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Abstract

Background: Recent studies have shown that embryonic stem (ES) cells globally express most genes in the genome at the
mRNA level; however, it is unclear whether this global expression is propagated to the protein level. Cell surface proteins
could perform critical functions in ES cells, so determining whether ES cells globally express cell surface proteins would have
significant implications for ES cell biology.

Methods and Principal Findings: The surface proteins of mouse ES cells were purified by biotin labeling and subjected to
proteomics analysis. About 1000 transmembrane or secreted cell surface proteins were identified. These proteins covered a
large variety if functional categories including signal transduction, adhesion and transporting. More over, mES cells
promiscuously expressed a wide variety of tissue specific surface proteins. And many surface proteins were expressed
heterogeneously on mES cells. We also find that human ES cells express a wide variety of tissue specific surface proteins.

Conclusions/Significance: Our results indicate that global gene expression is not simply a result of leaky gene expression,
which could be attributed to the loose chromatin structure of ES cells; it is also propagated to the functional level. ES cells
may use diverse surface proteins to receive signals from the diverse extracellular stimuli that initiate differentiation.
Moreover, the promiscuous expression of tissue specific surface proteins illuminate new insights into the strategies of cell
surface marker screening.
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Introduction

Embryonic stem (ES) cells are pluripotent stem cells from early

embryos [1,2]. It has been proposed that the maintenance of their

self- renewal capacity depends on the sustained expression of ES-

specific genes like Oct4 and Nanog and the suppressed expression

of differentiation-associated genes [3,4,5]. However, recent studies

have shown that ES cells possess a loose chromatin structure

[6,7,8], and most genes in the genome of ES cells are associated

with activating epigenetic modifications and are expressed at low

levels as transcripts [9,10]. Moreover, Nishikawa et al. and our

group have shown that the core regulator Aire, which promotes

the promiscuous expression of tissue-specific genes in the thymus,

is expressed in ES cells and induced pluripotent stem cell(iPS) cells

[11,12]. With these findings, the phenomenon that ES cells

globally express genes on the mRNA level seems to be well

established. However, whether this global expression is just leaky

transcription (as a consequence of loose chromatin), or has an

actual functional significance, is an issue of debate. Proteins are the

functional entities of genes, so determining whether ES cells

globally express genes at the protein level would help to resolve the

debate and elucidate the biological significance of global gene

expression.

Embryonic stem cells depend on specific extracellular signals,

like LIF signaling, and metabolites, like threonine, to maintain

their self-renewal capacity [13,14]. ES cells also depend on

extracellular signals to initiate their differentiation [15]. Cell

surface proteins mediate the interaction of ES cells with

extracellular factors, making them an important functional group

in ES cells. Moreover, cell surface proteins are candidates for use

as specific markers in screening [16]. Therefore, exploring the

pattern of cell surface protein expression on ES cells is important

for understanding the mechanisms of ES cell self-renewal and

differentiation and can help to establish strategies for surface

marker discovery.

Proteomics technologies allow for the large-scale scanning of

proteins. However, because a significant fraction of cell surface

proteins are transmembrane and have a relatively low abundance

and solubility [17], differential extraction is required to reduce the

abundance range and the complexity of the samples to acquire good

quality results. Cell surface labeling and affinity purification is a

standard method to selectively extract cell surface proteins [18].
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In this study, we labeled the surface proteins of mouse ES (mES)

cells with membrane-impermeable biotins and then purified the

proteins by streptavidin affinity purification. The purified proteins

were analyzed by LC-MS/MS, and 991 cell surface proteins were

identified. Bioinformatics studies showed that mES cells expressed a

large variety of cell surface proteins with a broad range of functions

and tissue distributions. The results were further confirmed by

several biochemical methods. Moreover, we showed that hES cells

also expressed a variety of tissue-specific surface proteins. Our

results demonstrate that the global gene expression in ES cells is

propagated to the protein level, which may have a functional

significance. Moreover, we propose that new strategies should be

implemented to screen for specific surface markers of ES cells.

