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Phosphodiesterase 4B negatively 
regulates endotoxin-activated 
interleukin-1 receptor antagonist 
responses in macrophages
Jing-Xing Yang1, Kou-Chou Hsieh2, Yi-Ling Chen1, Chien-Kuo Lee3, Marco Conti4,  
Tsung-Hsien Chuang5, Chin-Pyng Wu2,* & S.-L. Catherine Jin1,*

Activation of TLR4 by lipopolysaccharide (LPS) induces both pro-inflammatory and anti-inflammatory 
cytokine production in macrophages. Type 4 phosphodiesterases (PDE4) are key cAMP-hydrolyzing 
enzymes, and PDE4 inhibitors are considered as immunosuppressors to various inflammatory 
responses. We demonstrate here that PDE4 inhibitors enhance the anti-inflammatory cytokine 
interleukin-1 receptor antagonist (IL-1Ra) secretion in LPS-activated mouse peritoneal macrophages, 
and this response was regulated at the transcriptional level rather than an increased IL-1Ra mRNA 
stability. Studies with PDE4-deficient macrophages revealed that the IL-1Ra upregulation elicited by 
LPS alone is PKA-independent, whereas the rolipram-enhanced response was mediated by inhibition 
of only PDE4B, one of the three PDE4 isoforms expressed in macrophages, and it requires PKA but not 
Epac activity. However, both pathways activate CREB to induce IL-1Ra expression. PDE4B ablation also 
promoted STAT3 phosphorylation (Tyr705) to LPS stimulation, but this STAT3 activation is not entirely 
responsible for the IL-1Ra upregulation in PDE4B-deficient macrophages. In a model of LPS-induced 
sepsis, only PDE4B-deficient mice displayed an increased circulating IL-1Ra, suggesting a protective 
role of PDE4B inactivation in vivo. These findings demonstrate that PDE4B negatively modulates anti-
inflammatory cytokine expression in innate immune cells, and selectively targeting PDE4B should 
retain the therapeutic benefits of nonselective PDE4 inhibitors.

The production of pro-inflammatory cytokines by the immune system is crucial in the host’s defense against 
infection. The activities of these cytokines, however, must be tightly regulated in vivo to prevent detrimental 
effects. For instance, overproduction of IL-1 in local tissues is implicated in autoimmune diseases such as rheu-
matoid arthritis1, and systemic elevation of pro-inflammatory cytokines, including TNF-α​ and IL-1, is involved in 
endotoxin-induced septic shock2. It is well recognized that in addition to pro-inflammatory actions, the immune 
system also promotes various negative feedback mechanisms and anti-inflammatory signals to avoid excessive 
inflammation3. Among the anti-inflammatory mediators studied, interleukin-1 receptor antagonist (IL-1Ra) has 
drawn particular attention for its clinical significance in certain inflammatory diseases. IL-1Ra is a member of 
the IL-1 family cytokines that binds to IL-1 receptors (IL-1R) on target cells to abrogate the inflammatory effects 
of IL-1, but not elicit downstream signaling4. The human recombinant IL-1Ra anakinra currently is used as a 
therapeutic agent for the treatment of rheumatoid arthritis.

Both IL-1 and IL-1Ra are produced concomitantly in immune cells in response to various inflammatory stim-
uli, such as microbial products and pro-inflammatory cytokines5,6. IL-1Ra is expressed as secretory (sIL-1Ra) and 
intracellular (icIL-1Ra) forms, and both bind with high affinity to IL-1R1 to antagonize the effects of IL-1. The 
intracellular isoforms serve as a reservoir of IL-1Ra that are released upon cell death or actively secreted by an 
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unknown pathway, aiding to confine the inflammation of tissue damage7. The secretory IL-1Ra is produced pri-
marily in immune cells and is able to downregulate the production of several pro-inflammatory cytokines, such as 
endotoxin-induced TNF-α​ and IL-1β​ production8. Elevation of IL-1Ra is also observed in the serum or inflamed 
tissues of patients with certain inflammatory diseases7. It is generally accepted that the induction of IL-1Ra during 
inflammation is essential for preventing exaggerated immune responses as IL-1Ra deficiency has been shown to 
cause spontaneous development of arthritis and skin lesions reminiscent of psoriasis in mouse models9,10 as well 
as auto-inflammatory disorders, such as DIRA (deficiency of interleukin-1-receptor antagonist) in patients11,12. 
Given the importance of IL-1Ra in inflammatory diseases, it becomes pertinent to gain insights into the mecha-
nisms underlying the regulation of its production. Such information may lead to the development of novel agents 
for the treatment of related inflammatory diseases.

The expression of IL-1Ra is strongly induced in monocytes and macrophages in response to lipopolysaccha-
ride (LPS), an outer membrane component of Gram-negative bacteria. Through activation of toll-like receptor 
4 (TLR4), LPS activates both MyD88- and TRIF-dependent signal pathways, leading to activation of several 
downstream cascades, including the NF-κ​B (nuclear factor κ​B), ERK1/2 (extracellular-signal regulated kinase 
1/2), p38 MAPK (mitogen-activated protein kinase), and JNK (c-Jun N-terminal kinase) pathways, as well as 
the transcriptional factor IRF3 (interferon regulatory factor 3), which all contribute to the expression of inflam-
matory cytokines13. In addition to these major TLR4 signaling pathways and components, several other regu-
lators capable of potentiating LPS-stimulated IL-1Ra production have also been identified. These include the 
cytokine IL-1014,15, phosphatidylinositide 3-kinases (PI3K)16, mitogen- and stress-activated kinase 1 (MSK1)17, 
glycogen-synthase kinase 3 (GSK3) inhibitors18, and cAMP elevators19. The second messenger cAMP is gener-
ally considered a negative modulator of a variety of inflammatory cell responses, including pro-inflammatory 
mediator generation and receptor-mediated phagocytosis, by activating its effectors protein kinase A (PKA) or 
exchange proteins directly activated by cAMP (Epac)20. However, we and others have demonstrated that the 
cAMP-elevating agents also promote IL-1Ra production in LPS-stimulated macrophages19,21, but the molecular 
mechanisms underlying this cAMP effect remained to be elucidated.

