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Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases.
CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR),
development, immune response, transcriptional regulation, circadian rhythm, viral infec-
tion, and protein quality control. One of the main functions of CRLs is to regulate the DDR,
a fundamental signaling cascade that maintains genome integrity. In this review, we will
discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
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INTRODUCTION
Our genome is under constant attack by exogenous DNA insult-
ing agents, such as UV light and chemical carcinogens, and by
endogenous metabolic products, such as reactive oxidative species.
In order to prevent genome instability, a hallmark of cancers,
eukaryotic cells have evolved several protective mechanisms of the
DNA damage response (DDR), including DNA replication and cell
cycle arrest, and DNA repair initiation (Harper and Elledge, 2007;
Negrini et al., 2010). During a DDR, cascades of phosphorylation
events are initiated by a family of PI3-like family kinases, mainly an
ataxia telangiectasia mutated (ATM), and ATM and Rad3-related
(ATR) kinases (Harper and Elledge, 2007; Negrini et al., 2010).
Recent studies, however, have indicated that ubiquitination also
plays important roles in the DDR (Harper and Elledge, 2007; Mes-
sick and Greenberg, 2009; Negrini et al., 2010; Silverman et al.,
2012).

Ubiquitin is an 8-kDa protein and can be covalently conjugated
to other proteins via an isopeptide linkage between its C-terminal
glycine and a primary amino group of its substrates, which is
usually from a lysine side chain (Pickart, 2004; Hannah and
Zhou, 2009). Ubiquitination is catalyzed by three enzymes, includ-
ing a ubiquitin activating enzyme (E1), a ubiquitin conjugating
enzyme (E2), and a ubiquitin ligase (E3) (Pickart, 2004; Hannah
and Zhou, 2009). The ubiquitination machinery can conjugate a
single ubiquitin to one lysine residue of substrates (called mono-
ubiquitination), multiple single ubiquitin molecules to multiple
lysine residues (called multi-ubiquitination), or multiple ubiqui-
tins in a chain (called poly-ubiquitination) to substrates. Mono-
ubiquitination and multi-ubiquitination play important roles in
endocytosis, DNA repair, immune response, and transcriptional
regulation, etc. Poly-ubiquitination via surface lysine residues of
ubiquitin, such as Lysine-48 (K48) or Lysine-11 (K11) often leads
to protein proteolysis through the 26S proteasome (Pickart, 2004;

Pickart and Eddins, 2004). However, protein poly-ubiquitination
does not necessarily drive protein turnover. Poly-ubiquitin chains
via Lysine-63 residue (K63) of ubiquitin and linear poly-ubiquitin
chains appear to play non-proteolytic functions and are involved
in DNA repair, NF-κB activation, and Ras localization and signal-
ing, etc. (Pickart, 2004; Jura et al., 2006; Yan et al., 2009, 2010; Xu
et al., 2010).

The human genome contains two E1 with distinctive functions
(Chiu et al., 2007; Jin et al., 2007; Pelzer et al., 2007; Lee et al.,
2011), dozens of E2s and hundreds of E3 ligases which deter-
mine the specificity of substrates for ubiquitination (Pickart, 2004;
Pickart and Eddins, 2004). Thus far, more than 600 ubiquitin lig-
ases have been identified in the human genome, although many
of them have not been linked to any substrates or biological activ-
ities. Based on their domain characteristics, ubiquitin ligases can
be separated into two sub-groups, HECT domain E3 ligases and
RING finger domain E3 ligases (Pickart, 2004). The cullin/RING
ubiquitin ligases (CRL) comprise the largest subfamily of RING
finger-containing E3s (Petroski and Deshaies, 2005; Sarikas et al.,
2011). CRLs are modular ubiquitin ligases (Petroski and Deshaies,
2005; Sarikas et al., 2011). CRLs are involved in cell cycle regu-
lation, DNA replication, DDR, development, immune response,
transcriptional regulation, circadian rhythm, viral infection, and
protein quality control (Petroski and Deshaies, 2005). This review
will focus on the interplay between human CRL ubiquitin ligases
and the DDR. We will discuss molecular features of CRLs and how
they participate in the DDR by targeting DDR-regulatory proteins
for ubiquitination.

INTRODUCTION OF CRL UBIQUITIN LIGASES
Cullin/RING ubiquitin ligases consist of multiple subunits (Pet-
roski and Deshaies, 2005; Sarikas et al., 2011), including a RING
finger protein (Rbx1 or Rbx2) that recruits an activated ubiquitin
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E2 enzyme, a scaffold subunit (cullin family proteins), and a sub-
strate receptor that recognizes substrates. Many CRL ubiquitin
ligases contain additional linker proteins, such as Skp1 in SCF
(also called CRL1) and DDB1 in CRL4 (Figure 1). Recent studies
indicate that Rbx1 associates with all cullins, except for Cul5, which
associates specifically with Rbx2 (Kamura et al., 2004; Huang
et al., 2009), suggesting distinct roles of the two Rbx homologs
in human.

The first CRL E3 ligase, named SCF complex (stands for
Skp1/Cdc53 or cullin/F-box), was identified from budding yeast,
Saccharomyces cerevisiae (Bai et al., 1996; Willems et al., 1996; Feld-
man et al., 1997; Skowyra et al., 1997; Verma et al., 1997). This find-
ing initiated with studies of proteasome-dependent turnover of
Sic1, an inhibitor of cyclins and cyclin-dependent kinases (Cdks)
in budding yeast (Bai et al., 1996; Willems et al., 1996; Feldman
et al., 1997; Skowyra et al., 1997; Verma et al., 1997). Degradation
and ubiquitination of Sic1 at the G1/S transition were compro-
mised in Cdc4, Cdc53 (Cul1 homolog in yeast), and Skp1 mutants
in budding yeast, which suggested their common roles in Sic1
turnover (Bai et al., 1996; Feldman et al., 1997; Skowyra et al.,
1997; Verma et al., 1997). The ubiquitination function of Cdc53
was observed in yeast Cln2 stability control as well (Willems et al.,
1996). Biochemical evidence demonstrated that Cdc53 functions
together with Cdc4 and Skp1 as a ubiquitin ligase (SCFCdc4) to
catalyze the poly-ubiquitination of Sic1 both in vitro and in vivo
(Feldman et al., 1997; Skowyra et al., 1997). Within the SCF com-
plex,Cdc4, the F-box protein, is a substrate receptor that recognizes
Sic1 within its WD-40 motif and interacts with Skp1 through its
F-box domain. Skp1 is the linker protein that mediates association
of Cdc4 with the scaffold cullin protein, Cdc53. Rbx1 (also called
ROC1 or Hrt1 in yeast), a RING finger protein in the complex,
was found to regulate the stability of yeast Sic1, human HIF1α,
and other substrates (Lyapina et al., 1998; Kamura et al., 1999;
Ohta et al., 1999; Seol et al., 1999; Skowyra et al., 1999; Tan et al.,
1999). Structurally, Rbx1 binds to the C-terminal domain of yeast
Cdc53 or human Cul1, and an E2 enzyme, Cdc34 (Zheng et al.,
2002b; Zimmerman et al., 2010; Duda et al., 2011).

REGULATION OF CRL UBIQUITIN LIGASES
The activity of CRL ubiquitin ligases is regulated by NEDD8, a
small ubiquitin-like protein (Deshaies et al., 2010). Like ubiqui-
tin, NEDD8 can be conjugated to other proteins, especially cullins
(Xirodimas et al., 2004; Watson et al., 2006; Jones et al., 2008).