Results

Proteomics analysis of cell surface proteins on mES cells
To explore the expression pattern of ES cell surface proteins, we

extracted mES cell surface proteins by biotin labeling and

performed protein identification by LC-MS/MS. Before labeling,

the quality of the mES cells was evaluated. As shown in Figure 1A,

the mES cells used in this study grew with typical colony

Figure 1. Labeling of mES cell surface proteins. A. Undifferentiated state of mES cells used to purify cell surface proteins. Left panel.
Morphology of mES cells used in this study. The undifferentiated mES cells grew as compact colonies. Middle panel. mES cells expressed Alkaline
phospatase (ALP). Right panel, Immunocytochemistry staining showed that mES cells expressed Oct4. The bars in left and middle panel represented
100 um while the bar in the right panel represented 20 um. B. Flow cytometry showed that most mES cells used in this study expressed the ES
specific surface marker SSEA-1. FITC-streptavidin staining showed that most biotins were labeled on the cell surface.
doi:10.1371/journal.pone.0015795.g001
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morphology and homogeneously expressed alkaline phosphatase

(ALP) and Oct4. Quantitative analysis by flow cytometry showed

that more than 97% of the cells were positive for SSEA-1. These

data demonstrate that most mES cells used in this study were

undifferentiated. The surface proteins of the mES cells were then

labeled with membrane-impermeable biotin reagents and the

labeling efficiency was monitored by streptavidin-FITC staining.

As shown in Figure 1C, most of the cells were labeled with biotin

on the cell surface, although some intracellular labeling could be

observed, which could be explained by the staining of apoptotic

cells that are common in mES populations.

The biotin-labeled proteins were resolved by SDS-PAGE and

analyzed by LC-MS/MS. A total of 3468 proteins were identified.

The transmembrane structure and signal peptides were predicted

using SOSUI software[19]. Proteins annotated as ‘membrane’ in

gene ontology or those predicted to contain transmembrane

domains or signal peptides were annotated as general membrane

proteins. Of the identified proteins, 1699 were annotated as general

membrane proteins, of which 778 were integral membrane proteins

with a transmembrane domain or a lipid anchorage, 213 were

secreted proteins and 698 were membrane-associated proteins

(Figure 2A). Therefore, about half of the identified proteins were

general membrane proteins, which is consistent with other reports

that used the same methods. We selected the integral membrane

proteins and secreted proteins that adhere to the cell surface as cell

surface proteins and performed further analysis (Table S1). We first

evaluated the expression of 350 randomly selected surface proteins

by RT-PCR, and 274 of them were confirmed to be expressed on

mES cells. Therefore, our results should be at least 75% accurate.

We performed a gene ontology analysis according to the Molecular

Function annotations. As shown in Figure 2B, the cell surface

proteins of mES cells perform a wide variety of molecular functions.

Moreover, each functional category included many functional

surface proteins. For example, many different signaling receptors

from different pathways were identified (discussed below). Diverse

adhesion molecules, including types of cadherins/protocadherins,

cell adhesion molecules, and integrins were identified in this study.

Various transporting proteins were also identified, including 50

types of channel proteins and 66 types of transporter proteins.

Among these were 12 types of ABC-type ATPases from five

different families. Diverse extracellular matrix proteins were also

identified. Moreover, 180 uncharacterized cell surface proteins were

identified, which could serve as candidates for surface marker

screening.

mES Cells express diverse signaling molecules
As signal transduction processes critically regulate the self-

renewal and differentiation initiation of ES cells, we analyzed the

signaling receptors and ligands that we identified on ES cells.

Signaling molecules from 50 distinct signaling pathways were

presented on the cell surface of mES cells, among which were

receptors and ligands. Some of the signaling pathways like the LIF

pathway, BMP pathway, and Wnt pathway have been extensively

characterized as critical for the self-renewal of ES cells [13,20,21].

Other pathways, like the GABA, acetylcholine, Toll-like receptor

and PTP pathways have been proposed to be functional in the self-

renewal and proliferation of ES cells according to some reports

[22,23,24,25]. However, most of the signaling receptors and

ligands identified in this study, like the Eph pathways, semaphorin

pathways, olfactory receptor pathways and vomeronasal receptor

pathways, have never been functionally characterized in ES cells.

These data indicate that mES cells possess a much more versatile

signal processing ability than previously thought.

Besides the large-scale proteomics study, we also studied the

expression of cell surface signaling molecules on mES cells using

antibodies. As shown in Figure 3A, the expression of BMP2, c-Kit,

and GM-CSFRa could be detected in mES cells by western

blotting. The detection of Oct4 indicated that the mES used in this

experiment is undifferentiated and the detection of E-cadherin

indicated that membrane proteins were successfully extracted in

this experiment.