Phosphodiesterase 4 (PDE4) is a family of cAMP-hydrolyzing enzymes expressed in almost all immune and 
inflammatory cells, inferring their importance in regulation of intracellular cAMP level and hence, immune 
responses in these cells22,23. By elevating cAMP level, PDE4 inhibitors have been shown to suppress a myriad 
of inflammatory responses in most immune and inflammatory cells22,23. Moreover, PDE4 inhibitors are used as 
anti-inflammatory drugs for the treatment of inflammatory disorders, such as roflumilast for chronic obstructive 
pulmonary disease (COPD) and apremilast for psoriasis and psoriatic arthritis. While exerting beneficial effects, 
these inhibitors are associated with adverse effects such as nausea, emesis, and diarrhea, thereby limiting their 
dosing and clinical efficacy24,25. The PDE4 family consists of four genes (PDE4A-D). Among them, three (PDE4A, 
4B, and 4D) are expressed in macrophages, in which LPS stimulation causes a major upregulation of the PDE4B 
isoform26,27. It has been postulated that the side effects with currently used PDE4 inhibitors probably is caused by 
their non-specific action across the different isoforms. Using the PDE4 gene targeting approach, we have demon-
strated that certain inflammatory cell responses in vitro and in vivo are suppressed by ablation of PDE4B but not 
PDE4A or PDE4D21,28. To ensure that PDE4B is a useful target for the development of anti-inflammatory drugs 
to improve the therapeutic index of the nonselective PDE4 inhibitors, uncovering its essential role in additional 
inflammatory processes appears to be indispensable.

We previously demonstrated that treatment of Raw 267.4 macrophages with the PDE4 inhibitor rolipram 
enhances LPS-stimulated IL-1Ra secretion21. In the present study, we further explored the molecular mecha-
nisms for this PDE4 regulation in mouse peritoneal macrophages. We found that the rolipram-enhanced IL-1Ra 
production in response to TLR4 activation is mediated by inhibition of PDE4B but not PDE4A or PDE4D, and 
ablation of PDE4B induces activation of the downstream cAMP-PKA rather than cAMP-Epac signal pathway. 
Moreover, both PKA-dependent and PKA-independent CREB activation were involved in the LPS-stimulated 
IL-1Ra production in PDE4B null macrophages. Although PDE4B ablation was found to increase STAT3-Tyr705 
phosphorylation to LPS stimulation, this STAT3 activation only partly contributes to the IL-1Ra enhancement in 
rolipram-treated or PDE4B null macrophages.

Results
Inhibition of PDE4 upregulates LPS-induced IL-1Ra production in mouse macrophages.  Using 
a proteomic approach we previously demonstrated that the PDE4 inhibitor rolipram promotes IL-1Ra secretion 
in LPS-stimulated Raw 264.7 macrophages21. In this study, we further investigated the molecular mechanisms 
underlying the PDE4 regulation of IL-1Ra secretion in murine macrophages. To determine the optimal LPS stim-
ulation conditions, initially Raw 264.7 and mouse peritoneal macrophages were incubated with LPS at different 
concentrations and times, and the levels of IL-1Ra in the culture medium were measured by ELISA. The results 
showed that in the presence of 10 ng/ml LPS, the IL-1Ra accumulation in the medium displayed a time-depend-
ent increase up to 24 h for Raw 264.7 cells (Fig. 1A), whereas the increase in the primary macrophages reached 
nearly maximum at 8 h and plateaued thereafter (Fig. 1B). Additionally, both cells exhibited dose-dependent 
increase in IL-1Ra secretion to LPS stimulation, where the IL-1Ra response in Raw 264.7 cells continued to 
increase with the LPS concentration up to 1 μ​g/ml (Fig. 1C), while the maximal secretion of IL-1Ra was obtained 
at 10–100 ng/ml of LPS in the peritoneal macrophages (Fig. 1D).

To confirm the rolipram effect on IL-1Ra production, Raw 264.7 macrophages were treated with 10 ng/ml 
LPS for 8 h in the presence of increasing concentrations of rolipram. Figure 2A shows that the IL-1Ra secre-
tion was dose-dependently increased with rolipram, an observation confirming our previous proteomics data21. 
Further real-time PCR analysis revealed that these cells expressed limited amount of secretory form IL-1Ra 
(sIL-1Ra) mRNA unless they were stimulated with LPS. The mRNA induction by LPS was further enhanced 
by 10 μ​M rolipram (p <​ 0.001), showing approximately 6.0-fold increase (Fig. 2B). The same experiments were 
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also conducted with peritoneal macrophages using rolipram as well as the clinically approved PDE4 inhibitor 
roflumilast. The results indicated that both inhibitors also increased IL-1Ra release in a dose-dependent manner 
(Fig. 2C and E), and significantly enhanced sIL-1Ra mRNA expression (p <​ 0.001), albeit to a lesser extent com-
pared with that in Raw 264.7 cells, showing approximately 2.2- and 2.7-fold increase with 10 μ​M rolipram and 1 μ​
M roflumilast, respectively (Fig. 2D and F).

PDE4 inhibitor does not alter intracellular form IL-1Ra mRNA level or cell viability in 
LPS-stimulated mouse peritoneal macrophages.  To examine whether the lower sIL-1Ra mRNA 
induction by PDE4 inhibitors in peritoneal macrophages is due to a compensated increase in the intracellular 
form IL-1Ra (icIL-1Ra) mRNA expression, the icIL-1Ra mRNA levels in Raw 264.7 and mouse peritoneal mac-
rophages were compared. The cells were treated with 10 ng/ml LPS for 3 h in the presence or absence of 10 μ​M  
rolipram. Real-time PCR results showed that, like sIL-1Ra mRNA induction, icIL-1Ra mRNA expression in 
Raw 264.7 cells also was greatly enhanced by rolipram, with approximately 6.8-fold increase (Supplementary 
Fig. 1A). However, no increase in icIL-1Ra mRNA was observed by PDE4 inhibition in peritoneal macrophages 
(Supplementary Fig. 1B), suggesting that the rolipram enhancement of IL-1Ra secretion in peritoneal mac-
rophages is most likely derived from the associated sIL-1Ra mRNA induction.

As evidence indicates that icIL-1Ra can be released upon cell death7, we further probed the possibility that 
rolipram-enhanced IL-1Ra protein secretion in peritoneal macrophages may be contributed to some extent by 
the release of intracellular store of icIL-1Ra from an increased cell death. To this purpose, both macrophages 
were incubated with LPS in the presence or absence of rolipram for 8 h followed by the MTT assay. The results 
showed that with LPS alone the viability of Raw 264.7 cells was comparable to that of their control cells, whereas 
a decreased survival was detected in peritoneal macrophages (~85% survival, P =​ 0.06 compared with the 
control cells). However, we also observed that the viability of both macrophages was not reduced by rolipram 
(Supplementary Fig. 2), indicating that rolipram-enhanced IL-1Ra secretion in both macrophages has little or no 
contribution from the cell death-triggered icIL-1Ra release.