FIGURE 1 | Architecture of CRL1 (SCF) and CRL4 ubiquitin ligases. SCF
ubiquitin ligases contain Cul1, Rbx1, Skp1, and F-box proteins which
function as substrate receptors; whereas CRL4 has Cul4, Rbx1, DDB1, and
DCAF proteins as substrate receptors. Both SCF and CRL4 can be activated
by neddylation. F-box and DCAF proteins are substrate specificity factors.

The conjugation of NEDD8, named neddylation, is catalyzed by
NEDD8-specific E1, E2, and E3 (Dye and Schulman, 2007). The
general consensus is that neddylation of cullins is required for
activation of CRL ubiquitin ligases. However, untimely neddyla-
tion of cullins could drive destruction of substrate receptors via
auto-ubiquitination (Cope and Deshaies, 2006). Therefore, the
neddylation of cullins is counteracted by the deneddylation activ-
ity of a multifunctional protein complex, the COP9 signalosome
(CSN) (Cope and Deshaies, 2003; Serino and Deng, 2003; Wei and
Deng, 2003; Wei et al., 2008).

COP9 signalosome was initially found to be involved in plant
photo morphogenesis and was later identified as a conserved
complex in eukaryotes (Cope and Deshaies, 2003; Serino and
Deng, 2003; Wei and Deng, 2003; Wei et al., 2008). CSN is com-
prised of eight subunits, which are CSN1–8 in order of decreasing
molecular weight. The CSN complex participates in multiple bio-
logical events, including transcriptional regulation, cell division,
and development, etc. (Tateishi et al., 2001; Lykke-Andersen et al.,
2003; Panattoni et al., 2008). Part of the multi-functionality of
CSN is linked with the neddylation system, with its isopeptidase
activity to remove NEDD8 conjugation. This deneddylation activ-
ity is attributed to the metalloprotease motif of CSN5 but the
whole CSN complex is required for the reaction (Cope et al.,
2002). Indeed, conditional silencing of CSN5 in HEK293 cells
increased the neddylation of cullins. Consequently, expression
of multiple F-box proteins, but not the cullins, was decreased
(Cope and Deshaies, 2006). The reduced expression of F-box pro-
teins depends on Cul1 and the proteasome, further supporting an
auto-ubiquitination and self-destruction mechanism (Cope and
Deshaies, 2006). These data explain why accumulation of CRL
substrates has been observed in cells where either CSN or the
NEDD8 conjugation system is inactivated (Tateishi et al., 2001;
Lykke-Andersen et al., 2003; Cope and Deshaies, 2006; Panattoni
et al., 2008; Choo et al., 2011). It is clear that expression of some
substrate receptors is not affected by neddylation, however (Cope
and Deshaies, 2006).

Neddylation of cullins positively regulates the E3 ligase activ-
ity of CRLs by at least three mechanisms. First, neddylation of
cullins enhances their interaction with ubiquitin-activated E2. It
has been suggested that neddylation of Cul1 can increase the affin-
ity between ubiquitin-activated E2 and Rbx1 (Kawakami et al.,
2001). Using fluorescence resonance energy transfer (FRET) tech-
nology, Saha and Deshaies (2008) observed that neddylation of
Cul1 can enhance Cdc34 binding to SCF ubiquitin ligase.

Second, neddylation positively regulates the ubiquitination
activity of CRL ubiquitin ligases by enhancing ubiquitin transfer to
substrates from the active E2 site and by positioning the active E2
site closer to ubiquitin accepting sites of substrates. Neddylation
has been shown to stimulate the Cdc34-dependent ubiquitination
activity of SCF by more than 10-fold (Saha and Deshaies, 2008).
The κcat for ubiquitin transfer is enhanced by NEDD8 conjugation
(Saha and Deshaies, 2008). According to the structural analysis of
the SCFSkp2 ubiquitin ligase, Cul1 holds the Skp1–Skp2 and Rbx1
subunits more than 100 Å apart (Zheng et al., 2002b). A gap of 50 Å
between the active cysteine of E2 and the leucine-rich repeat of
Skp2 exists even after E2 joins SCFSkp2 (Zheng et al., 2002b). This
gap was confirmed by additional SCF structural studies (Wu et al.,
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2003; Hao et al., 2007). In these scenarios, a gap of ∼50 Å is too
large for E2 to transfer ubiquitin to its substrates. The neddylation
of cullins, however, induces conformational changes in both the
N-terminal and the C-terminal domains of cullins (Duda et al.,
2008). These conformation changes make Rbx proteins acquire
more flexibility to get access to their substrates. Such conforma-
tional rearrangements remain even after deneddylation, allowing
both initiation and elongation of poly-ubiquitin chains.

Third, cullin neddylation prevents CRLs from associating with
CAND1, a negative regulator of CRLs (Liu et al., 2002; Zheng
et al., 2002a; Hwang et al., 2003; Min et al., 2003; Oshikawa et al.,
2003; Goldenberg et al., 2004). The binding of CAND1 to cullins
obscures their associations with their substrate receptors, which
results in the inactivation of CRL E3 ligases. CAND1 only asso-
ciates with non-neddylated cullins. Therefore, the popular model
is that cullin neddylation favors the dissociation of CAND1 from
CRLs. NEDD8-conjugated CRLs, which are free of CAND1, pos-
sess maximal E3 activity. After deneddylation by CSN, CAND1 is
able to inhibit CRLs by binding to cullins. The next neddylation
cycle can then prevent CAND1 from binding and CRL activity will
resume. However, a recent study from the Harper group revealed
that only a small fraction of cullins is associated with CAND1,
whereas the majority of Cul1 proteins form complexes with F-box
proteins, the substrate receptors (Bennett et al., 2010). There-
fore, at least for the SCF ubiquitin ligases, the formation of SCF
complexes is driven mainly by receptor binding.

Neddylation is catalyzed by its E3 ligase, Rbx (Huang et al.,
2009). Recent studies indicated that the DCN family proteins func-
tion as additional E3 ligases to assist Rbx in cullin neddylation
(Kurz et al., 2005, 2008; Ma et al., 2008; Meyer-Schaller et al.,
2009). Wu et al. (2011) found that human DCN1 is modified by
mono-ubiquitination, which drives nuclear export of DCN1. The
biological impact of mono-ubiquitination of DCN1 under physio-
logical condition remains to be determined, however. Interestingly,
expression of DCN3L, a human homolog of yeast Dcn1p, can be
enhanced by UV light (Ma et al., 2008), suggesting that the DNA
damage signal may enhance neddylation of some, if not all, CRL
ubiquitin ligases that are important for DDR.

The CRL family is one example of ubiquitin ligases that medi-
ate many cellular signaling events (Petroski and Deshaies, 2005).
In the following sections, we will discuss the roles of individual
CRL ubiquitin ligases in control of DDR.

SCFβTRCP IN DNA DAMAGE CHECKPOINT CONTROL
SCFβTRCP IN DDR-INDUCED Cdc25A UBIQUITINATION AND TURNOVER
Cdc25A is a dual phosphatase that targets phosphory-
lated tyrosines and serines/threonines for de-phosphorylation
(Karlsson-Rosenthal and Millar, 2006; Ray and Kiyokawa, 2007,
2008; Rudolph, 2007). Removal of inhibitory phosphate on tyro-
sine by Cdc25A activates cyclin/Cdk kinases, mainly cyclin E/Cdk2
and cyclin A/Cdk2, and enables the G1/S transition and mitotic
entry. Cdc25A has two close homologs, Cdc25B and Cdc25C. It
was proposed that Cdc25B initiates the activation of cyclin B/Cdk1
and Cdc25C completes this process in the nucleus during the
G2/M transition (Boutros et al., 2006). However, both Cdc25B
and Cdc25C are dispensable in mouse development, except for
meiosis (Chen et al., 2001a; Ferguson et al., 2005). Cdc25B and

Cdc25C double knockout mice are viable, but females are ster-
ile, as are Cdc25B knockout females (Ferguson et al., 2005). In
contrast, Cdc25A is essential for early embryo development (Ray
et al., 2007a). In summary, Cdc25A is an essential gene for mouse
development and is one of the major regulators of cell division
(Molinari et al., 2000; Zhao et al., 2002; Ray and Kiyokawa, 2007,
2008). The Cdc25A protein level is tightly regulated via transcrip-
tion and proteasome degradation in a cell cycle-dependent manner
(Ray and Kiyokawa, 2007).