To detect the cell surface signaling molecules in situ, we

performed immunocytochemistry analysis. To rule out the

possibility that some signaling molecules were expressed on

spontaneously differentiated mES cells, we co-stained with Oct4

and the signaling molecules. As shown in Figure 3B, mES cells

expressed EGFR, BMPR2 and GM-CSFRa on the cell surface.

The Oct4 staining demonstrated that most cells expressing the

Figure 2. Proteomics analysis of mES cell surface proteins. A. Subcellular distribution of proteins identified in this study. B. Molecular Function
categorization of mES cell surface proteins identified in this study.
doi:10.1371/journal.pone.0015795.g002
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signaling molecules were undifferentiated mES cells. Another

interesting phenomenon is that the staining of signaling molecules

on mES cells was heterogeneous, the fluorescence strength of

varied between Oct4 positive cells. To further confirm the

heterogeneous expression of cell surface signaling molecules in

mES populations, we performed a flow cytometry analysis. As

shown in Figure 3C, mES cells showed a heterogeneous expression

for BMPR2, GM-CSFRa and EGFR. Although the whole

fluorescent peak moved to the right, indicating positive staining.

Only a fraction of mES D3 cells strongly expressed BMPR2, GM-

CSFRa and EGFR (approximately 10% for BMPR2, 11% for

GM-CSFRa and 15% for EGFR). About 90% of the cells stained

positive for SSEA-1, indicating undifferentiated state. However,

even for SSEA-1, the fluorescent level varied widely. Therefore,

mES cells not only expressed signal molecules but also surface

markers heterogeneously. To rule out the possibility that the

heterogeneous expression was due to the in vitro culture features of

this specific cell line, we performed the same analysis on two other

ES cell lines established in our Lab, ZjuJ1 and ZjuJ2. As shown in

Figure 3C, both lines expressed BMPR2, GM-CSFRa and EGFR,

Figure 3. Cell surface signal molecules expressed on mES cells. A. Western blotting showed that mES cells expressed BMP2, c-Kit and GM-
CSFRa along with mES specific marker Oct4 and mES surface protein E-cadherin. B. Immunocytochemistry staining showed that mES cells expressed
BMPR2, EGFR and GM-CSFRa. Left panel, ICC staining of the cell surface signal molecules on mES cells. Middle panel, ICC staining of Oct4 on mES cells.
Right panel, co-staining of the cell surface signal molecules and Oct4 on mES cells. The bar represented 100 um. C. Flow cytometry analysis showed
that mES cells heterogeneously expressed BMPR2, EGFR and GM-CSFRa. IgM, IgM control (For SSEA-1 staining). IgG, IgG control(For cell surface signal
molecules staining). D3, mES D3 cell line. ZJ1, mES ZJ1 cell line. ZJ2, mES ZJ2 cell line. D3-2, a single cell derived cell line derived from D3.
doi:10.1371/journal.pone.0015795.g003
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although the percentage of cells that strongly expressed them was

different from the D3 cell line. Previous reports have shown that

the heterogeneous expressions of some genes like Nanog, Rex1

and Stella in ES populations are subject to epigenetic regulation

and have equilibrium properties [26,27,28]. To determine

whether this also held true for cell surface signaling molecules,

we isolated single cell clonal cell lines from mES D3. We analyzed

four single cell clonal cell lines and got similar results, therefore

only one is shown as a representative. As shown in Figure 3C, the

cell lines established from single mES cells also heterogeneously

expressed BMPR2, GM-CSFRa and EGFR, while the percentage

of cells strongly expressing them was different from the parental

D3 cell line. These results indicated that mES cells heteroge-

neously expressed cell surface signaling molecules and argued for a

stochastic mechanism for the regulation of their expressions.

mES Cells globally express tissue-specific surface proteins
It has been proposed that many tissue-specific genes are set in a

transcriptionally poised state and are expressed at low levels in ES

cells [9,29]. Moreover, others and we have shown that mES cells

express the Aire gene, the major regulator of the promiscuous

expression of tissue-specific antigens in medullary thymic epithelial

cells (mTECs) [11,12]. Therefore, we set out to determine whether

mES cells globally expressed tissue-specific cell surface proteins.