Inhibition of PDE4 does not increase IL-1Ra mRNA stability.  To investigate whether the steady-state 
level of sIL-1Ra mRNA induced by PDE4 inhibitors in macrophages is associated with an increase in transcrip-
tion or mRNA stability, the RNA synthesis inhibitor actinomycin D was used to monitor the IL-1Ra mRNA 

Figure 1.  Time- and dose-dependent IL-1Ra secretion in LPS-stimulated mouse macrophages. Raw 264.7 
cells (A and C) and mouse peritoneal macrophages (B and D) were incubated with LPS (10 ng/ml) for the 
indicated times (A and B) or increasing concentrations of LPS for 8 h (C and D). Accumulation of IL-1Ra in the 
medium was measured by ELISA. Data are the mean ±​ SEM (n =​ 5–6 in A; n =​ 7 in B and C; n =​ 9–13 in D).
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expression profile in mouse peritoneal macrophages. The cells were stimulated with LPS in the presence or 
absence of rolipram for 3 h, followed by incubation with actinomycin D for different times. Real-time PCR anal-
ysis showed that the cells with or without rolipram treatment displayed a similar pattern of decrease in sIL-1Ra 
mRNA level up to at least 6 h (Fig. 3), indicating that the turnover rate or stability of this RNA was not affected by 
rolipram. Therefore, the rolipram-enhanced sIL-1Ra mRNA expression and protein secretion was mainly attrib-
uted to the increase in RNA transcription.

Ablation of PDE4B increases LPS-induced IL-1Ra production in macrophages.  Rolipram is a 
non-selective PDE4 inhibitor which inhibits four PDE4 isoforms with similar potency. To date, no PDE4 inhib-
itors with isoform selectivity are available commercially. Among the four isoforms, three (PDE4A, 4B, and 4D) 
are expressed in mouse peritoneal macrophages27. To further dissect which PDE4 isoform is responsible for 
the pharmacological effect of rolipram on IL-1Ra production, PDE4 gene targeted mice were used. Peritoneal 

Figure 2.  Effect of PDE4 inhibitor on LPS-induced IL-1Ra secretion and mRNA expression in mouse 
macrophages. Raw 264.7 cells (A and B) and mouse peritoneal macrophages (C–F) were pretreated for 20 min 
with increasing concentrations of rolipram (A and C) or roflumilast (E) or with 10 μ​M rolipram (B and D) 
or 1 μ​M roflumilast (F) before LPS (10 ng/ml) stimulation for 8 h (A,C and E) or 3 h (B,D and F). IL-1Ra 
accumulation in the medium was measured by ELISA (A,C and E). The secretory form IL-1Ra (sIL-1Ra) mRNA 
levels in the cells were determined by real-time PCR and expressed as fold increase to the untreated cells (B,D 
and F). Data are the mean ±​ SEM (n =​ 4–6 in A and B; n =​ 6–9 in C and D; n =​ 4–8 in E and F). *P <​ 0.001, 
compared with LPS control.
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macrophages were isolated from PDE4A, 4B, and 4D null mice and their corresponding wild-type mice and 
incubated in the presence of LPS for 8 h. The IL-1Ra levels in the medium were measured by ELISA. As expected, 
the IL-1Ra release in all three wild-type macrophages was induced by LPS and this induction was enhanced 
by rolipram (Fig. 4). PDE4A−/− and PDE4D−/− macrophages also responded to LPS challenge as well as to 
rolipram induction in a manner similar to their wild-type counterparts (Fig. 4A and C). In contrast, LPS stimu-
lation of PDE4B−/− macrophages significantly increased IL-1Ra production compared with their wild-type cells 
(p <​ 0.001) (Fig. 4B). In addition, rolipram had no further effect on IL-1Ra production in PDE4B−/− macrophages 
(Fig. 4B), indicating that the pharmacological inhibition of PDE4A and PDE4D in PDE4B−/− macrophages had 
little or no effect on LPS-stimulated IL-1Ra production. These data demonstrate that rolipram enhances IL-1Ra 
response is mediated mostly, if not all, by inhibition of PDE4B but not PDE4A or PDE4D in macrophages.

In addition to peritoneal macrophages, bone marrow-derived macrophages (BMDM) were also prepared 
from PDE4B+/+ and PDE4B−/− mice to test their IL-1Ra responses to LPS and rolipram. By quantitative PCR, 
we found that BMDM expressed relatively low level of PDE4A, 4B and 4D mRNA under a basal culture condi-
tion, while LPS markedly induced PDE4B, but not PDE4A or PDE4D, expression (Supplementary Fig. 3A), an 
observation consistent with the findings in human THP-1 cells and circulating monocytes26,29. Moreover, like in 
PDE4B+/+ and PDE4B−/− peritoneal macrophages, LPS greatly induced IL-1Ra secretion in PDE4B+/+ BMDM, 
and this induction was further enhanced by rolipram. Furthermore, LPS stimulation of PDE4B−/− BMDM signif-
icantly increased IL-1Ra secretion compared with their wild-type cells, whereas rolipram did not further increase 
the IL-1Ra response (Supplementary Fig. 3B). These results demonstrate that PDE4B also negatively regulate 
LPS-activated IL-1Ra responses in BMDM as in peritoneal macrophages.

Cyclic AMP-PKA signaling mediates the stimulating effects of PDE4B ablation and rolipram 
inhibition on IL-1Ra production.  The cAMP regulation of cytokine production is known to be mediated 
by activation of either PKA or Epac20. To determine which signal pathway mediates the effect of PDE4 inhibitor 
or PDE4B ablation on IL-1Ra production, peritoneal macrophages isolated from PDE4B+/+ and PDE4B−/− mice 
were incubated with LPS in the presence or absence of different cAMP analogs for 8 h. Figure 5 shows that IL-1Ra 
production in LPS-stimulated PDE4B+/+ cells was significantly induced by the PKA activator 6-Bnz-cAMP 
as well as the cAMP analog dibutyryl-cAMP (db-cAMP), and the levels of induction were similar to those in 
rolipram-treated cells. Contrarily, the Epac activator 8-pCPT-2′​-O-Me-cAMP had no significant effect on IL-1Ra 
response in these cells. Additionally, db-cAMP and PKA activator, like rolipram, exhibited little or no further 
increase in IL-1Ra production in PDE4B−/− macrophages compared with these cells treated with LPS alone. These 
results demonstrate that the enhancement of IL-1Ra production by either PDE4 inhibition or PDE4B ablation is 
cAMP-dependent and is mediated by cAMP-PKA but not cAMP-Epac signal pathway.

More importantly, using the PKA inhibitor Rp-8-CPT-cAMPS to treat these macrophages, we found that 
IL-1Ra accumulation was not significantly altered in LPS-stimulated PDE4B+/+ cells (Fig. 5), indicating that the 
IL-1Ra response to LPS alone is independent of PKA activity. Conversely, treatment of PDE4B−/− macrophages 
with the PKA inhibitor caused a significant decrease in IL-1Ra production to levels not significantly different 
from those in PDE4B+/+ cells treated with LPS alone. Moreover, when the PDE4B+/+ cells were incubated with a 
combination of rolipram and the PKA inhibitor, the IL-1Ra induced by rolipram also was reduced significantly 
(P <​ 0.001) to the level similar to that in PDE4B+/+ cells treated with LPS alone. These data demonstrate that the 
upregulation of IL-1Ra by PDE4B inactivation requires an active PKA (Fig. 5).

