups.

Independent samples T-test was used for comparisons between

two groups. Non-normal distribution measurement data were

expressed as median (interquartile range) [M (P25, P75)].

Comparisons of count data between SLE and LN groups using

the Mann-Whitney U non-parametric test. We used the non-

parametric Spearman rank correlation coefficient for correlation

analysis between metabolites and clinical parameters. A P-value

less than 0.05 denoted statistical significance. Potential

diagnostic biomarker was evaluated by receiver-operating

characteristic (ROC) curves. The area under the ROC curve

(AUC) which is a widely used measure of discrimination in risk

prediction models was reported and compared. We weighed and

summarized the sensitivity and specificity of each variable. In

terms of AUC, it represented the accuracy of the predictive

model, where 1 was denoted 100% sensitivity and specificity,

indicating perfect assignment, whereas an AUC of 0.5 indicated

an unreliable test (grey line) (26).

The multivariate statistical analysis was performed using the

software SIMCA 15.0.2 (Umetrics AB, Umea, Sweden). We

performed principal component analysis (PCA) on UPLC-MS/

MS data using unsupervised non target approach, allowing for

the visualization of the comprehensive metabolome variation

among groups and monitoring the steadiness over time of

transversion (27). The differential metabolites were identified
Frontiers in Immunology 04
using partial least squares-discriminant analysis (PLS-DA). To

avoid overfitting, the model was validated with 200 random

permutation tests, model parameters R2 and Q2 were used to

assess model validity and supply information about interpret-

ability and predictability (28). In PLS-DA model, we selected

metabolites with significant threshold (p<0.05) and folding

change (FC) threshold >1.5 or<2/3, which can significantly

distinguish the two groups. Based on the parameter of variable

importance in the projection (VIP > 1), the key variables that

contributed to classification could be identified (29).

Metabolomics had proposed a definition index to evaluate the

reliability of annotation (30). The metabolites identified in the

current study were defined as “Annotation” (Level 2), without

detailed analysis and verification. This was also consistent with

the formal definition of metabolite annotation and identification in

the Metabolomics Standards Initiative (MSI) proposed by the

Chemical Analysis Working Group (CAWG) (29).
Results

Population and clinical characteristics

?A3B2 tlsb .2pt?>The comparison of the clinical data

including their first symptom, SLEDAI, renal pathological

analysis, therapeutic drugs and laboratory measurements of

patients is shown in Table 1. All laboratory measurements

were normally or approximately normally distributed. In

general, there were statistical differences among the HC, SLE

and LN groups across all indicators (P< 0.05). Through pairwise

comparison and analysis, we found that compared with SLE

group, Urea, SCreat, UA, and CysC in LN group continuous

increased while eGFR decreased (P< 0.05). Even though C1q, C3

and C4 decreased too, the differences were not significant.
The metabolomics data quality analysis

Metabolic profiling of 116 serum samples and 17 QC

samples were acquired using the UPLC-MS/MS system in ESI

+ and ESI- modes. 7527 positive ions and 5555 negative ions

first-order peaks were proposed based on the MS/MS data. Data

quality analysis was carried out before evaluating the differential

metabolites. The stability of QC samples was confirmed by total

ion chromatogram (TIC) and base peak intensity (BPI) diagrams

(Supplementary Figures 1A–D). After QC correction and

removing some abnormal samples, the PCA results of all

samples (including QC samples) revealed that QC samples had

good clustering (Supplementary Figures 2A, B). The results

suggested the satisfactory stability and repeatability of the

analysis platform. The anomaly samples were removed and

differential metabolite analysis was performed by using

characteristic variables with qualitative results.
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Multivariate statistical analysis
of metabolites

The processed data, including the retention time, exact mass,

and peak intensity, were subjected to multivariate statistical

analysis. In total, 2040 metabolite features in ESI+ mode and

606 metabolite features in ESI- mode were analyzed.

Subsequently, the variables were filtered based on the
Frontiers in Immunology 05
interquartile spacing, yielding 1216 metabolites in ESI+ mode

and 454 metabolites in ESI- mode. PCA analysis was performed

after data normalization. Furthermore, the raw data of all

specimen about the HC, SLE and LN groups were illustrated

through the score plot of the PCA. The serum components

separation effect of the three groups were not very significant

(Figures 1A, B). In order to improve the classification effect

among samples, PLS-DA among the three groups were carried
TABLE 1 Clinical data of subjects (n = 116).