Over-expression of Cdc25A has been observed in multiple can-
cers (Kristjánsdóttir and Rudolph, 2004; Boutros et al., 2006).
Studies in Cdc25A knockout mice indicated that Cdc25A is a
rate-limiting oncogene that restricts tumorigenesis induced by the
HER2/neu–RAS oncogenic pathway (Ray et al., 2007a). Consistent
with this observation, MMTV-Cdc25A transgenic mice dramati-
cally promote murine mammary tumorigenesis in cooperation
with oncogenic RAS or neu (Ray et al., 2007b). Over-expression
of Cdc25A in human cells can result in aberrant mitotic events,
compromised DDR and destabilized chromosomes, such as chro-
mosomal breaks at fragile sites (Cangi et al., 2008). Therefore, it
is critical to maintain appropriate amounts of Cdc25A in human
cells.

Cdc25A is an unstable protein and its protein levels are medi-
ated by phosphorylation and the ubiquitin–proteasome pathway
(Bernardi et al., 2000; Mailand et al., 2000, 2002; Falck et al., 2001;
Donzelli et al., 2002, 2004; Shimuta et al., 2002; Zhao et al., 2002;
Busino et al., 2003; Goloudina et al., 2003; Jin et al., 2003, 2008;
Sørensen et al., 2003; Xiao et al., 2003; Kasahara et al., 2010).
In response to DNA damage, Cdc25A is phosphorylated by the
checkpoint kinase, Chk1, and subjected to proteasome-dependent
degradation (Zhao et al., 2002; Goloudina et al., 2003; Jin et al.,
2003; Sørensen et al., 2003; Xiao et al., 2003; Donzelli et al., 2004).
The consequence of Cdc25A turnover is persistent Cdk phospho-
rylation and cell cycle arrest at S-phase upon DDR (Busino et al.,
2003; Jin et al., 2003). IR-induced Cdc25A turnover in interphase
was shown to depend on Cul1, suggesting the involvement of the
SCF E3 ligase (Donzelli et al., 2002). In a screen to identify the sub-
strate receptor of the SCF complex, the F-box proteins, βTRCP1
and βTRCP2, two homologs of human βTRCP, were found to
be interacting with Cdc25A. Knockdown of both βTRCP1 and
βTRCP2 by siRNA or expression of a dominant-negative βTRCP1
blocked DDR-induced Cdc25A proteolysis (Busino et al., 2003;
Jin et al., 2003). In addition, depletion of both βTRCP1 and
βTRCP2 results in hyperactive Cdk2 kinase activity and radio-
resistant DNA synthesis, which are characteristics of a defective
intra-S-phase checkpoint (Busino et al., 2003; Jin et al., 2003).

The recognition of ubiquitin substrates by F-box proteins often
requires post-translational modification, usually phosphorylation,
on target proteins (Petroski and Deshaies, 2005). Chk1 kinase
activity is indispensible for in vitro ubiquitination of Cdc25A cat-
alyzed by SCFβTRCP (Jin et al., 2003). Upon DDR, the Serine-296
(S296) site of Chk1 is autophosphorylated after it is phosphory-
lated at Serine-345 (S345) by ATR (Kasahara et al., 2010). Chk1
phosphorylated at S296 is further recognized by 14-3-3 gamma.
14-3-3 gamma not only tethers Chk1 in the nucleus, but also
bridges the interaction between Chk1 and Cdc25A (Kasahara et al.,
2010). Therefore, 14-3-3 gamma is important for Chk1-mediated
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Cdc25A turnover via the ubiquitin–proteasome pathway (Kasa-
hara et al., 2010). Several Chk1 phosphorylation sites on Cdc25A
were mapped, but only mutation on Serine-76 (S76) abolishes
Cdc25A ubiquitination (Jin et al., 2003, 2008). Surprisingly, pep-
tide scanning and mutagenesis revealed that S76 alone was not
sufficient for direct binding with βTRCP (Jin et al., 2003). Adja-
cent to S76, there is a DSGFCLDSP sequence (residues 81–89)
which resembles the classic phospho-degron motif in otherβTRCP
substrates (Cardozo and Pagano, 2004). Serine-88 is dispensable
for SCFβTRCP-mediated Cdc25A ubiquitination (Jin et al., 2003).
Although Aspartic acid-87 could mimic a phosphorylated-serine,
it appears not to be involved in binding of Cdc25A to βTRCP (Jin
et al., 2003). Phosphorylation of both Serine-79 (S79) and Serine-
82 (S82) is required for Cdc25A ubiquitination (Jin et al., 2003).
In addition, the phospho-S79 and phospho-S82 peptides are able
to bind to βTRCP in vitro, indicating these two sites are central
to where βTRCP recognizes Cdc25A (Jin et al., 2003). Chk1 can
phosphorylate neither S79 nor S82, however. Therefore, it seems
that active Chk1 phosphorylates S76 of Cdc25A in response to
DNA damage, which creates a priming site for additional kinases
to subsequently phosphorylate S79 and S82 residues. Phosphory-
lation of these residues recruits SCFβTRCP to ubiquitinate Cdc25A
for turnover (Figure 2).

Besides Chk1, another checkpoint kinase Chk2 plays an
important role in DDR-induced Cdc25A degradation (Falck
et al., 2001). Chk2 has been found to phosphorylate Serine-124
(S124) of human Cdc25A, which is important for IR-induced
Cdc25A turnover. Compared to S76, however, S124 phospho-
rylation appears to play a minor role in DDR-induced degra-
dation of Cdc25A (Jin et al., 2003). Moreover, Chk2 can not
phosphorylate S76 of Cdc25A in vitro efficiently (Jin et al.,
2008). These data may explain why deletion of Chk2 in HCT116
cells has no impact on IR-induced Cdc25A turnover (Jin et al.,
2008). This further emphasizes the primary importance of Chk1
phosphorylation at S76 in control of Cdc25A under DDR.
The discrepancy in the role of Chk2 in DNA damage-induced
Cdc25A degradation may depend on cell types and different
DNA damage signals. Further studies are needed to resolve this
issue.

FIGURE 2 | Multiple kinases lead to the formation of phospho-degron

of Cdc25A under DDR. Under DDR ATR activates Chk1 which then
phosphorylates Cdc25A at S76 and turns on NEK11. Consequently, NEK11
phosphorylates Cdc25A at S82, whereas, CK1α phosphorylates both S79
and S82 of Cdc25A. In p53-deficient cells, p38MAPK and MK2 lead to the
phosphorylation of S76 under UV damage. Upon the phospho-degron is
created, Cdc25A is recognized and ubiquitinated by the SCFβTRCP ubiquitin
ligase.