Figure 3.  Rolipram does not alter sIL-1Ra mRNA stability in LPS-stimulated macrophages. Mouse 
peritoneal macrophages were treated with LPS (10 ng/ml) in the presence or absence of 10 μ​M rolipram for 3 h, 
followed by the addition of actinomycin D (10 μ​g/ml) to inhibit RNA transcription. The levels of sIL-1Ra mRNA 
were measured at 0, 0.5, 1, 2, 4 and 6 h after actinomycin D addition by real-time PCR. The amounts of sIL-1Ra 
mRNA were normalized to GAPDH mRNA levels. Values are expressed as percent of total sIL-1Ra mRNA at 
the time of actinomycin D addition. Data are the mean ±​ SEM (n =​ 4–6).
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LPS-induced IL-1Ra production in PDE4B null macrophages requires both PKA-dependent 
and PKA-independent CREB activation.  It is generally accepted that gene transcription induced by 
cAMP-PKA signaling is largely mediated via activation of cAMP response element-binding protein (CREB). As 
mentioned above, in wild-type macrophages IL-1Ra production elicited by LPS alone is not mediated by PKA 
activation, whereas the rolipram-enhanced response is mostly dependent on PKA activity. To further determine 
whether such PKA-mediated IL-1Ra expression is regulated by the PKA-CREB axis, the CREB inhibitor C217505, 
a CREB-binding protein (CBP)-CREB interaction inhibitor, was used and the IL-1Ra release in PDE4B+/+ and 
PDE4B−/− macrophages was compared. As shown in Fig. 6, by preincubation of the cells with increasing concen-
trations of C217505 for 20 min followed by 8 h LPS stimulation, a dose-dependent decline of IL-1Ra production 
was observed in both cells. At 10 μ​M of C217505, the levels of IL-1Ra release in PDE4B−/− cells were not signif-
icantly different from those observed in PDE4B+/+ cells (Fig. 6), indicating that IL-1Ra production provoked 
by TLR4 activation in both wild-type and PDE4B null macrophages is mediated mostly by CREB activation. 
However, the activation of CREB in LPS-stimulated wild-type cells is independent of PKA activity as IL-1Ra 
response to LPS alone was not blocked by PKA inhibitor in these cells (Fig. 5). Conversely, the CREB activation 
triggered by PDE4B ablation to enhance IL-1Ra production is mostly dependent on PKA activity. Taken together, 
these results demonstrate that the IL-1Ra response to LPS in PDE4B null macrophages is controlled by both 
PKA-dependent and PKA-independent CREB activation.

STAT3 activation elicited by PDE4B ablation is not fully responsible for the observed IL-1Ra 
upregulation.  Stimulation of macrophages with LPS has been shown to induce phosphorylation of signal 
transducer and activator of transcription (STAT)3 at Tyr705, and this STAT3 activation is enhanced by the pres-
ence of the cAMP elevator prostaglandin E2 (PGE2)30. Additionally, a previous study by Carl et al. demonstrated 

Figure 4.  Effect of PDE4 inhibition on LPS-induced IL-1Ra production in PDE4-deficient macrophages. 
Peritoneal macrophages isolated from PDE4A−/− (A), PDE4B−/− (B) and PDE4D−/− mice (C) and their 
corresponding wild-type mice were incubated with 10 μ​M rolipram for 20 min before LPS (10 ng/ml) 
stimulation for 8 h. IL-1Ra accumulation in the medium was determined by ELISA. Data are the mean ±​ SEM 
(n =​ 7–13 mice/group). *P <​ 0.001, compared with PDE4B+/+ control.

Figure 5.  Effect of cAMP signaling on LPS-induced IL-1Ra production in mouse macrophages. Peritoneal 
macrophages from PDE4B+/+ and PDE4B−/− mice were pretreated for 20 min with rolipram (10 μ​M), the 
PKA inhibitor Rp-8-CPT-cAMPS (PKA-i, 500 μ​M), the PKA activator 6-Bnz-cAMP (PKA-α, 250 μ​M), the 
Epac activator 8-pCPT-2′​-O-Me-cAMP (Epac-a, 500 μ​M), the dibutyryl-cAMP (100 μ​M) or the combination 
of rolipram and PKA inhibitor, followed by LPS (10 ng/ml) stimulation for 8 h. IL-1Ra accumulation in the 
medium was measured by ELISA. Data are the mean ±​ SEM (n =​ 4–6). *P <​ 0.005, compared with PDE4B−/− 
group treated with LPS alone. **P <​ 0.001, compared with the LPS +​ Rol group of the same genotype.
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that the IL-10-induced IL-1Ra expression in LPS-stimulated macrophages is mediated by an increase in 
STAT3-Tyr705 phosphorylation and transcription14. These findings prompted us to investigate whether elevation 
of cAMP by PDE4 inhibitor or PDE4B ablation promotes STAT3 phosphorylation, and whether such phospho-
rylation mediates the enhanced IL-1Ra production in LPS-stimulated PDE4B−/− macrophages. For this purpose, 
we first treated wild-type peritoneal macrophages with LPS in the presence or absence of rolipram for various 
times. Western blotting using an antibody specific to Tyr705-phospho-STAT3 revealed that little or no STAT3 
phosphorylation was detected in the untreated cells (Fig. 7A and B). The protein phosphorylation was increased 
with time up to 2 h and declined thereafter. The level of phosphorylation was significantly enhanced when the 
cells were incubated with rolipram (p <​ 0.05), reaching approximately 2.0- and 2.6-fold increases at 2 h and 3 h 
LPS stimulation, respectively (Fig. 7A and B). We further probed the effect of PDE4B on STAT3 phosphorylation 
and found that following 2 h LPS treatment the level of STAT3 Tyr705 phosphorylation was significantly increased 
in 4B−/− macrophages compared with the wild-type cells (P <​ 0.005) (Fig. 7C and D). These results support the 
notion that STAT3 activation can be induced by cAMP-elevating agents in LPS-stimulated macrophages.