SLE (n = 52) LN (n = 43) HC (n = 21) F, P

Gender Female Female Female –

Age (years), Mean ± SD 38.83 ± 14.09 37.72 ± 12.32 49.42 ± 10.33 –

First attack/Recurrence 8/44 1/42 – –

First symptom

Malar Rash (%) 9 (17.31%) 18 (41.86%) – –

Oral ulcer (%) 0 3 (6.98%) – –

Discoid rash (%) 3 (5.77%) 3 (6.98%) – –

Photosensitivity (%) 0 2 (4.65%) – –

Arthritis (%) 14 (26.92%) 16 (37.21%) – –

Serositis (%) 0 3 (6.98%) – –

Renal dysfunction (%) 0 4 (9.30%) – –

Neurological derangements (%) 0 3 (6.98%) – –

Hematologic disorder (%) 5 (9.62%) 1 (2.33%) – –

SLEDAI (score), Median (range) 8 (2~16) 14 (5~26) – –

Duration of disease (Years), Median (range) 9 (2~18) 6 (1~12) – –

Renal pathological analysis

Class IV (Diffuse segmental (IV-S) or global (IV-G) lupus nephritis) (%) – 6 (13.95%) – –

Class V(Membranous lupus nephritis) (%) – 3 (6.98%) – –

Class IV+ Class V (%) – 3 (6.98%) – –

Class IV+ Class V+ Class VI(Advanced sclerosing lupus nephritis) (%) – 1 (2.33%) – –

Refuse biopsy of the kidney (%) – 30 (69.77%) – –

Therapeutic drugs

Hydroxychloroquine (%) 52 (100%) 42 (97.67%) – –

Prednisolone (Steroid) (%) 36 (69.23%) 40 (95.25%) – –

Cyclophosphamide (%) 2 (3.85%) 12 (27.91%) – –

Azathioprine (%) 2 (3.85%) 1 (2.33%) – –

Methotrexate (%) 3 (5.77%) 3 (6.98%) – –

Maticophenolate (%) 3 (5.77%) 7 (16.28%) – –

Laboratory measurements

anti-dsDNA positive (%) 6 (11.54%) 14 (32.56%) – –

C3 (g/L) 0.86 ± 0.22 0.81 ± 0.21 – –

C4 (g/L) 0.15 ± 0.06 0.14 ± 0.07 – –

Urea (mmol/L) 4.84 ± 1.63 7.10 ± 4.19△▲ 5.13 ± 1.18 8.669,<0.001

SCreat (umol/L) 54.7 ± 13.24 69.0 ± 25.29△▲ 53.2 ± 7.34 9.499,<0.001

eGFR. (ml/min/1.7) 78.10 ± 17.36△ 62.31 ± 24.20△▲ 91.13 ± 13.70 16.688,<0.001

UA (umol/L) 296.4 ± 93.63 368.4 ± 145.55△▲ 308.0 ± 75.74 5.260,<0.001

CysC (mg/L) 1.07 ± 0.32△ 1.50 ± 0.65△▲ 0.88 ± 0.16 16.733,<0.001

C1q (mg/L) 173 ± 39.44△ 162 ± 51.74△ 234 ± 48.56 18.560,<0.001
fr
HC: group of healthy controls; SLE: group of Systemic lupus erythematosus; LN: group of Lupus nephritis. Urea: serum urea; SCreat: serum creatinine; eGFR: estimate the glomerular
filtration rate; UA: serum uric acid; CysC: serum cystatin C; C1q: serum complement component 1q; C3: component 3; C4: component 4.
△: Compared with HC group, P< 0.05; ▲: Compared with SLE group, P< 0.05.
F and P represented the statistical results of ANOVA analysis among all the study groups.
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out. The results revealed that the three groups could be separated

in the ESI+ and ESI- modes (Figures 1C, D), and there were

significant differences between the metabolic profiles of the HC,

SLE and LN groups.
Screening of differential metabolites
between groups

The differential metabolites were screened to obtain the

relevant metabolite information and analyze the difference

between pairs of the groups. PLS-DA was used to filter out the

signals irrelevant to the model classification, as PLS-DA features

a better discriminative power than PCA. The PLS-DA results

between the HC and SLE groups, HC and LN groups, and SLE

and LN groups were obtained. Significant differences in

classification was found between the clustering of the HC and

SLE groups, HC and LN groups in both ESI+ (Supplementary

Figures 3A, B) and ESI- (Supplementary Figures 3C, D) modes.