In addition to Chk1 and Chk2, other protein kinases are
involved in Cdc25A proteolysis in unsynchronized or stressed
cells as well (Reinhardt et al., 2007; Kang et al., 2008; Melixet-
ian et al., 2009; Honaker and Piwnica-Worms, 2010; Myer et al.,
2011; Piao et al., 2011). In p53-deficient cells, Cdc25A proteol-
ysis depends on p38 MAP kinase (p38MAPK), and MAPKAP
Kinase-2 (MK2), but not Chk1 (Reinhardt et al., 2007). Appar-
ently, Chk1 and MK2 recognize similar phosphorylation motifs,
such as the one surrounding S76 of Cdc25A (Reinhardt et al.,
2007). In this case, p38MAPK and MK2 mediate a third DNA
damage checkpoint pathway for cell cycle arrest and survival after
DNA damage, although an intact ATR–Chk1 pathway exists in
p53-deficient cells (Reinhardt et al., 2007). Therefore, p38MAPK
and MK2 are potential candidates for drug targets to kill cancer
cells that are defective in p53 function. However, how p53 affects
the selection of checkpoint pathways in Cdc25A proteolysis has
yet to be determined.

Chk1 and SCFβTRCP mediate Cdc25A turnover in the S and
G2 phases of cell division. At late G1-phase, Cdc25A stability
is not controlled by Chk1, although Cdc25A ubiquitination is
still SCFβTRCP-dependent. Kang et al. (2008) found that GSK3β

phosphorylates S76 of Cdc25A at late G1-phase. Interestingly, S76
phosphorylation requires prior phosphorylation at Threonine-80
(T80) by PLK3 (Kang et al., 2008). A strong correlation between
GSK3β inactivation and Cdc25A over-expression was observed
in some human tumors, further supporting the negative role of
GSK3β in Cdc25A production (Kang et al., 2008). However, under
DDR, checkpoint kinases, such as Chk1 and MK2, are in charge of
S76 phosphorylation of Cdc25A (Jin et al., 2003; Reinhardt et al.,
2007).

S82 of Cdc25A is a primary phosphorylation site in the
phospho-degron motif of Cdc25A. Several kinases have been
reported to phosphorylate S82 to trigger Cdc25A turnover (Melix-
etian et al., 2009; Honaker and Piwnica-Worms, 2010; Piao et al.,
2011). In a screen with a shRNA library, Melixetian et al. (2009)
identified NIMA (never in mitosis gene A)-related kinase 11
(NEK11) as a gene that is involved in the G2/M checkpoint. Silenc-
ing NEK11 prevents ubiquitin-dependent proteolysis of Cdc25A,
in both unsynchronized and DNA damaged cells. NEK11 phos-
phorylates S82 of Cdc25A during DDR. Moreover, NEK11 is a
downstream effective kinase of the checkpoint pathway and is
activated via phosphorylation at Serine-273 of NEK11 by Chk1.
Thus far, there is no evidence to show whether NEK11 is capa-
ble of phosphorylating S79 of Cdc25A, although phosphorylation
of S79 is important for S82 phosphorylation of Cdc25A and
Cdc25A recognition by βTRCP. In a separate study, Honaker and
Piwnica-Worms (2010) reported that casein kinase 1 alpha (CK1α)
phosphorylates Cdc25A at both S79 and S82 during interphase and
under genotoxic stress. In the same study, the authors claimed that
NEK11 could not phosphorylate S82 of Cdc25A in vitro. However,
it is unclear whether any priming kinase was included in the in vitro
kinase assay. Paradoxically, Melixetian et al. (2009) found that
NEK11 can phosphorylate S82 of Cdc25A in vitro, but the phos-
phorylation was independent of S76 phosphorylation. In contrast
to the Honaker and Piwnica-Worms (2010) report, Piao et al.
(2011) observed CK1ε directly phosphorylated S82 without any
prior phosphorylation of Cdc25A, and silencing CK1ε stabilized
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cellular Cdc25A in HEK293 cells. These conflicting results reveal
the complexity of phosphorylation-regulated Cdc25A proteolysis
(Figure 2). They may also reflect the fact that Cdc25A stability is
regulated by various signaling pathways and that different genetic
background may select distinctive kinases to create a phospho-
degron motif for Cdc25A. Further experiments are needed to
clarify these discrepancies. Nevertheless, the consensus is that S76
is a priming site for generation of a phospho-degron sequence
surrounding S79 and S82.

In addition to residues surrounding S82, other serine residues
also contribute to DDR-induced Cdc25A degradation. PLK3 phos-
phorylates Serines-513 and -519 of Cdc25A in vitro (Myer et al.,
2011). The role of PLK3 in Cdc25A stability was studied in PLK3
knockout mice where the G1/S checkpoint was found to be defec-
tive (Myer et al., 2011). PLK3-mediated Cdc25A stabilization did
not translate into a significant increase in tumorigenesis in vivo
(Myer et al., 2011), however, suggesting that PLK3-mediated
Cdc25A turnover may not be a major pathway to control in vivo
functions of Cdc25A.

SCFβTRCP IN CLASPIN UBIQUITINATION AND TURNOVER DURING DDR
RECOVERY
While SCFβTRCP-mediated Cdc25A degradation is critical for the
execution of the DNA damage checkpoint, SCFβTRCP-controlled
Claspin turnover is important for checkpoint recovery. Claspin
associates with the replication fork and is one of the major check-
point mediators for Chk1 activation by ATR in response to repli-
cation stress (Chini and Chen, 2003; Kumagai and Dunphy, 2003;
Lee et al., 2003; Lin et al., 2004). Claspin is a periodically synthe-
sized protein and its expression peaks at S/G2 and is then degraded
after cells transit into mitosis. In unsynchronized cells, the mitotic
degradation of Claspin depends on SCFβTRCP, which binds to
Claspin through a conserved DpSGxxpS phospho-degron motif
(Cardozo and Pagano, 2004). Phosphorylation of these two serine
residues is necessary for ubiquitination of Claspin. Alanine substi-
tutions of these serine residues abolish the association of Claspin
with SCFβTRCP and the poly-ubiquitination of Claspin (Mailand
et al., 2006; Mamely et al., 2006; Peschiaroli et al., 2006). Appar-
ently, PLK1 is the kinase that phosphorylates these serines, because
PLK1 is necessary for in vitro ubiquitination and siRNA depletion
of PLK1 suppresses mitotic Claspin degradation (Mailand et al.,
2006; Mamely et al., 2006).

In G2, Claspin quickly accumulates after UV damage, sug-
gesting a post-transcriptional regulatory mechanism. The level
of Claspin correlates well with activation of Chk1, represented
by phosphorylation of Serine-317 of Chk1 (Chini et al., 2006).
Chk1 phosphorylates Threonine-916 of Claspin and is important
to maintain Claspin protein stability (Bennett and Clarke, 2006;
Chini and Chen, 2006; Chini et al., 2006). Although Chk1 affects
Claspin turnover, apparently, the stability control of Clapsin is
independent of ATR (Chini and Chen,2006; Chini et al., 2006;Yang
et al., 2008). Conversely, Claspin is also a stabilizer of Chk1 protein
(Yang et al., 2008). During the recovery from replication stress,
Chk1 activity is gradually diminished, concomitantly with the
reduction of Claspin level. When serine residues in the phospho-
degron of Claspin are mutated into alanine, Claspin is no longer
a substrate of the SCFβTRCP ubiquitin ligase (Mailand et al., 2006;
Mamely et al., 2006; Peschiaroli et al., 2006). Consequently, the

activation of checkpoint pathway is extended and the percentage
of mitotic cells is reduced (Mailand et al., 2006; Mamely et al., 2006;
Peschiaroli et al., 2006). Therefore, SCFβTRCP-dependent turnover
of Claspin is critical for cells to terminate the checkpoint pathway
once the damage is repaired (Mailand et al., 2006; Mamely et al.,
2006; Peschiaroli et al., 2006).