To further assess whether the STAT3 phosphorylation enhanced by rolipram and PDE4B ablation is associated 
with the observed IL-1Ra induction, bone marrow-derived macrophages (BMDM) from STAT3 null mice and the 
corresponding wild-type mice were prepared, and their IL-1Ra production in response to LPS and rolipram was 
compared. The reason that BMDM instead of peritoneal macrophages were used in this study was that we needed 
enough cells to conduct the IL-1Ra response experiment as proposed as well as Western blotting to confirm 
that the STAT3 deletion was fully induced in BMDM from each STAT3 targeted mouse. The number of perito-
neal macrophage isolated from each mouse was not enough for this purpose. As shown in Fig. 7E, after 8 h LPS 
stimulation in the absence or low concentrations of rolipram IL-1Ra accumulation was significantly decreased 
in STAT3−/− cells compared with STAT3+/+ cells (P <​ 0.001), indicating that STAT3 is essential for LPS-induced 
IL-1Ra production. Consistent with the results observed in peritoneal macrophages, LPS-stimulated IL-1Ra 
accumulation in wild-type BMDM was enhanced with increasing concentrations of rolipram, showing approx-
imately 1.81-fold increase compared with the cells treated with LPS alone. However, a similar level of IL-1Ra 
induction by rolipram (approximately 1.73 folds) also was observed in the STAT3−/− BMDM (Fig. 7E), indicating 
that this rolipram effect was not caused by STAT3 activation because no STAT3 phosphorylation exists in these 
cells. However, by comparing the absolute amounts of IL-1Ra release between the treatment conditions of LPS 
alone and LPS +​ Rol, we found that IL-1Ra secretion induced by 10 μ​M rolipram was greater in STAT3+/+ cells 
(~11.2 ng/ml) compared with STAT3−/− cells (~6.1 ng/ml) (Fig. 7E), indicating that the rolipram-induced IL-1Ra 
production can be triggered by both STAT3-independent (as detected in STAT3−/− cells) and STAT3-dependnet 
pathways in STAT3+/+ cells. Taken together, these data suggest that the rolipram- or PDE4B ablation-enhanced 
STAT3 phosphorylation is not fully responsible for the enhanced IL-1Ra production in PDE4B−/− macrophages 
or rolipram-treated PDE4B+/+ macrophages.

Serum level of IL-1Ra is elevated in PDE4B-deficient mice during LPS-induced sep-
sis.  Overexpression of IL-1Ra has been shown to protect mice from the lethal effects of endotoxin31. 
Additionally, gram-negative bacteria-induced septic shock is associated with an elevation of plasma IL-1Ra in 
patients, a response believed to be an attempt to suppress the shock syndrome32. These reports, together with our 
previous observation that ablation of PDE4B protects mice from LPS-induced shock27, prompted us to assess 
the serum levels of IL-1Ra in PDE4B null mice following LPS provocation. To this purpose, PDE4 null mice 
and their corresponding wild-type mice were challenged with a high dose of LPS (250 μ​g/25 g body weight), 
and after 6 h blood samples were collected. The serum IL-1Ra was undetectable in mice without LPS treatment. 
Figure 8A–C shows that the serum level of IL-1Ra was significantly higher (by 75%) in PDE4B−/− mice com-
pared with the PDE4B+/+ mice (P <​ 0.05), whereas no significant difference was observed between PDE4A−/− or 

Figure 6.  The CREB activity mediates LPS-induced IL-1Ra production in PDE4B+/+ and PDE4B−/− 
macrophages. Peritoneal macrophages from PDE4B+/+ and PDE4B−/− mice were incubated with increasing 
concentrations of the CREB inhibitor 217505 for 20 min before LPS (10 ng/ml) stimulation for 8 h. 
Accumulation of IL-1Ra in the medium was measured by ELISA. Data are the mean ±​ SEM (n =​ 6).
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PDE4D−/− mice and their corresponding wild-type mice. These data indicate that ablation of PDE4B, but not 
PDE4A or PDE4D, alters TLR signaling in vivo, leading to an increase in circulating IL-1Ra.

In addition to the measurement of IL-1Ra, the serum levels of TNF-α​ and IL-1β​, two key proinflammatory 
cytokines involved in the LPS-sepsis, were also quantified. The ELISA results showed that IL-1β​ levels were not 
changed in PDE4A−/− or PDE4D−/− mice, while a trend of decrease of this cytokine was observed in PDE4B−/− 
mice (P =​ 0.10), suggesting a downregulation of IL-1β​ might play a role in the protection of PDE4B−/− mice from 
LPS-induced shock (Fig. 8D–F). Regarding the TNF-α​ level, the results indicated that most of the serum samples 
were under the detection limit of the assay. The possible explanations are that TNF-α​ is expressed as an early 
cytokine and has a relatively short half-life in serum33.

Discussion
The PDE4 inhibitor rolipram has been shown to increase IL-1Ra secretion in Raw 264.7 macrophages in response 
to LPS21, but the molecular mechanism underlying this effect remained to be elucidated. In the present study, we 
show that the IL-1Ra upregulation by PDE4 inhibitor is mediated by inhibition of PDE4B, one of the three PDE4 
isoforms expressed in macrophages, demonstrating that, in addition to pro-inflammatory cytokines, PDE4B is 
also involved in the gene regulation of anti-inflammatory cytokine. Additionally, we also found that IL-1Ra pro-
duction initiated by LPS alone is PKA independent, whereas it requires CREB activation. The IL-1Ra response 
enhanced by PDE4B ablation or PDE4 inhibition, however, depends on both PKA and CREB in LPS-stimulated 
macrophages, and this activated cAMP-PKA-CREB signaling can cross talk with LPS-TLR4 signal pathway, 
directly or indirectly, to promote IL-1Ra transcription.

Using the PDE4 gene targeting mice, here we demonstrate that ablation of PDE4B, but not PDE4A or PDE4D, 
enhances the LPS-induced IL-1Ra production, and the level of increase is similar to that induced by rolipram or 
db-cAMP in LPS-treated wild-type macrophages (Fig. 5). These results indicate that the upregulation of IL-1Ra 
by PDE4B ablation is elicited by cAMP elevation in these cells. This is supported by the findings of Feng et al. 
that 8-bromo-cAMP and cholera toxin, both cAMP elevators, positively regulate IL-1Ra mRNA expression in 
LPS-stimulated macrophages19.

As reported by other investigators, we also observed that sIL-1Ra gene expression and secretion are upregulated 
in macrophages in response to the endotoxin LPS5,34. This IL-1Ra production initiated by LPS alone appears to 
be regulated by different signaling molecules. A study by Molnarfi et al. has demonstrated that inhibition of PI3K 
activity suppresses IL-1Ra production in LPS-stimulated human monocytes16. A following study by Rehani et al.  