We analyzed the surface proteins of mES cells according to the

Uniprot tissue specificity annotations using the DAVID software

[30,31]. Of the 991 surface proteins, 904 were annotated as tissue-

specific. As shown in Figure 4A, tissue-specific surface proteins

from a broad variety of tissue types originated from all three germ

layers were expressed in the mES cells. Clonal growth is a basic

property of pluripotent cells including mES cells. Cell adhesion

molecules plays critical roles in the formation of colonies[32]. As

many cell adhesion molecules are tissue specific, we analyzed the

cell adhesion molecule pathways using David software. As shown

in Figure 4B, mES cells expressed adhesion molecules that

function in different cell types including neural cells, epithelia cells,

immune cells and germ cells. Considering our data could not cover

all the cell surface proteins in mES cells, many other tissue specific

cell adhesion molecules should be expressed in mES cells.

We confirmed the expression of some tissue-specific surface

proteins by RT-PCR, ICC and western blotting. As shown in

Figure 5A, 23 types of tissue-specific surface proteins were

confirmed to be expressed in mES cells at the mRNA level.

Western blotting further confirmed that hematopoietic stem cell

specific-protein CD34, T cell-specific protein CD4, endothelium-

specific protein Tie-1 and leukocyte specific protein Il1rl1 were

expressed in mES cells (Figure 5B). Moreover, ICC staining showed

that mES cells expressed the T-cell-specific CD4 protein, the

hematopoietic stem cell-specific CD34 protein and the liver-specific

PAI3 protein (Figure 5C). Co-staining with Oct4 demonstrated that

the tissue-specific surface proteins were expressed on undifferenti-

ated mES cells. Heterogeneous expression could also be seen from

ICC staining. To test whether mES cells heterogeneously express

tissue-specific surface proteins like signaling molecules, we per-

formed flow cytometry analysis. As shown in Figure 5D, mES D3

cells expressed CD4 and Tie-1 heterogeneously, only a fraction of

the cells strongly expressed the two proteins. Similar to signaling

molecules, the heterogeneous expression of tissue-specific surface

proteins was consistent between the different mES cells lines and the

single cell clonal mES cell lines, while the exact percentage of cells

strongly expressing each protein was different. These results further

suggest that stochastic mechanisms regulate the tissue-specific

surface proteins expression in mES cells.

hES Cells express tissue-specific surface proteins
As hES cells have been shown to express tissue-specific genes at

low levels and as we have demonstrated that hES cells express the

Aire gene, we speculated that hES cells also express a large

repertoire of tissue-specific surface proteins. To this end, we

evaluated the expression of the mRNA transcripts of a panel of

tissue- and lineage-specific surface protein genes in hES cells by

RT-PCR (Some of them were examplified in Figure 6A). Table 1

summarizes the list of tissue- and lineage-specific surface protein

genes expressed in hES cells detected by RT-PCR. Our results

indicate that like mES cells, hES cells also express a large

repertoire of tissue- and lineage-specific genes. Interestingly, the

panel of tissue- or lineage-specific genes expressed in the hES cells

was markedly different from that of the mES cells. Immunoflu-

orescent studies in hES cells confirmed the expression of several

tissue- or lineage-specific proteins, including CD4 (T helper cells),

CD34 (hematopoietic cells), IL1RL1 (leukocyte), PAI-3 (liver),

TIE-1, and TMEM57 (Figure 6B). Importantly, immunofluores-

cent analysis of hES cells also detected both OCT4 and SSEA-4,

two hES cell markers [33], verifying the undifferentiated status of

the hES cells utilized in this study. These results indicated that hES

cells also globally expressed tissue-specific surface proteins.

Discussion

The proper activation of pluripotency-associated genes like

Oct4 and Nanog and the suppression of differentiation-regulating

genes like the Hox genes were thought to be major mechanisms for

the maintenance of pluripotency in ES cells [4,34]. However,

recent studies have shown that promoters of most genes in the

genome of human ES cells were marked with the activating

epigenetic modification H3K4meth3 [10]. Most of the suppressed

differentiation-regulating transcription factors were marked with

the bivalent domain, which consisted of both activating

H3K4meth3 and suppressing H3K27meth3 [35]. The mRNA

transcripts of most genes, even those not modified with either

activating or suppressing epigenetic modifications, could be

detected in ES cells [9,36]. Therefore, most genes in the ES cells

were set in a transcriptionally poised state, where the mRNAs were

produced only occasionally. An important issue to address is

whether the global gene expression phenomenon is just leaky gene

expression resulting from the elastic and dynamic chromatin

structure of ES cells or whether it has functional significance.