In summary, the SCFβTRCP ubiquitin ligase plays important
roles in multiple steps of DDR via proteolytic control of multiple
substrates which functions at different steps of DDR. Obviously,
distinct protein kinases have been shown to create a conserved
phospho-degron motif on different substrates. Nevertheless, as
the substrate receptor, βTRCP is a key player to maintain genome
integrity. Consistent with this, mutations of βTRCP1 have been
identified in human cancer (He et al., 2005). The inhibitory role
of βTRCP1 in tumorigenesis has been established (Kudo et al.,
2004; Bhatia et al., 2011), suggesting that βTRCP1 is a bona fide
tumor suppressor.

CRL4Cdt2 IN DNA DAMAGE RESPONSE
DNA replication is initiated from the sequential recruitment and
assembly of regulatory proteins onto specialized chromosome
regions known as DNA replication origins. During the late M-
phase and G1-phase, pre-replicative complex (pre-RC) needs to be
assembled onto origins. Origins then become “licensed” and can
further recruit DNA polymerase for replication at S-phase (Dutta
and Bell, 1997; Arias and Walter, 2007). The assembly of pre-RC
is a stepwise process that starts with binding of origin recogni-
tion complex (ORC) to an origin. ORC then recruits Cdc6 and
Cdt1, two DNA replication licensing factors which are required
for loading of MCM complex. To prevent re-replication, where
origins fire more than once during a single cell cycle, it is essential
to dissemble the pre-RC complex immediately after replication is
initiated (Dutta and Bell, 1997; Arias and Walter, 2007). In Xeno-
pus and mammals, Cdt1 can be inactivated through binding to
its inhibitor, Geminin, or via ubiquitination-mediated proteolysis
(Wohlschlegel et al., 2000; Nishitani et al., 2001; Tada et al., 2001;
Arias and Walter, 2005). Inhibition of Geminin or over-expression
of Cdt1 stimulates DNA re-replication (Vaziri et al., 2003; Zhu
et al., 2004; Takeda et al., 2005). Cdt1 transgenic mice develop
thymic lymphoblastic lymphoma in the absence of p53 (Seo et al.,
2005) and over-expression of Cdt1 and Cdc6 promotes malignant
events by inducing genome instability and by abrogating antitu-
mor barriers, suggesting their oncogenic functions (Liontos et al.,
2007). Over-expression of Cdt1 and/or Cdc6 has been observed
in certain cancers (Karakaidos et al., 2004). Therefore, DNA repli-
cation licensing machine could be a good therapeutic target for
cancer cures.

CRL4Cdt2 IN DDR-INDUCED Cdt1 UBIQUITINATION AND TURNOVER
In the unperturbed cell cycle, Cdt1 is degraded after replication
is initiated at G1-/S-phase (Nishitani et al., 2001). Walter and
colleagues demonstrated that Cdt1 degradation in Xenopus egg
extract requires replication initiation (Arias and Walter, 2005).
Depletion of Cdc45 or RPA, which are essential for origin fir-
ing, abolished the chromatin-associated Cdt1 ubiquitination and
degradation (Arias and Walter, 2005). Two E3 ligases, SCFSkp2 and
CRL4Cdt2, are identified to mediate cell cycle-dependent degrada-
tion of Cdt1 (Higa et al., 2003, 2006; Li et al., 2003; Zhong et al.,
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2003; Hu et al., 2004; Kondo et al., 2004; Arias and Walter, 2006;
Hu and Xiong, 2006; Jin et al., 2006; Kim and Kipreos, 2006; Love-
joy et al., 2006; Nishitani et al., 2006; Ralph et al., 2006; Sansam
et al., 2006; Senga et al., 2006). SCFSkp2 is the main one to con-
trol Cdt1 throughout the cell cycle in a Cdk-dependent manner,
whereas CRL4Cdt2 is required for Cdt1 degradation in S-phase and
during DDR.

In responding to UV or γ-irradiation, Cdt1 undergoes ubiq-
uitination, and proteasome-dependent degradation, which pre-
sumably would prevent improper new origin firing before the
damaged genome is repaired (Higa et al., 2003; Hu et al., 2004).
The DDR-induced ubiquitination of Cdt1 is solely dependent on
CRL4Cdt2, since the absence of Skp2 does not compromise Cdt1
degradation after UV. Deletion of Cdt2 in HeLa cells induced
DNA re-replication and G2/M checkpoint activation, partly due
to Cdt1 accumulation (Jin et al., 2006; Sansam et al., 2006).
How CRL4Cdt2 recognizes and targets Cdt1 for ubiquitination
has been intensively investigated. The degron signal recognized
by CRL4Cdt2 is localized at the N-terminus of Cdt1 since the N-
terminal fragment behaves like the full length Cdt1 in the aspect
of UV-induced degradation. Truncation mutagenesis further nar-
rows the degron region to be within the first 10 residues, which
also encompass a PCNA-interacting motif (called PIP box). There
are evidences indicating the essential role of PCNA in Cdt1 degra-
dation (Arias and Walter, 2006; Hu and Xiong, 2006; Senga et al.,
2006). Depletion of PCNA or mutation on the PIP box abolishes
CRL4Cdt2-mediating Cdt1 ubiquitination and proteolysis in the
unperturbed S-phase or UV damaged cells (Arias and Walter, 2006;
Hu and Xiong, 2006; Senga et al., 2006). The Walter group further
found that a TD motif inside the PIP box and a basic amino acid at
four residues downstream of the PIP box of Cdt1 are important for
Cdt1 to interact with PCNA strongly and to recruit CRL4Cdt2 to
the Cdt1–PCNA complex (Havens and Walter, 2009). This obser-
vation was confirmed by two individual studies (Guarino et al.,
2011; Michishita et al., 2011).

Although both UV and IR can trigger CRL4Cdt2-dependent
Cdt1 degradation, the phosphorylation event of Cdt1 is only
observed in UV damaged cells (Kondo et al., 2004). IR-induced
degradation of Cdt1 is not dependent on either ATM or ATR
checkpoint pathway, whereas UV-induced degradation is sensi-
tive to the inhibitor of ATM and ATR, caffeine (Higa et al., 2003;
Kondo et al., 2004). Although Cdt1 is phosphorylated after UV
irradiation, none of the phosphorylation events are located at the
N-terminus, where the degron motif is localized (Kondo et al.,
2004; Senga et al., 2006). However, it is still unclear why caf-
feine, as the inhibitor of ATM and ATR, only affects UV-mediated
Cdt1 proteolysis. How ATM and ATR regulate UV-controlled Cdt1
degradation is still unclear. Further lost-of-function investiga-
tions on ATM and ATR are necessary to validate their roles in
UV-triggered Cdt1 proteolysis. Moreover, whether and how the
phosphorylations of Cdt1 at its C-terminus are linked to Cdt1
ubiquitination and turnover are yet to be determined. Recent study
from Cook’s group indicated that p38MAPK and c-Jun N-terminal
kinase (JNK) can phosphorylate Cdt1 both during unperturbed
G2 phase and under stress condition (Chandrasekaran et al., 2011).
These results explained why Cdt1 becomes a stable protein when
cells move into G2 and mitosis.

CRL4Cdt2 IN DDR-INDUCED p21 UBIQUITINATION AND TURNOVER
CRL4Cdt2 is a key ubiquitin ligase that mediates ubiquitination of
several important cell cycle regulators in cooperation with PCNA.
The Cdk inhibitor, p21 (also called WAF1 or CIP1), is a substrate of
CRL4Cdt2 in DNA replication licensing control. p21 is an inhibitor
of Cdks whose kinase activity is required to drive Cdc6 out of the
nucleus in order to prevent DNA replication relicensing (Kim et al.,
2007). p21 binds to the cyclin/Cdk2 complex to suppress its kinase
activity and prevents cells from entering into S-phase. In response
to different stimuli, the transcription of p21 is activated by p53,
through which cell cycle progression is arrested at the G1/S tran-
sition. In addition to functioning as a cell cycle regulator, p21 also
forms a complex with PCNA and polymerase δ. Over-expression
of p21 disrupts the PCNA–Fen1 interaction in vivo and potentially
interferes with the DNA repair process (Chen et al., 1996).