Figure 7.  STAT3 phosphorylation enhanced by rolipram or PDE4B ablation does not contribute to the 
increased IL-1Ra production in LPS-stimulated macrophages. Peritoneal macrophages from PDE4B+/+ mice 
were incubated with LPS (100 ng/ml) in the presence or absence of 10 μ​M rolipram for indicated times (A), or 
the cells from both PDE4B+/+ and PDE4B−/− mice were treated with LPS (100 ng/ml) for 2 h (C). The STAT3 
phosphorylation (Tyr705) was detected by immunoblotting as described in Methods (A and C). Representative 
Western blots are shown. The blots were cropped for improving clarity and full-length blots are presented in 
Supplementary Figs 4 and 5. The level of phosphorylation relative to total STAT3 protein was quantified and 
expressed as fold induction to unstimulated control (B) or to the PDE4B+/+ group (D). *P <​ 0.05, compared 
with the corresponding groups treated with LPS alone (n =​ 4 in B); **P <​ 0.005, compared with the PDE4B+/+ 
group (n =​ 3 in D). (E) Bone marrow-derived macrophages prepared from STAT3+/+ and STAT3−/− mice were 
incubated with increasing concentrations of rolipram for 20 min prior to LPS (100 ng/ml) stimulation for 8 h. 
IL-1Ra accumulation in the medium was measured by ELISA. Data are the mean ±​ SEM (n =​ 7–8).
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further revealed that the downstream component glycogen-synthase kinase 3 (GSK3) in the PI3K-Akt path-
way negatively regulates the LPS-induced IL-1Ra levels due to its ability to modulate ERK1/2 activity18. In this 
study, we showed that the IL-1Ra production in macrophages induced by LPS was not PKA dependent because 
the IL-1Ra induction was not reversed by the treatment with the PKA inhibitor Rp-8-CPT-cAMPS. This result 
may be explained by the fact that the expression and activity of PDE4B is induced by LPS in macrophages27. It is 
known that induction of PDE4 isoforms, including PDE4B, in a cell is able to reduce intracellular cAMP and sub-
sequently inactivates PKA. As a result, the observed increase in IL-1Ra production in response to LPS most likely 
is PKA independent. Moreover, our data indicated that this IL-1Ra regulation by LPS requires CREB activation, 
as CREB inhibitor dose-dependently blocks the IL-1Ra production (Fig. 6). This is in agreement with the findings 
of Avni et al.35, showing that LPS stimulates CREB phosphorylation on Ser-133 in Raw 264.7 macrophages and 
this process is mediated by mitogen- and stress-activated kinase 1 (MSK1), but not PKA. Additionally, using the 
MSK-deficient macrophages, Darragh et al. have demonstrated that MSK1 and 2 activated by either ERK1/2 or 
p38 are essential for LPS-induced IL-1Ra production17. Taken together, these studies indicate that the mechanism 
involved in the induction of IL-1Ra by LPS alone is distinct from that initiated by PDE4B inactivation.

Cyclic AMP-elevating agents, including PDE4 inhibitors, are known to regulate a wide range of inflamma-
tory processes in macrophages, predominantly via the activation of the effector PKA or Epac20,28. The role of 
PKA and Epac in regulation of cytokine and chemokine production varies by individual responses and cell 
types36–38. Activation of cAMP signaling in macrophages has been shown to suppress the production of several 
pro-inflammatory mediators, such as LPS-induced TNF-α​ and macrophage inflammatory protein-1α​ (MIP-1α​ 
or CCL3)36, and ionophore A23187-stimulated leukotriene B439, as well as to enhance LPS-induced production 
of the anti-inflammatory cytokine IL-1036. The regulation of all these responses depends on PKA but not Epac. 
However, Epac has been implicated in the suppression of LPS-induced interferon-β​ expression in J774A.1 mac-
rophages40 as well as the induction of the expression of several pro-inflammatory chemokines, such as CXCL5, 
CXCL7, and CCL2 in human monocyte-derived macrophages41. Our present data demonstrate that the upreg-
ulation of IL-1Ra, like our previously observed downregulation of TNF-α​ and CCL3 21,27, by PDE4B ablation or 
rolipram inhibition in LPS-stimulated macrophages is PKA dependent and Epac independent. The two opposite 

Figure 8.  Serum levels of IL-1Ra and IL-1β in PDE4 null mice after high-dose LPS challenge. PDE4A−/−  
(A and D), PDE4B−/− (B and E) and PDE4D−/− mice (C and F) and their corresponding wild-type mice were 
injected intraperitoneally with 10 mg/kg LPS. After 6 h, blood samples were collected by heart puncture and 
the serum levels of IL-1Ra (A–C) and IL-1β​ (D–F) were measured by ELISA. The result of individual mouse is 
plotted as a symbol and the mean of each group expressed as a line. *P <​ 0.05 (n =​ 5–10 mice/group).
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transcriptional effects resulted from the same cAMP-PKA activation suggest that distinct transcriptional machin-
eries are prompted by PKA in PDE4B-deficient macrophages, all aiming to reduce endotoxin-induced inflamma-
tion. The exact PKA downstream signaling pathways and transcriptional components involved in the expression 
of anti-inflammatory (IL-1Ra) and pro-inflammatory cytokines (TNF-α​ and CCL3) remain to be identified.

Using wild-type and STAT3-deficient BMDM, we show here that STAT3 activity is essential for LPS-induced 
IL-1Ra secretion (Fig. 7E), confirming the role of STAT3 as a positive regulator in IL-1Ra production under endo-
toxin stimulation. The LPS-induced STAT3 phosphorylation has been shown to require endogenously produced 
IL-10, an anti-inflammatory cytokine also induced in response to LPS stimulation, and this STAT3 activation 
results in the induced IL-1Ra expression in BMDM14. In addition to the induction by LPS alone, STAT3 phos-
phorylation also was enhanced by rolipram or PDE4B ablation in LPS-stimulated macrophages (Fig. 7). This 
increase in STAT3 activity, however, did not contribute entirely to the enhanced IL-1Ra production observed in 
the PDE4B−/− macrophages or rolipram-treated PDE4B+/+ cells simply because an increase in IL-1Ra produc-
tion initiated by rolipram was still detected in macrophages deficient in STAT3. These results suggest that STAT3 
phosphorylation induced by PDE4B inactivation may play a role in regulating not yet identified cellular processes 
in LPS-stimulated macrophages.

IL-1Ra is a naturally occurring inhibitor of the pro-inflammatory cytokine IL-1. Our observation that inac-
tivation of PDE4B upregulates this anti-inflammatory cytokine supports the view that PDE4 inhibitors with 
PDE4B selectivity functions as negative modulators concerning inflammation28,42. PDE4B deficiency has been 
demonstrated to attenuate a number of inflammatory cell responses and inflammatory disorders in animal 
models. As described above, the production of the pro-inflammatory cytokine TNF-α​ and chemokine CCL3 
is markedly reduced in PDE4B null macrophages in response to LPS21,26,27. In an allergic asthma model, PDE4B 
ablation impairs allergen-specific T-cell proliferation and Th2 cell functions as well as protects the animal from 
allergen-induced airway hyperresponsiveness43. Moreover, PDE4B knockdown with interference RNA has also 
been shown to attenuate lung inflammation in LPS-induced acute lung injury44, as well as spinal nerve ligation 
(SNL)-induced neuropathic pain and inflammatory responses in the spinal cord45. Given the tolerability concerns 
with non-selective PDE4 inhibitors, including the clinically used roflumilast and apremilast28, these findings pro-
vide insights into the pharmacological potential of PDE4B-selective inhibitors.