Between the SLE and LN groups, the ESI+ and ESI- modes had
Frontiers in Immunology 06
obvious cluster separation (Figures 2A, C). A total of 200

random permutation tests were carried out, and both ESI+

and ESI- modes had Q2 distributions with Y- intercepts lower

than zero, this indicated that no overfitting occurs here

(Figures 2B–D). The results strongly certificated the

dependability of the established PLS-DA model.
Identification of potential metabolites
and pathways

On account of the analysis results of PLS-DA, with FC > 1.5

or < 2/3, VIP > 1, and P< 0.05 as the screening criteria, a total of

449 characteristic variables were found in the ESI+ mode and 65

characteristic variables in the ESI- mode among the HC, SLE and

LN groups. The top 50 optimal characteristic variables

were displayed on a heat map (Figure 3). Publicly available

databases like KEGG, standard compounds databases, and

several integrated databases were searched for qualitative

identification of these characteristic variables.
A B

DC

FIGURE 1

The PCA score plots in positive (A) and negative (B) ion modes among HC, SLE and LN groups. The PLS-DA score plots in positive (C) and
negative (D) ion modes among HC, SLE and LN groups. PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis;
HC, healthy controls; SLE, Systemic lupus erythematosus; LN, Lupus nephritis.
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A B

DC

FIGURE 2

Pairwise comparison of the PLS-DA score plots in positive (A) and negative (C) ion modes and permutation test plots in positive (B) and negative
(D) ion modes btween SLE and LN groups. The criterion for evaluating whether there is overfitting in the PLS-DA model is that the regression
line at a blue Q2 point crosses or is less than 0 from the abscissa. PLS-DA, partial least squares-discriminant analysis; HC, healthy controls; SLE,
Systemic lupus erythematosus; LN, Lupus nephritis.
A B

FIGURE 3

Heat maps of differential metabolites in positive (A) and negative (B) modes. The columns represent samples, the rows represent metabolites,
and the relative content of the metabolites is displayed by color. The heat map shows differential metabolites among HC, SLE and LN groups.
HC, healthy controls; SLE, Systemic lupus erythematosus; LN, Lupus nephritis.
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Following the identification analysis, the metabolomic

pathways were visualized to reveal the metabolic pathways that

may be participate in the happening of LN. The acquired impact

value was cumulative percentage of importance for the matched

metabolite nodes, then a permutation-based P value was

computed and corrected for multiple testing to produce a

permutation-based false-discovery rate (FDR) [-log (P) value].

According to the pathway impact score and –log (P) value, the top

three metabolic pathways were selected. The results identified the

most critical metabolic pathways of the differential metabolites in

the HC group compared with the SLE/LN groups, and the SLE

group compared with the LN group. In particular,

glycerophospholipid metabolism was the most obviously

enriched metabolic pathway between SLE and LN group,

followed by pentose and glucuronate interconversions and

porphyrin and chlorophyll metabolism, please see Table 2 for

details of pathway. When HC group compared with SLE/LN

groups, Arachidonic acid and glycerophospholipid metabolism

had remarkable impact values and –log (P) values in enriched

metabolic pathways (Supplementary Table 1).
Differential metabolite analysis and
diagnostic efficiencies

We used the non-parametric test to find the differential

metabolites between the SLE and LN groups based on the results

of VIP > 1.5 and FC > 1.5 or< 2/3 as the screening criteria. A total

of 25 characteristic metabolites were found in ESI+ mode and 3

characteristic metabolites in ESI- mode. Among these 28

metabolites, 11 metabolites were significantly increased (Z =

2.29~4.61, P = 0.00~0.02), and 17 metabolites were significantly

decreased in the LN group (Z = -4.23~-2.41, P = 0.00~0.02)

when compared with SLE group. The 28 metabolites are listed in

Table 3 and their normalized intensity peak areas are presented

in Figure 4.