Under low dose UV irradiation, p21 undergoes proteolysis,
which could potentially promote DNA repair. Two E3 ligases,
SCFSkp2 and CRL4Cdt2 are implicated in regulating p21 proteol-
ysis under DNA damage conditions (Bornstein et al., 2003; Soria
et al., 2006; Abbas et al., 2008; Kim et al., 2008; Nishitani et al.,
2008). It has been shown that degradation of p21 after low dose
UV irradiation (<40 J/m2) depends on ATR and Skp2. The inter-
action between Skp2 and p21 has been detected and is further
increased after DNA damage (Bendjennat et al., 2003). Mutation
of all lysine residues impaired UV-induced p21 degradation and
cells exhibited defects in DNA repair. This implies that p21 ubiq-
uitination promotes its degradation to prompt the accumulation
of PCNA on chromatin for DNA repair process (Bendjennat et al.,
2003).

p21, like Cdt1, has a PIP box motif for PCNA interaction.
It was then speculated whether p21 degradation could be regu-
lated like Cdt1, via CRL4Cdt2-mediated ubiquitination with PCNA
as co-factor. Down-regulation of Cul4, DDB2, and Cdt2 in UV-
irradiated p53 null HCT116 (to eliminate the signaling from p53)
inhibited efficient p21 degradation (Abbas et al., 2008). As in the
case for Cdt1, p21 ubiquitination by CRL4Cdt2 requires PCNA
binding via the PIP box. The association of p21 and CRL4Cdt2 was
detected by co-immunoprecipitation regardless of damage signal-
ing. However, CRL4Cdt2 can only ubiquitinate p21 that possesses
a phosphomimetic mutation at Serine-114, which is the target of
the GSK3β kinase stimulated by ATR (Abbas et al., 2008).

The classic E2 enzyme for CRL ubiquitin ligases is Cdc34 (Pet-
roski and Deshaies, 2005). A recent study, however, indicated that
UbcH5 may function as a priming E2 to initiate ubiquitination of
IκBα, a bona fide substrate of the SCFβTRCP ubiquitin ligase (Wu
et al., 2010). Given the fact that CRLs share a common RING fin-
ger protein, Rbx, it is highly possible that the E2 priming step by
UbcH5 may be common to poly-ubiquitination of many, if not
all substrates of CRLs. Interestingly, the Dutta group found that
UbcH8 mediates p21 ubiquitination, whereas the UBE2G family of
E2s cooperate with CRL4Cdt2 to polyubiquitylate Cdt1 under DDR
(Shibata et al., 2011). These data, if true, suggested that substrates
also play important roles in E2 selection of CRL ubiquitin ligases.
Because these experiments were done with single siRNA oligo, fur-
ther studies are needed to confirm the roles of these E2 enzymes.
UbcH8 lacks obvious features for poly-ubiquitin chain formation.
Whether other E2s, such as UbcH5, can function together with
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UbcH8 in poly-ubiquitin chain generation on p21 remains to be
determined. Moreover, like Cdc34, UBE2G E2s contain an acidic
sequence that is required for poly-ubiquitin chain formation (Pet-
roski and Deshaies, 2005). One important question is whether
UBE2G, like Cdc34, needs assistance from another E2, such as
UbcH5, as a priming subunit to boost its poly-ubiquitination
capability. Another critical question is whether the CRL4Cdt2 ubiq-
uitin ligase employs Cdc34, UbcH8, or UBE2G as E2 enzyme to
conjugate poly-ubiquitin chains on Set8/PR-Set7, another critical
substrate of CRL4Cdt2 under DDR (Abbas et al., 2010; Centore
et al., 2010; Oda et al., 2010; Jørgensen et al., 2011). Understand-
ing these questions is important to better comprehend protein
poly-ubiquitination by CRL ubiquitin ligases under DDR.

CRL4DDB2 AND CRL4CSA IN DNA REPAIR CONTROL
Nucleotide excision repair (NER) is a versatile repair mecha-
nism to remove the damaged DNA lesions from the genome,
including UV-induced cyclobutane pyrimidine dimers (CPD), 6–
4 pyrimidine–pyrimidone photoproducts, and a variety of bulky
adducts (Gillet and Schärer, 2006). It is a gap-filling process exe-
cuted by DNA polymerase and ligase following the excision of
a 24–32 DNA base oligonucleotide, where the lesion localizes.
There are two sub-types of NER, global genome repair (GGR),
and transcription-coupled repair (TCR), which differ in the mech-
anism of damage detection. GGR occurs throughout the whole
genome, whereas TCR is restricted in the active transcribing
regions. Mutations in the NER pathway are responsible for several
rare inheritable diseases, such as xeroderma pigmentosum (XP)
and Cockayne syndrome (Bootsma et al., 1998).

CRL4DDB2 IN NUCLEOTIDE EXCISION REPAIR
Xeroderma pigmentosum patients are hypersensitive to UV and
are pre-disposed to skin cancer. Cells from XP patients are defective
in repair of UV-induced DNA damage (Friedberg, 1995; Friedberg
et al., 1995). In XP complementation group E (XP-E), the DDB2
gene is mutated. DDB2 encodes a WD-40 repeat protein that was
originally identified as one subunit of a heterodimer with DDB1
(Dualan et al., 1995). The DDB1–DDB2 heterodimer binds to
damaged DNA and is involved in NER. The crystal structure of
DDB2–DDB1 dimer explains its high affinity toward UV-induced
DNA lesion and its central role in NER. The hairpin motif of DDB2
inserts into the minor groove of a DNA duplex and thereby flips
out the pyrimidine dimer to be recognized by the binding pocket of
DDB2 (Scrima et al., 2008). The DNA lesion recognition ability of
DDB2 is essential for subsequent recruitment of repair proteins to
the damage site. Consistent with the clinical implication of DDB2
in human disease (XP-E), DDB2 knockout mice are susceptible to
UV-induced skin tumorigenesis and develop spontaneous cancers
at old age (Yoon et al., 2005).

DDB1 and DDB2 are two essential subunits of the CRL4DDB2

ubiquitin ligase where DDB2 functions as the substrate recep-
tor (Groisman et al., 2003). Thus far, the known substrates for
CRL4DDB2 are histones and XPC (Sugasawa et al., 2005; El-Mahdy
et al., 2006; Kapetanaki et al., 2006; Wang et al., 2006; Guerrero-
Santoro et al., 2008). CRL4DDB2 is not so active due to its associa-
tion with the CSN (Groisman et al., 2003). However, UV radiation
can trigger the translocation of CRL4DDB2 to chromatin. The

recruitment of CRL4DDB2 is critical for orchestrating the repair
machinery around the damage site. Chromatin-bound CRL4DDB2

is very active, because it does not associate with the CSN and its
Cul4 subunit is neddylated (Groisman et al., 2003; Takedachi et al.,
2010). Apparently, UV light sends signals to separate the CSN from
CRL4DDB2, because the majority of CRL4DDB2 binds to chromatin
after UV radiation (Groisman et al., 2003). Some DDB2 mutants
from XP-E patients are defective in DDB1 binding (Jin et al., 2006;
Takedachi et al., 2010). These mutants fail to recruit the other
subunits of CRL4DDB2 to lesion DNA under DDR (Hwang et al.,
1998; Shiyanov et al., 1999; Jin et al., 2006; Kapetanaki et al., 2006;
Takedachi et al., 2010). As a result, XPC and histones are not ubiq-
uitinated (Kapetanaki et al., 2006; Takedachi et al., 2010). This may
explain how the DNA repair machine is impaired in some XP-E
patients.