Here, we report that at least for cell-surface proteins, a large

variety of globally expressed genes were translated into proteins.

The accessibility of these surface proteins from the extracellular

space indicated that many of them had been presented in their

mature functional form rather as precursors that remain in the ER

and Golgi apparatus. As calculated from the detection limit of

mass spectrometry and the amount of cells used in this study, the

least abundant surface protein identified here should be presented

on each cell at the level of hundreds of copies [37]. This number is

sufficient for the functional performance of the proteins. These

evidences support the argument that global gene expression is

functional in ES cells.

Figure 4. Analysis of tissue specific surface proteins on mES cells. A. mES cells expressed tissue specific surface proteins of a variety of tissue
types. B. mES cells expressed a variety of tissue specific cell adhesion molecules. Stars indicated proteins identified in this study.
doi:10.1371/journal.pone.0015795.g004
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Figure 5. Tissue specific surface proteins expressed on mES cells. A. RT-PCR analysis demonstrated that mES cells expressed tissue specific
cell surface proteins. B. Western blotting showed that mES cells expressed CD34, Tie-1 and Il1rl1 along with mES specific marker Oct4 and mES
surface protein E-cadherin. C. Immunocytochemistry staining showed that mES cells expressed CD4, CD34 and PAI3. Left panel, ICC staining of the
tissue specific cell surface proteins on mES cells. Middle panel, ICC staining of Oct4 on mES cells. Right panel, co-staining of the tissue specific cell
surface proteins and Oct4 on mES cells. The bar represented 100 um. D. Flow cytometry analysis showed that mES cells heterogeneously expressed
CD4 and Tie-1. IgM, IgM control (For SSEA-1 staining). IgG, IgG control(For tissue specific cell surface proteins staining). D3, mES D3 cell line. ZJ1, mES
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ES cells are versatile signal transformers
In contrast to terminally differentiated cell types, which mount

restricted responses to various stimuli, ES cells mount essentially

infinite responses, differentiating to all cell types in the organism.

Two seemingly contradictory responses of ES cells to stimulus

were observed. First, ES cells respond differently to different

stimuli, to the same stimulus of different strengths and to different

combinations of stimuli. For example, Zansdtra et al. showed a

concentration-dependent effect of LIF on mES cells [38]. Second,

ES cells respond differently to the same stimulus. For example,

when cultured in suspension, ES cells in identical medium form

embryonic bodies, which consist of cells of the three germ layers.

The evidence we present here that ES cells globally express a large

diversity of surface signaling molecules in a heterogeneous manner

may partially explain these properties. The versatility of signaling

receptors could enable ES cells to transform diverse stimulus into

highly variable differentiation behaviors. In addition, the hetero-

geneity of the signal-accepting ability caused by the differential

expression of signaling molecules could enable ES cells to

transform the same stimulus to different differentiation behaviors.

The global and heterogeneous expression of signaling molecules

make ES cells versatile signal transformers, ensuring their plasticity

and pluripotency.

Implications of the population heterogeneity of ES cells
It has been demonstrated that ES cells heterogeneously express

genes like Nanog, Rex-1, Stella and CD133 [26,27,28,39]. The

different subpopulations sorted according to these markers

possess different self-renewal abilities and differentiation poten-

tials. Moreover, a recent study has shown that a subpopulation of

undifferentiated mES cells that express the primitive endoderm

(PrEn)-specific gene Hex at very low level has early PrEn

properties and that their differentiation into PrEn was favored

[40]. Our results showed that undifferentiated mES cells actually

expressed a large repertoire of tissue-specific surface proteins at

low levels and the expression of many of them tended to be

heterogeneous. These results indicate that ES cells actually

consist of different subpopulations expressing different tissue-

specific proteins and have different differentiation tendencies.

Our results supported the idea that ES cells are a equilibrium

population that consist of subpopulations of different differenti-

ation potentials.