We performed the ROC analysis of each metabolite to

determine their performance in predicting LN, and the

DeLong non-parametric to test the AUC of different indicators

(Table 4 and Figures 5A, B). The results showed that there were 5

metabolites (SM d34:2, DG (18:3(9Z,12Z,15Z)/20:5

(5Z,8Z,11Z,14Z,17Z)/0:0), Nervonic acid, Cer-NS d27:4, and

PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) which could effectively
Frontiers in Immunology 08
discriminate LN from SLE (AUC > 0.75). SM d34:2 (AUC =

0.798) demonstrated the highest diagnostic performance, and

DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) had the

highest sensitivity (90.91%) among all indicators, including

conventional serum renal function markers.

In this study, the joint diagnostic performance of CysC, C1q

and other newly identified metabolites were also performed,

allowing for a more accurate and reliable diagnosis of LN. The

highest performance was the Nervonic acid, C1q, and CysC

combination (AUC = 0.916), whereas the C1q and CysC

combination was the lowest (AUC = 0.779) (Table 5; Figure 5C).
Correlation analysis of different
metabolites and kidney
function indicators

Spearman correlation was used to analyze the correlation of

the 5 metabolites with routine renal function indexes. As

revealed in Table 6, Urea was significantly positively correlated

with SM d34:2 (r = 0.230, P = 0.035). eGFR was significantly

positively correlated with Cer-NS d27:4 (r = 0.254, P = 0.020),

whereas CysC was significantly negatively correlated with Cer-

NS d27:4 (r = -0.254, P = 0.020). SCreat was significantly

negatively correlated with Nervonic acid (r = -0.238, P =

0.029). C1q was significantly negatively correlated with DG

(18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) (r = -0.290,

P = 0.035). Additionally, CysC and eGFR demonstrated the

strongest correlation with Cer-NS d27:4.
Discussion

Renal injury caused by SLE has become a prominent clinical

problem. Metabolomics has received increasing attention in

recent years because of its assistant role in helping to identify

small-molecule biomarkers. Unfortunately, it has been studied

less extensively for use in detecting SLE versus LN. The current

study analyzed serum samples from SLE and LN patients using

UPLC-MS/MS to screen for small-molecule signatures that

might be relevant to diagnosis via the metabolomics perspective.

Between SLE and LN, 28 differential metabolites (mostly lipids

and amino acids) were found following VIP > 1.5 and P< 0.05.
TABLE 2 Top three significantly altered metabolic pathways between groups.

Pathway name KEGG.id -log (P) Impact Hits

SLE vs. LN Glycerophospholipid metabolism hsa00564 1.904 0.339 3

Pentose and glucuronate interconversions hsa00040 0.696 0.141 1

Porphyrin and chlorophyll metabolism hsa00860 1.170 0.128 2
frontiers
Impact: impact value of metabolic pathway determined by topology analysis; Hits: the number of differential metabolites matching the pathway.
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A B

FIGURE 4

The box plot of normalized intensity peak areas of significantly increased (A) and decreased (B) metabolites in LN group when compared with
SLE group. SLE, Systemic lupus erythematosus; LN, Lupus nephritis.
TABLE 3 Significantly differential metabolites between SLE and LN groups.

Metabolites FC VIP Z P Trend

DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) 2.46 2.45 4.47 0.00 ↑

SM d34:2 2.89 2.31 4.61 0.00 ↑

1,5-Anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose 1.66 2.04 2.95 0.00 ↑

8-(4-Methoxy-2,3,6-trimethyl-phenyl)-6-methyl-octa-3,5-dien-2-one 2.82 2.00 3.65 0.00 ↑

Cer-BDS d38:5 1.85 1.90 3.33 0.00 ↑

Phenylacetyl-L-glutamine 1.90 1.82 2.54 0.01 ↑

a-Amino-g-cyanobutanoate 1.70 1.77 2.29 0.02 ↑

Pro-Leu 1.77 1.75 2.35 0.02 ↑

lysoDGTS 15:2 1.64 1.73 2.50 0.01 ↑

LDGTS 15:1 1.58 1.64 2.40 0.02 ↑

Glycidyloleate 1.69 1.53 2.69 0.01 ↑

PE 34:1 0.57 2.26 -3.81 0.00 ↓

1-Hexadecylthio-2-hexadecanoylamino-1,2-dideoxy-sn-glycero-3-phosphocholine 0.65 2.21 -3.72 0.00 ↓