XPC is a central player in the NER pathway. XPC is necessary
for the assembly of NER complex surrounding the lesion (Sug-
asawa, 2011), whereas its DNA binding affinity is less than that
of DDB2. It has been shown that the poly-ubiquitination of XPC
after UV treatment depends on the CRL4DDB2 ubiquitin ligase
and that ubiquitination can augment the DNA binding affinity
of XPC instead of targeting it to the proteasome for degradation
(Batty et al., 2000; Sugasawa et al., 2005). One important question
is why poly-ubiquitination of XPC by CRL4DDB2 does not lead to
XPC proteolysis?

The poly-ubiquitination of DDB2 reduces its DNA binding
ability and leads to its degradation (Chen et al., 2001b; Nag et al.,
2001; Matsuda et al., 2005). Silencing of Cul4A was shown to sta-
bilize DDB2, to prolong the retention of DDB2 at UV-induced
lesions, and to impair the recruitment of XPC and the subsequent
removal of CPD from the genome (El-Mahdy et al., 2006). More-
over, XPC ubiquitination may accelerate DDB2 turnover (Suga-
sawa et al., 2009). Therefore, it seems likely that a UV-induced
DNA lesion is handed over from DDB2 to XPC for DNA repair
and that this process depends on the poly-ubiquitination capa-
bility of the CRL4DDB2 ubiquitin ligase (Sugasawa et al., 2009).
Whether XPC ubiquitination triggers DDB2 degradation via auto-
ubiquitination is still debatable. However, a recent study from
Arabidopsis suggested that DET1 is the substrate receptor of CRL4
that targets DDB2 for ubiquitination and degradation (Castells
et al., 2011). Therefore, it will be interesting to see whether DET1
is responsible for UV- and Cul4A-mediated DDB2 ubiquitination
and proteolysis in human cells. Using a chemical inhibitor, Zhao
et al. (2008) demonstrated that p38MAPK is required for UV-
induced DDB2 ubiquitination and proteolysis. The same group
also found that DDB2 is phosphorylated by p38MAPK after UV
treatment. However, the actual phosphorylation sites of DDB2 are
yet to be identified. Moreover, it is still unclear whether phos-
phorylation of DDB2 under UV damage plays any critical roles
in DDB2 ubiquitination and degradation. It is also unknown
whether p38MAPK phosphorylates DDB2 directly or via its down-
stream kinases, such as MK2. Answering these questions will help
understand the concise mechanism of NER under DDR.

In addition to XPC, histone proteins, H2A, H3, and H4, are
conjugated with a single ubiquitin by CRL4DDB2 in response to
UV irradiation. In XP-E patient-derived lymphoblastoid cells, UV-
induced mono-ubiquitination of H2A is impaired (Kapetanaki
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et al., 2006). On one hand, some DDB2 mutants lose their func-
tions as ubiquitin ligases, because they fail to interact with DDB1
(Jin et al., 2006; Kapetanaki et al., 2006). On the other hand, the
K244E mutant of DDB2 contains only residual binding ability to
DNA lesions (Takedachi et al., 2010). Although K244E maintains
the ubiquitination activity of CRL4DDB2, it fails to ubiquitinate his-
tones in nucleosome context (Takedachi et al., 2010). It has been
proposed that ubiquitination of histone proteins by CRL4DDB2

loosens up the condensed chromatin structure into a relaxation
state that is more accessible to the repair factors (Wang et al.,
2006). However, inconsistent with this hypothesis, histone ubiq-
uitination is not sufficient to destabilize the nucleosome in vitro
(Takedachi et al., 2010). Therefore, one potential function of his-
tone ubiquitination is to recruit other DNA repair factors to lesion
DNA. One such factor could be XPA whose association with lesion
DNA is enhanced by the ubiquitination activity of CRL4DDB2

(Takedachi et al., 2010). However, XPA does have an obvious
ubiquitin-binding motif, suggesting that additional factors might
be involved in the recruitment of XPA. CRLs usually conjugate
poly-ubiquitin chains on their substrates (Petroski and Deshaies,
2005). How CRL4DDB2 is regulated to conjugate mono- versus
poly-ubiquitin chains on its substrates remains enigmatic.

CRL4CSA IN NUCLEOTIDE EXCISION REPAIR
Besides CRL4DDB2, the CRL4CSA ubiquitin ligase is also actively
involved in DNA repair (Groisman et al., 2003). In this complex,
CSA is a substrate specific factor. CSA is also a WD-40 repeat
protein and has 40% sequence homology with DDB2 from the
second to the fifth WD-40 repeat. Similar to DDB2, CSA directly
binds to DDB1 and is able to assemble an E3 ligase complex
with Cul4 and Rbx1. In response to UV damage, CSA is found
associating with the stalled RNA polymerase II (RNA pol II)
(Groisman et al., 2003). Similar to CRL4DDB2, the ubiquitin lig-
ase activity of CRL4CSA is inhibited due to the binding of CSN
(Groisman et al., 2003). CSB, a DNA-dependent ATPase, is the
only substrate identified for CRL4CSA thus far. CSB preferentially
associates with elongating or stalled RNA pol II, and is poten-
tially involved in the elongation step of RNA synthesis. Both
CSA and CSB are mutated in Cockayne syndrome patients and
involved in transcription-coupled DNA repair (Li et al., 2011).
CSB fibroblasts exhibit hypersensitivity to UV irradiation and a
defect in resumption of RNA synthesis after damage (Bregman
et al., 1996; Balajee et al., 1997). Moreover, poly-ubiquitination
and degradation of stalled RNA pol II in response to UV is also
impaired in CSB cells (Bregman et al., 1996). CSB is a member
of the SNF2-like family, which possesses chromatin-remodeling
activity. CSB is believed to push away the stalled RNA pol II
or to rearrange the chromatin structure so that the repair pro-
teins can get access to the lesion (Groisman et al., 2006). The key
function of CSB is to recruit histone acetyltransferase p300, NER
proteins, and the CRL4CSA ubiquitin ligase to lesion DNA (van
Gool et al., 1997; Fousteri et al., 2006); whereas, CSA is required
to recruit XAB2, the nucleosomal binding protein HMGN1, and
TFIIS in cooperation with CSB. If the lesion cannot be repaired,
CSB then initiates poly-ubiquitination and degradation of stalled
RNA pol II (Svejstrup, 2003). Three hours after damage, CSB
itself is eliminated via CRL4CSA-mediated poly-ubiquitination

and proteasome-dependent degradation (Groisman et al., 2006).
The degradation of CSB is necessary for transcription to resume at
a normal rate, and is coordinated with the dissociation of the CSN
from the CRL4CSA ubiquitin ligase (Groisman et al., 2003), indi-
cating that the ubiquitination function of CRL4CSA was inhibited
during DDR, but activated after DNA repair was accomplished.
However, how the CSN is released from the CRL4CSA ubiquitin
ligase is still unclear.

In summary, CRL4CSA and CRL4DDB2 are two important ubiq-
uitin ligases that not only function as ubiquitin ligases to ubiq-
uitinate their cognate substrates, but also play distinct roles in
recruiting critical DNA repair factors to lesion DNA upon DDR.
Multiple mutations have been identified for DDB2 and CSA from
human patients. Interestingly, most of these mutants fail to form
ubiquitin ligases with other subunits of CRL4 (Jin et al., 2006).
As a consequence, CRL4 ubiquitin ligases cannot be recruited to
damage sites to assist DNA repair. Therefore, these disease-derived
mutations all affect activities of CRL4CSA and CRL4DDB2 ubiquitin
ligases, further supporting their fundamental roles in NER.