By binding to IL-1 receptor on cell surface, IL-1Ra prevents IL-1 from sending a signal to that cell and thereby 
counteracting the action of IL-1. Deficiency of IL-1Ra is implicated in life-threatening systemic inflammation 
with skin and bone involvement11,12. Treatment of these patients with the human recombinant IL-1Ra anakinra 
resolves the symptoms and lesions rapidly. A number of acute and chronic inflammatory conditions in which 
IL-1 plays a major role are demonstrated to respond to IL-1 blockers, such as anakinra and anti-IL-1β​ monoclonal 
antibodies46. Anakinra is approved for the treatment of the autoimmune disease rheumatoid arthritis (RA). In RA 
patients the production of endogenous IL-1Ra in synovium and synovial fluid appears to be insufficient to bal-
ance the elevated IL-1 levels1. In this study, we found that the serum level of IL-1Ra was significantly increased in 
mice after a high dose of LPS challenge, and it was approximately 75% higher in PDE4B−/− mice compared with 
PDE4B+/+ mice. Moreover, the level of IL-1β​ was lower in PDE4B−/− mice than in PDE4B+/+ mice (P =​ 0.10). 
These results infer that PDE4B-selective inhibitors, developed as non-peptide anti-inflammatory agents, may be 
used as alternatives of anakinra for the treatment of IL-1-driven diseases.

In summary, our data demonstrate that inhibition of PDE4B, one of the three PDE4 isoforms expressed 
in macrophages, upregulates anti-inflammatory cytokine IL-1Ra production in endotoxin-stimulated mac-
rophages in vitro and sepsis in vivo. These results, together with previous findings that PDE4B ablation suppresses 
pro-inflammatory cytokine responses, provide proof of concept that PDE4B-selective inhibitors may retain the 
anti-inflammatory effects of non-selective PDE4 inhibitors.

Methods
Reagents.  Dibutyryl-cAMP, rolipram, roflumilast, Escherichia coli LPS (055:B5), goat γ​-globu-
lin, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and actinomycin D were 
obtained from Sigma-Aldrich (MO, USA), and the CREB inhibitor C217505 was from Merck Millipore (MA, 
USA). The PKA activator N6-benzoyladenosine-3′​, 5′​-cyclic monophosphate (6-Bnz-cAMP), Epac activator  
2′​-O-methyladenosine-3′​, 5′​-cyclic monophosphate (8-pCPT-2′​-O-Me-cAMP), and PKA inhibitor 8-(4- 
Chlorophenylthio)-8-(4-Chlorophenylthio) adenosine-3′​, 5′​-cyclic monophosphorothioate, Rp-isomer (Rp-8-
CPT-cAMPS) were purchased from BioLog Life Science Institute (Bremen, Germany). The RPMI 1640 and 
DMEM medium base and fetal bovine serum (FBS) were obtained from Thermo Fisher Scientific (MA, USA).

Cell line.  Raw 264.7, a murine leukemia macrophage cell line, was obtained from Bioresource Collection and 
Research Center (Taiwan). The cells were maintained in DMEM medium supplemented with 100 U/ml penicillin, 
100 μ​g/ml streptomycin, and 10% FBS at 37 °C in 5% CO2. To assess the effects of LPS and rolipram on IL-1Ra 
release, Raw 264.7 cells were plated at 2.5 ×​ 105 cell/ml in 96-well plate, grown overnight, and then incubated 
with drugs for desired times. The culture medium supernatant was collected for IL-1Ra ELISA. For quantitative 
PCR analysis on secretory IL-1Ra (sIL-1Ra) and intracellular IL-1Ra (icIL-1Ra) mRNA expression, the cells were 
incubated with LPS and rolipram for 3 h in the same medium.

Mice.  Generation of PDE4A-, PDE4B- and PDE4D-deficient mice has been described previously21. The 
PDE4A and PDE4B null mice have been backcrossed from the mixed 129/Ola ×​ C57Bl/6 to the pure C57BL/6 
background for at least 12 generations, whereas the PDE4D null mice were kept in the mixed background 
because these mice become embryonic lethal when the null allele is transferred to the pure C57Bl/6 background. 
Generation of MxCre-STAT3f/f mice with a conditional STAT3 allele and induction of the STAT3 deletion have 
been described previously47,48. Mice were bred and maintained at 23 °C with a 12-hour light/12-hour dark cycle 
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and provided with food and water ad libitum in the animal facility at National Center University. Mice used in 
this study were 2–5 months of age. All the experimental procedures involving animals were approved by the 
Institutional Animal care and Use Committee (IACUC) at the authors’ institutes. Animal care and experimental 
procedures were carried out in accordance with the guidelines of the IACUC of authors’ institutes.

Primary macrophages.  Peritoneal macrophages were isolated and purified from PDE4-deficient mice and 
their corresponding wild-type mice, and cultured in RPMI 1640 medium supplemented with 100 U/ml penicillin, 
100 μ​g/ml streptomycin, and 10% FBS at 37 °C in 5% CO2 as described previously27. Briefly, cells were collected 
by washing the peritoneal cavity with cold HBSS (Thermo Fisher Scientific) followed by centrifugation, and the 
cell pellet was resuspended in PBS containing 2% heat-inactivated FBS. To deplete B cells, the peritoneal cells 
were plated in a 10-cm Petri dish that was pretreated with 35 μ​g of goat anti-mouse IgG +​ IgM (H +​ L) (Jackson 
ImmunoReserach Laboratories) and 300 μ​g of goat γ​-globulin in 10 ml of PBS. After incubation at 4 °C for 1 h, 
non-adherent cells enriched with macrophages were harvested and centrifuged, and the cell pellet was resus-
pended in the RPMI1640 medium. Macrophages were counted and plated at 4.5 ×​ 105/ml in 96-well plate or 
1 ×​ 106/ml in 3.5-cm plate.

Bone marrow–derived macrophages (BMDM) were established as previously described49. Briefly, bone mar-
row cells were flushed from mouse femurs and tibias with PBS, followed by RBC lysis, PBS wash, and then plating 
at a density of 5 ×​ 105 cell/ml in 10-cm petri dish. The cells were cultured in RPMI 1640 medium containing 20% 
L929 cell-conditioned medium, 10% FBS, 100 U/ml penicillin, and 100 μ​g/ml streptomycin at 37 °C in 5% CO2 
for 5–7 days, in which 5 ml of the same medium was added on day 3. Before use, the cells were scrapped off the 
original petri dish and plated at 0.8 ×​ 106 cell/ml in 6-well plate or 4.5 ×​ 105 cell/ml in 96-well plate in the same 
RPMI 1640 medium.