SM 24:1 0.62 2.02 -3.54 0.00 ↓

PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) 0.56 2.01 -3.84 0.00 ↓

Cer-NS d27:4 0.57 1.95 -3.97 0.00 ↓

PC (14:0/20:3(5Z,8Z,11Z)) 0.60 1.90 -3.12 0.00 ↓

PC 38:6 0.60 1.88 -2.69 0.00 ↓

PC (13:0/19:0) 0.64 1.86 -3.15 0.00 ↓

Diisononyl phthalate 0.63 1.73 -3.62 0.00 ↓

DG 35:5 0.61 1.65 -2.41 0.02 ↓

PC 40:6 0.63 1.64 -3.11 0.00 ↓

Serylisoleucine 0.46 1.58 -2.57 0.00 ↓

SM d36:2 0.61 1.51 -2.45 0.01 ↓

PC (18:1(9Z)/22:5(7Z,10Z,13Z,16Z,19Z)) 0.63 1.51 -3.44 0.00 ↓

CAY10449 0.22 3.48 -2.71 0.01 ↓

Nervonic acid 0.70 1.96 -4.23 0.00 ↓
Frontiers in Immunology 09
 frontie
Z and P represented the statistical results of the Mann-Whitney U non-parametric test between the two groups.
"↑": Compared with SLE group, the differential metabolites were significantly increased in LN group.
"↓": Compared with SLE group, the differential metabolites were significantly decreased in LN group.
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Specifically, the levels of several glycerophospholipids, such as PE

34:1, and sphingomyelins such as SM 24:1 were significantly reduced

in LN patients. In addition, the amino acid serylisoleucine decreased

and Pro-Leu increased. In light of their diagnostic performance in
Frontiers in Immunology 10
distinguishing LN from SLE, five metabolites (AUC > 0.70) were

screened for further analysis, including SM d34:2, Cer-NS d27:4, PC

[18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)], DG (18:3(9Z,12Z,15Z)/20:5

(5Z,8Z,11Z,14Z,17Z)/0:0) and nervonic acid.
A B C

FIGURE 5

Receiver operating characteristic analysis of the 5 newly found candidate biomarkers (A), and 5 conventional serum renal function markers (B)
for discriminating LN from SLE. (C) Joint diagnostic performance of CysC, C1q and newly identified metabolites. DG (18:3(9Z,12Z,15Z)/20:5
(5Z,8Z,11Z,14Z,17Z)/0:0) is abbreviated as DG (18:3). PC [18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)] is abbreviated as PC (18:3).
TABLE 5 Combined diagnostic performance of CysC, C1q and new-found metabolites.

Items AUC (95% CI) Se (%) Sp (%) Z/P a Z/P b

CysC+ C1q 0.779 (0.643~0.881) 64.00 89.29 4.263/<0.001 –

CysC+ C1q+ Cer-NS d27:4 0.816 (0.685~0.909) 80.00 82.14 4.978/<0.001 0.749/0.454

CysC+ C1q+ DG (18:3) 0.867 (0.746~0.945) 80.00 85.71 7.443/<0.001 1.406/0.160

CysC+ C1q+ PC (18:3) 0.871 (0.751~0.948) 96.00 71.43 7.634/<0.001 1.373/0.170

CysC+ C1q+ SM d34:2 0.884 (0.767~0.956) 96.00 64.29 8.595/<0.001 1.830/0.067

CysC+ C1q+ Nervonic acid 0.916 (0.806~0.974) 84.00 89.29 11.045/<0.001 2.309/0.021
fron
a: Z and P values were the AUC-based statistics of each item;
b: Z and P values were the AUC-based statistics of each item in comparison with CysC + C1q.
Se, Sensitivity; Sp, Specificity.
DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is abbreviated as DG (18:3).
PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is abbreviated as PC (18:3).
TABLE 4 Diagnostic efficiency of five selected metabolites for discriminating LN from SLE.

Biomarker AUC (95% CI) Se (%) Sp (%) Z P

SM d34:2 0.798 (0.697~0.877) 80.00 69.23 6.179 <0.001

DG (18:3) 0.789 (0.687~0.870) 90.91 69.23 5.533 <0.001

Nervonic acid 0.773 (0.670~0.857) 69.70 80.00 4.870 <0.001

Cer-NS d27:4 0.758 (0.653~0.844) 63.64 86.49 4.445 <0.001

PC (18:3) 0.748 (0.642~0.836) 75.83 76.91 4.367 <0.001

CysC 0.722 (0.614~0.814) 69.70 74.50 3.492 0.001

SCreat 0.677 (0.566~0.775) 51.50 82.40 2.778 0.006

C1q 0.663 (0.520~0.787) 48.00 85.70 2.127 0.034

Urea 0.659 (0.548~0.759) 51.50 74.50 2.592 0.010

UA 0.630 (0.518~0.733) 30.30 98.00 1.972 0.049
tiers
Z and P values were the AUC-based statistics of each item.
Se, Sensitivity; Sp, Specificity.
DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is abbreviated as DG (18:3).
PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is abbreviated as PC (18:3).
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SM d34:2 and Cer-NS d27:4 are products of sphingomyelin