Implications for surface marker screening of ES cells
ES cell surface markers are valuable tools for the characteriza-

tion, quality control and purification of ES cells. Extensive efforts

have been mounted for decades to discover the surface markers of

ES cells. Until now, the most widely used specific ES cell surface

markers (SSEA1, SSEA3, SSEA4, Tra-1-60, Tra-1-81) were all

glycan epitopes on glycoproteins or glycolipids [33,41]. Although

some proteins like CD9, HSPA8 and PODXL have been proposed

to be specific surface markers of ES cells, they are all only

relatively specific and only expressed in certain tissues, according

to data from the human protein atlas [16,33,42,43,44]. The

question remains whether or not there is a specific surface protein

marker that is exclusive to ES cells. Our results showed that mES

cells globally expressed a large repertoire of tissue-specific cell

surface proteins. It indicated that, at least for mES cells, an

exclusive, specific surface protein marker is not easy to identify.

The same thing may also hold true for hES cells because we have

shown that hES cells express tissue-specific surface proteins.

Therefore, new strategies should be employed to screen for surface

markers of ES cells. Hematopoietic stem cells (HSC) are another

type of stem cells that exhibit promiscuous surface protein

expression [45]. HSCs express genes specific to differentiated

hematopoietic cells and other cell types, like neural cells.

Researchers have determined quantitatively the combination of

markers, like the lineage markers Sca-1, c-Kit or SLAMs, to

identify HSCs [46,47,48,49]. We suggest that the same idea is

applicable to ES cells. The quantitative combination of a group of

surface proteins of different tissue specificities could identify an ES-

specific surface protein pattern. Therefore, perhaps efforts should

be shifted from screening for exclusive, specific markers to

determining the combinations.

In conclusion, we demonstrated that mES cells globally

expressed cell surface proteins of diverse functions and tissue

specificities. Our results support the idea that global gene

expression in ES cells is functional. Moreover, our results indicate

that ES cells are versatile in their signal reception and

transduction ability. Our results also have profound implications

for understanding the functional and population properties of ES

cells and they also indicate new strategies for surface marker

screening.

Materials and Methods

Ethics Statement
We do not require a Ethics Statement because we only used

mouse cell lines and commercially available human cell lines. No

animals or human samples were used. And the approval of a

named review board institution or ethics committee is not needed

for the same reason.

Cell lines and Cell culture
Gamma irradiation inactivated mouse embryonic fibroblast

(MEF) feeder cells isolated from the embryos of ICR mice at

gestational day 13.5 were purchased from Invitogen (Invitrogen,

Carlsbad, CA). MEFs were thawed in DMEM supplemented with

10% fetal bovine serum(Invitrogen) at 37uC and plated at a density

of 46104 cells/cm2 for ES culture.

Mouse ES(mES) cell D3 line was purchased from ATCC

(Manassas, VA). ZJ1 and ZJ2 mouse ES cell lines were established

in our laboratory[50]. mES cells (D3, ZJ1 and ZJ2) were cultured

on gamma irradiation inactivated MEFs in DMEM supplemented

with 15% fetal bovine serum (Invitrogen) and 1000 ng/ml LIF

(Millipore, Billerica, MA) at 37uC in 5% CO2. The pluripotency of

the mES cells was routinely analyzed using ALP staining

Kit(Sigma), SSEA-1 staining and teratoma formation. In addition,

the karyotype was checked routinely.

Human embryonic stem cells H9 were purchased from WiCell

(Madison,WI) and cultured on gamma irradiation inactivated

MEFs in Knockout DMEM supplemented with 20% KOSR

(Invitrogen) and 1000 ng/ml bFGF (Millipore) at 37uC in 5%

CO2. The pluripotency of the hES cells was routinely analyzed

using ALP staining (Sigma), SSEA-4 staining and teratoma

formation. In addition, the karyotype was checked routinely.

ZJ1 cell line. ZJ2, mES ZJ2 cell line. D3-2, a single cell derived cell line derived from D3. (Same controls and SSEA-1 staining as in Figure 3 were used
since the datas shown here were generated in the same experiment).
doi:10.1371/journal.pone.0015795.g005
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Cell surface labeling and affinity purification
The mES D3 cells (56108) cultured gamma irradiation

inactivated MEFs were trypsinized to single cells and plated on

gelatin-coated 100 mm culture dishes. After 1 hour, most MEFs

adhered to the culture dish. The mES cells in suspension were

collected and biotin labeled.