The plated peritoneal macrophages and BMDM were cultured overnight, and then incubated with LPS in the 
absence or presence of rolipram, roflumilast, cAMP analogs, or other test drugs. The medium supernatants were 
collected for ELISA and the cells for immunoblotting or quantitative PCR analysis.

RNA isolation, cDNA synthesis, and quantitative PCR.  Total RNA was extracted from Raw 
264.7, mouse peritoneal macrophages, and BMDM with the TRIzol reagent (Thermo Fisher Scientific, MA, 
USA) according to the manufacturer’s protocol. First strand cDNA was synthesized from 0.5 to 1 μ​g of total 
RNA in the presence of random primer using M-MLV reverse transcriptase according to the manufactur-
er’s instructions (Thermo Fisher Scientific, MA, USA). Real-time PCR was carried out with the SYBR FAST 
qPCR Master Mix (KAPA Biosystems, MA, USA) using iQ5 Real-time PCR Detection System (Bio-Rad, CA, 
USA). The reaction was performed in a 20 μ​l reaction mixture with preliminary denature for 3 min at 94 °C, 
followed by 40 cycles of denaturing at 94 °C for 30 sec, annealing at 60 °C for 45 sec, and extension at 72 °C for 
30 sec. Oligonucleotide primer sequences were as follows: sIL-1Ra, 5′​-AGTCGCTAGTCTCTATTGCC-3′​ 
and 5 ′-TTCTGAAGGCTTGCATCTTG-3 ′ ​;  icIL-1Ra, 5 ′-TCCTTTATACACAGCAAGTCTC-3 ′​ 
and 5 ′ ​-TTCTGAAGGCTTGCATCTTG-3 ′ ​;  PDE4A, 5 ′ ​-CTTCTGCGAGACCTGCTCCA-3 ′ ​ and  
5 ′ -GAGT TCCCGGT TCAGCATCC-3 ′ ​;  PDE4B,  5 ′ -GCCACTGGATGAGAGGAGCA-3 ′ ​ and  
5 ′-CCT T T TCCGGTCCCTCAGAA-3 ′ ​;  PDE4D, 5 ′-ACCGCCAGTGGACGGACCGGA-3 ′ ​ and  
5 ′-CATGCCACGCTCCCGCTCTCGG-3 ′ ​;  GAPDH, 5 ′ ​-GGAGCGAGACCCCACTAACA-3 ′ ​ and  
5′-ACATACTCAGCACCGGCCTC-3′​. All primers used were synthesized by Tri-I Biotech (Taiwan). Target gene 
expression was calculated by the comparative Δ​Δ​ cycle threshold (Ct) method for relative quantification after 
normalization to the housekeeping gene GAPDH expression.

RNA stability assay.  Mouse peritoneal macrophages were treated with LPS (10 ng/ml) in the presence or 
absence of 10 μ​M rolipram for 3 h. The cells then were incubated with actinomycin D (10 μ​g/ml) for 0, 0.5, 1, 2, 4 
and 6 h. Total RNA was extracted from the cells and sIL-1Ra mRNA levels were measured by quantitative PCR.

Western blot analysis.  Following treatment with rolipram and LPS, macrophages were washed once with 
cold PBS, gently scraped off the culture dish in a lysis buffer (50 mM Tris-Cl, pH 7.5, 250 mM sodium chloride, 
5% glycerol, 10 mM sodium fluoride, 1 mM EDTA, 0.2 mM EGTA, 10 mM sodium pyrophosphate, 1 mM sodium 
orthovanadate, 1 mM 4-(2-aminoethyl)-benzenesulfonyl fluoride (Roche, CA, USA), 1 tablet/10 ml of protease 
inhibitor mixture (Roche, CA, USA), 0.4% Nonidet P-40, and 14.3 mM 2-mercaptomethanol), and then incubated 
on ice for 20 min. After sonication with 25 bursts, the cell lysate was centrifuged at 4 °C for 15 min at 16,000 ×​ g. 
Aliquots of the supernatant were subjected to electrophoresis on 10% SDS-PAGE, and then blotted onto a polyvi-
nylidene fluoride (PVDF) membrane (Millipore, MA, USA). Phosphorylated STAT3 was detected by incubation 
of the membrane with an anti- phospho-STAT3 (Tyr705) mAb (1:2000; Cell Signaling Technology, MA, USA) fol-
lowed by a peroxidase-conjugated goat anti-mouse secondary Ab (1:5000; Jackson ImmunoResearch, PA, USA). 
Immunoreactive signals were visualized using an ECL detection system (Perkin Elmer, MA, USA). To detect total 
STAT3 protein, the stripped membrane was incubated with a STAT3 Ab (1:2000; BD Biosciences, CA, USA). 
Signals of the immunoreactive bands were quantified using GelPro31 software, and all phosphorylated signal 
intensities were normalized with their total proteins.

LPS-induced systemic inflammation.  PDE4A, 4B, and 4D null mice and their corresponding wild-type 
mice were injected with LPS (10 mg/kg body weight) intraperitoneally to induce systemic inflammation. After 
6 h, mouse blood was collected by cardiac puncture and serum obtained from blood clotting. The serum levels of 
IL-1Ra, IL-1β​ and TNF-α​ were measured by ELISA.

Cytokine measurement.  Levels of IL-1Ra, IL-1β​ and TNF-α​ in macrophage culture supernatants and 
blood sera were measured with commercially available enzyme-linked immunosorbent assay (ELISA) kits 
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(IL-1Ra from R&D Systems, MN, USA; IL-1β​ and TNF-α​ from BD Biosciences, CA, USA). The sensitivities of 
the assay were 156.25 pg/ml, 31.3 pg/ml, and 15.6 pg/ml, respectively.

Cell viability assay.  The cell viability was determined by the MTT assay. Raw 264.7 and peritoneal mac-
rophages were plated in 96-well plate at 1.25 ×​ 105 and 4.5 ×​ 105 cell/ml, respectively. Following overnight incuba-
tion, cells were treated with LPS in the presence or absence of rolipram for 8 h. The MTT solution then was added 
to each well at a final concentration of 0.5 mg/ml. After 3 h incubation, the medium was removed and 200 μ​l  
DMSO was added to each well to dissolve the formed formazan. Then the absorbance was determined using a 
microplate reader (VersaMax, Molecular Devices, CA, USA) at the wavelength of 570 nm. The cell viability was 
expressed as percent survival of untreated cells.

Statistical analysis.  All data are expressed as the mean ±​ SEM from at least three independent experiments. 
Differences between different treatment groups were assessed using the Student’s t-test. Values of P <​ 0.05 were 
considered statistically significant.
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