metabolism belonging to sphingomyelin and ceramide

respectively. Sphingomyelinase cleaves sphingomyelin to

produce ceramide, a second messenger involved in

sphingomyelin-mediated lipid metabolism (8). Apparently,

ceramide is linked to oxidative stress by lipid peroxidation,

while oxidative stress has implications in cell apoptotic

signaling (31). Recent research suggested that serum

sphingomyelin has significant signaling properties and its

metabolites were potential biomarkers for all kinds of renal

diseases including LN (32–34). This might be associated with the

renal vascular flow under the actions of sphingomyelin

metabolites, such as ceramide, sphingosine 1-phosphate (S1P)

and sphingosine phosphate choline (SPC) (35). It has been

known that, SPC could reduce the mesenteric and renal blood

flow in rats (36), whereas ceramide could induce the dilate both

large and small vessels (37, 38). In the current study, patients

with LN had increased SM d34:2 level while decreased Cer-NS

d27:4 level. Reduced renal blood flow can be attributed to both

metabolites changing. Therefore, they may be potential

indicators for SLE renal injury. Our finding highly supports

the role of serum sphingomyelin metabolites as critical

biomarkers for SLE and LN differentiation.

PC [18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)] and DG [18:3

(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)] are one of the

metabolites of phosphatidylcholine and diacylglycerol,

respectively. PC is synthesized through the cytidine

diphosphate-choline or Kennedy pathway. It can release

lysophosphatidylcholine (LPC), diacylglycerols (DG),

phosphatidic acid and free fatty acid after hydrolyzed through

phospholipase A2 (PLA2), phosphatidylcholine-phospholipase

C and phospholipase D (39). Current study suggested that the

development of renal injuries is associated with the PLA2

increase (40). Enhancing PLA2 promoted PC hydrolysis and

subsequent DG hyper-release. This might be a cause of the

reduction in all PC metabolites while increase of DG in LN

patients in our present study. It has been observed in human and

mouse LN models that the infiltration of inflammatory factors

into renal tubule interstitium and glomerulus can induce the

secretion of inflammatory factors and chemokines that promote

the apoptosis of glomerular mesangial cells and renal tubule
Frontiers in Immunology 11
epithelial cells, thus accelerating cell apoptosis (41).

Additionally, PC has some functions toward cell apoptosis,

which are not replaceable by other methyl donors (42).

Therefore, the drop in PC levels may also be associated with

the increased role of PC in repairing these damaged cells/

organelles in LN patients suffering from severe oxidative stress

and systemic inflammation (11).

The long-chain fatty acid nervenic acid is originally found in

mammalian nervous tissues. It is distributed in zwitterionic

membrane lipids, predominantly sphingomyelins. Changes in

sphingomyelin metabolism mediate the inflammatory response

and cell apoptosis in renal diseases (43). A survey suggested that

the increase in nervonic acid in red cells could be used as a

predictor for the all-cause mortality in patients experiencing

stage 5 chronic kidney disease (44). In the current study,

nervonic acid in serum of LN patients was found to be

reduced. It was still unclear how neuric acid affects kidney

disease. Thus, its specific role and mechanism should be

further explored (45). The impairment of the renal system is

also a contributing factor to depression in SLE patients. Some

scholars even found that some biomarkers of renal insufficiency

can be referenced to predict the depressive and anxious status in

SLE patients, despite that they fail to show value in diagnosis of

nephritis (46). The levels of nervonic acid in plasma and

cerebrospinal fluid were a satisfied biomarker for forecasting

depressive symptoms (47, 48). In light of this, nervonic acid is

not only associated with the renal impairment in SLE patients,

but also correlated with the depressive state. The lack of relevant

data prevented us from researching nervonic acid’s potential as a

biomarker of depression in LN patients, which will be addressed

in future research.