For biotin labeling, the cells were incubated with 1 mg/ml

Sulfo-NHS-SS-Biotin (Pierce, Rockford, IL) in PBS for 30

minutes. Excess biotin was quenched using 10 mM Glycin for

10 minutes, and then the cells were washed three times with PBS.

Next, the cells were homogenized in ice-cold cell lysis buffer

(50 mM Tris-Cl, pH 7.4, 1% NP-40 substitute (Sigma), 150 mM

NaCl, 1 mM EDTA, 1 mM PMSF(Sigma)) using a Dounce

Homogenizer (30 strokes). The homogenate was put on ice for

1 hour with gentle vortexing to extract the membrane proteins.

After that, the homogenate was centrifuged at 12000 g for ten

minutes to remove the nuclei, unbroken cells and cell fragments.

The supernatant was mixed with streptavidin-coupled LATEX

(300 nm diameter) beads and vortexed at 4uC for 1 hour. The

LATEX beads were precipitated by centrifugation and washed

twice with 0.1 M Na2CO2 and once with 1 M KCl to remove the

contaminant proteins. After that, the disulfide bonds linking biotin

and the purified proteins were cleaved by 100 mM DTT(Sigma) to

elute the purified proteins. Approximately 100 mg of membrane

protein could be purified from 108 cells. The labeling efficiency

was monitored using FITC-streptavidin staining.

SDS-PAGE separation
The purified proteins were separated by SDS-PAGE using a

12.5% SDS-PAGE gel. After electrophoresis, the gels were stained

with Coomassie Blue R250(Sigma) and then dissected into 8 bands

for LC-MS/MS analysis.

Enzyme digestion, LC-MS/MS analysis and database
searching

The enzyme digestion was performed as previously described

[51]. The peptides from each band were separated on a Paradigm

MS4N Nano/Capillary HS MDLC (Michrom Bioresources, Inc.

USA) using a 100 mm6150 mm C18 reverse phase column. The

LC separation was conducted with a linear gradient of 5–35%

buffer B for 50 min, followed by 35–90% buffer B for 10 minutes,

followed by 90% buffer B for 10 minutes (buffer A: 0.1% formic

acid in a 2% acetonitrile H2O solution; buffer B: 0.1% formic acid

in a 98% acetonitrile H2O solution) at a flow rate of 500 nl/min.

The separated peptides were then analyzed on a LTQ-MS

(Thermol, USA) coupled with a Michrome Advanced nanospray

apparatus (Microm). The peak list files generated by the Bioworks

software (Applied Biosystems, USA) using the default parameters

were searched against databases for protein identification using the

Sequest software. The searching parameters were: for 2 or 3 valent

ions, Xcorr $2; for 1 valent ion, Xcorr $1.5;,Deltacn $0.1; and

two nonredundant peptides identified on a unique protein.

Antibodies and immunocytochemistry
The following antibodies were used: Oct-4 (R&D MAB 1759),

SSEA-1 (R&D MAB2155), CD34 (HUABIO, Hangzhou, China),

c-Kit (HUABIO), EGFR (HUABIO), BMPR2 (HUABIO), E-

Cadherin (HUABIO 0407-25), BMP2 (HUABIO 0806-2), GM-

CSF Ra (HUABIO 0804-8), CD4 (HUABIO), TIE-1 (HUABIO

0804-11), PAI-3 (HUABIO), TMEM57(HUABIO), R-PE-conju-

gated goat anti-rabbit IgG (Proteintech Chicago, USA), and Alexa

488-conjugated goat anti-rabbit IgG (Invitrogen).

For double staining, the cells were fixed using 4% paraformal-

dehyde according to the standard protocol, blocked with blocking/

permeating buffer (PBS with 10% goat serum and 0.3% Triton-

X100) and then incubated with Rat anti-human Oct4 monoclonal

antibody overnight at 4uC. After wash, the cells were incubated with

a Alexa 488-conjugated Goat-anti Rat for 1 hour at 37uC. After

wash, the cells were incubated with rabbit polyclonal antibodies

against cell surface molecules for 1 hour at 37uC. After wash, the

cells were Alexa 555-conjugated Goat-anti Rabbit for 1 hour at

37uC and then observed under a LSM500 Confocal Microscope

(Zeiss, Germany). For single staining, the cells were fixed using 4%

paraformaldehyde according to the standard protocol, blocked with

blocking/permeating buffer (PBS with 10% goat serum and 0.3%

Triton-X100) and then incubated with primary antibodies for

1 hour at 37uC. After washing, the cells were incubated with a

Alexa 488-conjugated secondary antibodies for 1 hour at 37uC and

then observed under a fluorescent microscope(Nikon, Japan).