SCFFbxo4 AND SCFFbxo31 IN CYCLIN D1 UBIQUITINATION
Cdk kinase activity is the master regulator that controls cell cycle
progression. Cdk kinase activity can be modulated via phospho-
rylation, through binding to the inhibitors, or by association with
cyclin co-factors. The level of cyclin proteins fluctuates during the
cell cycle through periodic transcriptional activation or proteoly-
sis. Cyclin D1 is expressed in G1-phase and its presence activates
Cdk2 for entrance into S-phase. To prevent cells from entering into
S-phase and propagating erroneous DNA, cyclin D1 is degraded
via the ubiquitin–proteasome pathway after encountering geno-
toxic stress (Pagano et al., 1994; Diehl et al., 1997, 1998). Cyclin
D1 is over-expressed in various malignant neoplasms, suggesting
its role as an oncogene (Malumbres and Barbacid, 2001). MMTV-
cyclin D1 transgenic mice develop mammary adenocarcinomas,
indicating its oncogenic role in breast cancer (Wang et al., 1994;
Hosokawa et al., 2001). Therefore, cyclin D1 expression is well con-
trolled during cell division. Dysregulation of cyclin D1 can lead to
genomic instability (Pontano et al., 2008). Cyclin D1 is an unstable
protein. Its ubiquitination and degradation depends on phospho-
rylation of Threonine-286 (T286), which is mediated by GSK3β

kinase (Diehl et al., 1997, 1998). Four F-box proteins, including
Fbxo4, Fbxw8, Fbxo31, and Skp2, have been reported to recognize
cyclin D1 and mediate its ubiquitination (Yu et al., 1998; Lin et al.,
2006; Okabe et al., 2006; Barbash et al., 2009; Santra et al., 2009).

When cells progress into S-phase, the T286 on cyclin D1 is
phosphorylated by GSK3β. Phosphorylated T286 and surrounding
residues constitute the phospho-degron motif that is recognized
by Fbxo4, a specificity factor in the SCFFbxo4 ubiquitin ligase
(Diehl et al., 1997, 1998; Lin et al., 2006). Thus, phosphory-
lated cyclin D1 at T286 is an unstable protein that is subjected
to poly-ubiquitination by SCFFbxo4 and then degradation by the
26S proteosome (Lin et al., 2006). Importantly, the ubiquitina-
tion of cyclin D1 by SCFFbxo4 requires a small heat-shock protein,
αB crystallin (Lin et al., 2006). Over-expression of Fbxo4 and αB
crystallin can stimulate cyclin D1 ubiquitination and accelerate
its degradation, whereas knockdown of either of them can block
cyclin D1 ubiquitination and increase its protein stability (Lin
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et al., 2006). In consistent with these observations, Fbxo4 and
αB crystallin expression is reduced in subset of primary human
tumors that overexpress cyclin D1 (Lin et al., 2006). In addition
to Fbxo4, another F-box protein Fbxw8 was also identified as an
E3 ligase for cyclin D1 in HCT116 cancer cell line. Fbxw8 can
associate with either Cul1 or Cul7 to assemble an SCF or SCF-like
complex, respectively (Okabe et al., 2006). Fbxw8 also recognizes
the degron sequences surrounding phosphorylated T286. How-
ever, the phosphorylation of T286 in this case is mediated via the
MAPK pathway rather than by GSK3β in the cell context exam-
ined (Okabe et al., 2006). The access of cyclin D1 to its cognate E3
ligase is spatially regulated. Similar to Fbxo4, majority of Fbxw8
is localized in the cytoplasm during G1- and S-phase, separating
away from the nucleus localized cyclin D1. In S-phase, cyclin D1
is translocated into the cytoplasm, where it is now accessible to E3
ligase for subsequent ubiquitination and proteolysis. The phos-
phorylation of cyclin D1 by GSK3β at T286 is required for its
nuclear export (Lin et al., 2006).

In contrast to Fbxo4 and Fbxw8, Fbxo31 is specifically dedi-
cated to damage-induced degradation of cyclin D1 (Santra et al.,
2009). In response to IR or other genotoxic stress, Fbxo31 is tar-
geted by the checkpoint kinase ATM for phosphorylation, which
results in the accumulation of Fbxo31. Fbxo31 binds to the same
phospho-degron motif on cyclin D1 as Fbxo4 and Fbxw8 and
mutation of T286 abolishes the interaction between cyclin D1
and all three F-box proteins. However, blocking of the MAPK
pathway but not GSK3β prevents this damage-induced cyclin D1
degradation (Santra et al., 2009). It should be noted that the char-
acterization of these four F-box proteins were done in different
cell lines. Whether these four E3 ligases are involved in regulating
cyclin D1 simultaneously or exclusively from each other remain to
be determined. The Fbxo4 knockout mice develop various tumors
whose cyclin D1 expression is enhanced (Vaites et al., 2011). How-
ever, a recent study in knockout mice of these ubiquitin ligases
indicated that none of these four ubiquitin ligases is required for
cyclin D1 proteolysis in mouse embryonic fibroblasts (Kanie et al.,
2012), further supporting cell type-specific regulation of cyclin D1
stability. Therefore, it is intriguing that how cells choose among
different ubiquitin ligases reacting to different stimuli for cyclin D1
destruction if they all recognize the same phospho-degron motif.
Nevertheless, loss of heterozygosity of Fbxo31 has been reported

in multiple cancers (Launonen et al., 2000; Lin et al., 2001; Härkö-
nen et al., 2005; Kumar et al., 2005; Huang et al., 2010; Kogo et al.,
2011). Inactive mutations of Fbxo4 are also identified in 15% of
esophageal tumors (Barbash et al., 2008). These data support the
idea that Fbxo31 and Fbxo4 are tumor suppressors.

CONCLUSION AND PROSPECTIVE
Here we discuss how CRL ubiquitin ligases mediate protein ubiq-
uitination and turnover to enforce unidirectional signal transduc-
tion in the DDR pathway. Many of the substrate receptors of CRL
are still uncharacterized. Growing evidence suggests that more
CRL ubiquitin ligases will be found to mediate the DDR path-
way and more DDR-related proteins will be identified as ubiquitin
substrates of CRLs. Thus far, the main research focus has been on
dissecting the roles of CRL1 (SCF) and CRL4 ubiquitin ligases in
DDR. Emerging evidence suggests that other cullin-related ubiq-
uitin ligases are also involved in DDR (Ribar et al., 2007; Yasukawa
et al., 2008; Blackford et al., 2010). Further investigation is needed
to explore the functions of cullin-related ubiquitin ligases other
than CRL1 and CRL4 in DDR. Moreover, several groups have
reported knockout mice models of Cul4A and suggest an impor-
tant role of Cul4A in guarding the genome stability (Kopanja et al.,
2009; Liu et al., 2009). The homolog of Cul4A, Cul4B shares sig-
nificant sequence homology with Cul4A and has some redundant
functions with Cul4A (Higa et al., 2003; Hu et al., 2004). Consid-
ering the distinct knockout phenotype of Cul4A in mice and cell
lines (Nishitani et al., 2001; Karakaidos et al., 2004), it is conceiv-
able that Cul4A and Cul4B play distinct roles in genome integrity
maintenance via regulating protein stability of different substrates.
However, Cul4B also plays significant roles in DDR (Kerzendorfer
et al., 2010). In fact, degradation of p27 and p53 seems to depend
on Cul4A solely (Banks et al., 2006; Higa et al., 2006). Therefore,
more investigation is required to unravel the relationship between
Cul4A and Cul4B and to advance our understanding of Cul4 as
genome guardian.
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