KEGG pathway enrichment analysis was performed on the

differential metabolites to identify pathways involved in SLE

progression to LN. Glycerophospholipid metabolism was the

most distinct pathway between SLE and LN, followed by pentose

and glucuronate interconversions, porphyrin and chlorophyll

metabolism. This is basically consistent with the study of Guleria

A et al. (11), where LN patients presented with significant

metabolic disorders in multiple pathways on NMR

spectrometer, including glycolysis, amino acid metabolism and

lipid metabolism. Zhang Q et al. (9) applied LC-MS/MS and
TABLE 6 Correlation analysis of differential metabolites and kidney function indicators (r, P).

Biomarker Urea SCreat eGFR UA CysC C1q

SM d34:2 0.230, 0.035 0.178, 0.105 -0.138, 0.209 0.039, 0.727 0.138, 0.209 -0.008, 0.957

DG (18:3) 0.072, 0.518 0.029, 0.792 -0.136, 0.217 0.086, 0.439 0.136, 0.217 -0.290, 0.035

Nervonic acid -0.181, 0.100 -0.238, 0.029 0.108, 0.326 -0.109, 0.325 -0.108, 0.326 0.180, 0.198

Cer-NS d27:4 -0.156, 0.157 -0.181, 0.100 0.254, 0.020 -0.106, 0.335 -0.254, 0.020 0.129, 0.355

PC (18:3) 0.013, 0.904 -0.090, 0.416 0.055, 0.619 -0.006, 0.959 -0.055, 0.619 0.213, 0.127
fro
DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is abbreviated as DG (18:3).
PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is abbreviated as PC (18:3).
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f ound s i gn ifi c an t r e du c t i on s i n me t abo l i t e s o f

glycerophospholipids and sphingomyelins in SLE patients as

compared to healthy people. In our present study, a continuous

downward trend was demonstrated as SLE progressed to LN. A

previous study indicated that the onset of LN was associated

with the overproduction of reactive nitrogen species (RNS) and

reactive oxygen species (ROS), which arise from oxidative stress

due to the imbalanced oxidant/antioxidant status (49). It is a fact

that increase in oxidative stress leads to overproduction of lipid

peroxidation end product (accompanied by lipid peroxidation)

(50) and soluble blood lipids. In this way, the oxidative stress

induced by peroxidation of glycerophospholipids and

sphingolipids can cause renal damage (51). Generally, high-

concentration lysophospholipid metabolites of amphiphilic

characteristics are toxic to cells/tissues. For example, they can

cause damages to the cell membrane and then lead to cell lysis

(51). Additionally, lipid abnormalities can also impair renal

tissue’s lipid homeostasis, in turn to induce or aggravate

glomerular and tubulointerstitial diseases (52). All the studies

mentioned above indicated that the abnormal lipid metabolism

induced by oxidative stress may aggravate the progression of SLE

to LN. Accordingly, induction of oxidative stress and alteration

of glycerophospholipid and sphingomyelin metabolism might be

responsible for the metabolic changes in LN.

The 5 significant differential metabolites were significantly

associated with Urea, SCreat, CysC and C1q (all P< 0.05)

according to the current study, suggesting their great potential

in predicting renal functions. All SM d34:2 (AUC = 0.798), DG

(18:3(9z,12z,15z)/20:5(5Z,8Z,11z,14z,17Z)/0:0) (AUC = 0.789)

and Cer-NS d27:4 (AUC = 0.758) showed good diagnostic

performance in discriminating LN from SLE. SM d34:2 was

superior to all the new-found serum markers of renal injury.

Combination strategy can enhance the diagnostic performance

of single indicators. Here, the combination of nervonic acid,

CysC and C1q (AUC = 0.916) performed the highest diagnostic

performance,which was superior to the combination of CysC

and C1q (AUC = 0.779). Consequently, combining nervonic

acid with CysC and C1q may enhance LN patients ’

diagnostic abilities.

During the analysis, several confounding factors out to be

noted, particularly medications used in SLE such as

glucocorticoids and multiple immunosuppressive agents.

According to one metabolomics study in serum of rats,

dexamethasone significantly interfered with the amino acid,

pyrimidine and nitrogen metabolic pathways (53), whereas

another reported indicated that healthy volunteers

administrated with dexamethasone had increased levels of

glucose and several amino acids, without significantly altering

their metabolism under peroxidase action (54). Moreover,

Guleria A et al. (11) found no discernible differences in

metabolomics between SLE and LN patients receiving

hydroxychloroquine/azathioprine and those not (11).