Biotin-labeled mES cells were fixed with 4% paraformaldehyde

overnight at 4uC and then stained with FITC-conjugated

streptavidin (Sigma) for 30 minutes to monitor the surface labeling.

RT-PCR
RT-PCR was performed as previously described [12]. Total

RNA was extracted using the Trizol Reagent (Takara, Japan),

retro-transcribed and then PCR-amplified. The primers were

designed using the PRIMER PREMIER 5 software.

ALP staining
ALP staining was performed with an ALP assay kit (Sigma).

Figure 6. hES cells expressed tissue specific cell surface proteins. A. RT-PCR analysis demonstrated that hES cells expressed tissue specific cell
surface proteins. B. Immunocytochemistry staining showed that mES cells expressed CD4, CD34, Il1Rl1, PAI-3, TIE-1 and TMEM57 along with hES
specific marker OCT4 and SSEA4.
doi:10.1371/journal.pone.0015795.g006

Table 1. Tissue specific cell surface proteins expressed on
hES cells.

Tissue TRA

Cardiovascular CDH13;CDH3;DLL4; BSG

Endothelia Amot; CD31; KDR; Tie-1;

Epithelia DCD;EVPL;EPN3;CFTR;DSC2;DSG1;ENAH;LIMA1;
SDC4;ENAM;SLC44A2;
ABCA4;CDH23; CNGA3

Gastrointestinal CA9;APOA1;APOC3;ABCC2;USH1C;PRAF2;MTTP;PTGER3

Hematopoietic
&immune

ALCAM; CD4;CD22; CD34;EPB41;CD79B;
FCER1G;NCKAP1L;

Kidney BBS1;CDH16;SLC12A1

Liver AGXT;SERPINF2;ABCB11;F2;C1QBP;HPX;PAI-3

Muscle ATP2A1;CACNB1;CALD1;CROT;DYSF;UTRN;VCL

Neural HTR1D;CEND1;CHRM2;CNTN4;GABRA5;GRIA4; TMEM57

Reproductive GANAB;AMIGO2;RLN1;CTSL2;CXCL5;CXCL6;
CMTM1;TMBIM6;DNAJB13

Respiratory ABCC1;BMPER;DIP;DCBLD1;EMILIN1;EMCN;ECE1

doi:10.1371/journal.pone.0015795.t001
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Flow cytometry
The mES cells were dissociated with 0.05 mM EDTA and then

washed with PBS and 3% FBS to remove the EDTA. The cells

were then incubated with a primary antibody for 1 hour on ice.

After thorough washes, the cells were incubated with fluorescent

secondary antibodies for 30 minutes on ice. The cells were then

washed with PBS and analyzed by BDLSR flow cytometry (BD

Biosciences, San Jose, CA).

Western blotting
Western blotting was carried out as described previously[52].

Briefly, ES cells were harvested in lysis buffer (50 mM Tris-HCl

pH 7.4, 1% NP-40, 1% SDS), and equal amounts of the protein

lysate were separated by electrophoresis on a 12.5% Laemmli

SDS-polyacrylamide gel. The proteins were then transferred onto

PVDF membranes. After incubation with primary and secondary

antibodies, the membranes were developed using an ECL kit

purchased from GE Healthcare Life Sciences (Piscataway, NJ).

Bioinformatics analysis
The subcellular localization of the proteins was annotated

according to the Swissprot annotation, the Sosui prediction

software and the literature. Proteins containing transmembrane

domains, secreted proteins and proteins annotated as cell surface

proteins by either Swissprot or the existing literature were all

considered cell surface proteins. A gene ontology (GO) analysis

was done using the DAVID software and database [30,31]. The

molecular pathways were analyzed according to the KEGG

pathway annotations. The tissue specificity of the surface proteins

was annotated according to Uniprot annotations.

Supporting Information

Table S1 The list of cell surface proteins identified in
this study.
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