However, although the direct impacts of Steroid drugs on
Frontiers in Immunology 12
metabolites implicated in lipid peroxidation as well as

bradykinins/leukotrienes have not been systemically

investigated, it had been proved that there was no significant

association between Steroid usage and serum metabolites related

to oxidative stress, glutathione generation, and selected

inflammation-related pathways (6, 53, 54). Similarly, no

influence of cyclophosphamide on metabolites in SLE and LN

patients has been reported. In view of the given researches, as

most of the metabolic indicators in our research were associated

with lipid peroxidation-induced oxidative stress, we temporarily

believed that there was no significant association between the

usage of the two medicine and our metabolic indicators.

Additionally, Guleria A et al. had revealed that the effects of

the medicine had partly been randomized and minimized as

their study also involved heterogeneous patients in terms of

medication (11), which could certificate our conclusion.

Combining the findings, the 5 metabolites identified in the

current study could be considered reliable indicators for

LN diagnosis.

However, this study still has some limitations. For instance,

the sample size is relatively small, so it was challenging for us to

classify subgroups according to their clinical data, and to validate

our findings with a new queue. Besides, the patients included in

this project underwent concomitant medication of varying

courses, therefore, heterogeneity exist. In our next studies, we

aim to integrate multiple clinical centers and expand the sample

size including the newly diagnosed patients and compare the

subgroups based on clinical data including SLEDAI, gender and

treatment. Further, the non-target and target validation should

be applied in-depth study so as to validate our selected

metabolic indicators.
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SUPPLEMENTARY FIGURE 1

Total ion chromatogram (TIC) and base peak intensity (BPI) diagrams of
positive (A, B) and negative (C, D) ion modes.

SUPPLEMENTARY FIGURE 2

PCA score plots of QC samples in positive (A) and negative (B) ion modes

among HC, SLE and LN groups. PCA, principal component analysis; HC,
healthy controls; SLE, Systemic lupus erythematosus; LN, Lupus nephritis.

SUPPLEMENTARY FIGURE 3

Pairwise comparison of the PLS-DA score plots in positive (A, B) and

negative (C, D) ion modes between HC and SLE, HC and LN groups. PLS-
DA, partial least squares-discriminant analysis; HC, healthy controls; SLE,

Systemic lupus erythematosus; LN, Lupus nephritis.

SUPPLEMENTARY FIGURE 4

Pairwise comparison of the PLS-DA permutation test plots in positive (A,
B) and negative (C, D) ionmodes between HC and SLE, HC and LN groups.

The criterion for evaluating whether there is overfitting in the PLS-DA
model is that the regression line at a blue Q2 point crosses or is less than 0

from the abscissa. PLS-DA, partial least squares discriminant analysis; HC,
healthy controls; SLE, Systemic lupus erythematosus; LN, Lupus nephritis.
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Glossary

ACR American College of Rheumatology

ANOVA One-way Analysis of variance

AUC Area under the curve

BPI Base peak chromatogram

CAWG Chemical Analysis Working Group

CKD Chronic kidney disease

CysC Cystatin C

Clq Component 1q

DG Diacylglycerols

eGFR Estimated glomerular filtration rate

ESI Electrospray ionization

ESKD End-stage kidney disease

FC Fold-change

FDR False-discovery rate

GFR Glomerular filtration rate

HC Healthy controls

IDA Information dependent analysis

LN Lupus nephritis

LP Lysophosphatidylcholine

M Median

MSI Metabolomics Standards Initiative

NMR Nuclear Magnetic Resonance

PCA Principal component analysis

PLS-DA Partial least squares discriminant analysis

QC Quality control

RNS Reactive nitrogen species

ROC Receiver operating characteristic curve

ROS Reactive oxygen species

SCreat Serum creatinine

SD Standard deviation

SLE Systemic lupus erythematosus

SPC Sphingosine phosphate choline

S1P Sphingosine 1-phosphate

TIC Total ion chromatogram

UAlb Urinary albumin

UACR Urinary albumin/creatinine ratio

UCreat Urinary creatinine

UPL/GC-MS/
MS

Ultra high performance liquid/gas chromatography-tandem
mass spectrometry

VIP variable importance in the projection
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