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Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR) signaling had been demonstrated
attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist,
affected activities of matrix metalloproteinase (MMP) and inflammatory cytokines in nicotine-treatment RAW264.7 and
MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with
nicotine at different concentrations (0, 1, 10, and 100 ng/ml) for 0–120min. Nicotine markedly stimulated the
phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and c-Jun in RAW264.7 cells. Pretreatment with
U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun
and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP-) 1, and regulated upon activation normal
T cell expressed and secreted (RANTES). Similarly, nicotine treatment also increased phosphorylation of c-Jun and
expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987,
nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited.
Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated.
Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through
modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal
aortic aneurysm.

1. Introduction

Abdominal aortic aneurysm (AAA) is defined as a dilatation
of abdominal aorta (almost exclusively infrarenal aorta) that
reaches a diameter of 30mm or more [1]. AAA often remains
asymptomatic until it ruptures with a mortality rate of 80%
[2]. Rather than a consequence of advanced atherosclerosis,
AAA is a local representation of systemic vascular disease,
with a differential molecular and cellular profile [3, 4]. AAA
is characterized by dilatation of all layers of the arterial wall

as a result of inflammatory infiltration, loss of elastin, and
SMC apoptosis [3, 5]. Experimental data and studies of
human AAA have identified that extensive inflammatory
infiltrate in the media and adventitia is composed of macro-
phages and lymphocytes, which secret multiple cytokines,
involving in the pathological process of AAA [6–8]. Matrix
metalloproteinases (MMPs), derived from vascular smooth
muscle cells (VSMCs) and macrophages, are secreted into
the extracellular matrix and result in the destruction of
elastin and weakening of the aortic wall [5].
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Smoking is a very strong modifiable risk factor for AAA
[9–13]. In a recent report of enrolling 18,782 participants
aged≥ 65 years in Southern Community Cohort Study
(SCCS), over a median follow-up of 4.94 years, 40% of
AAA were current smokers, and another 40% were former
smokers [9]. Smoking, especially current smoking, signifi-
cantly increased the risk of AAA (current: HR 5.55, 95%
confidence interval (CI) 3.67 to 8.40; former: HR 1.91, 95%
CI 1.27 to 2.87). Increased duration of smoking and daily
cigarette quantity contribute to a higher risk of incident
AAA, and the effects are dose dependent [11, 12]. Moreover,
rates of AAA expansion and the risk of rupture are markedly
elevated in those who continued to smoke. In a meta-analysis
by Sweeting et al. [13], AAA growth rates were increased by
about one-sixth and rupture rates were doubled in current
smokers as compared to ex- or never smokers. Although
prevalence, incidence, and mortality have declined because
of a reduced smoking rate [14, 15], AAA remains the 16th
leading cause of death in the USA among those aged
above 65 years [9], thus highlighting the need for more
efforts to improve the treatment and prognosis. Our previ-
ous study showed that c-Jun N-terminal kinase (JNK)
inhibitor attenuated nicotine plus AngII-induced AAA for-
mation by suppressing MMP-9, MMP2, monocyte chemo-
tactic protein- (MCP-) 1, and regulated upon activation
normal T cell expressed and secreted (RANTES) secretion
from macrophages and VSMCs, suggesting that JNK was a
signaling molecule in the pathogenesis of nicotine plus
AngII-induced AAA [16]. However, distal signaling mole-
cules or nuclear transcription factors involving in the
signal transduction remain elusive.

Vagus nerve stimulation through alpha7 nicotine
acetylcholine receptors (α7-nAChR) signaling, known as
the cholinergic anti-inflammatory pathway, had been dem-
onstrated attenuation of inflammation and improvement of
inflammatory diseases, such as sepsis, pancreatitis, haemor-
rhagic shock and ischaemia/reperfusion, and postoperative
ileus in experimental models [17]. Recent studies showed
that vagus nerve stimulation may also have beneficial role
in cardiovascular diseases through modulation of cytokine
levels, which is dependent from heart rate variability [18].
Activation of α7-nAChR had been found to prevent the
development and progression of AAA in CaCl2 application
mouse model in association with reduced inflammation and
matrix degradation [19]. In the present study, we determined
whether PNU-282987, a selective α7-nAChR agonist,
affected activities of MMP-2 and MMP-9 and expressions
of inflammatory cytokines MCP-1 and RANTES in nicotine
treatment RAW264.7 and MOVAS cells.

2. Material and Methods

2.1. Reagents and Antibodies. Nicotine and PNU-282987
were obtained from Sigma-Aldrich. U0126 (a highly selective
inhibitor of MEK1 and MEK2, which are kinase of ERK1/2)
was from Cell Signaling Technology (CST). Monoclonal
rabbit antiextracellular signal-regulated kinase1/2 (ERK1/2),
antiphosphorylated ERK1/2, anti-c-Jun, antiphosphory-
lated c-Jun, antinuclear factor-κB (NF-κB) p65, and

antiphosphorylated NF-κB p65 were from CST. Rat poly-
clonal antibody to MMP2, MCP-1, RANTES, and GAPDH
were from Abcam. Mouse monoclonal anti-MMP9 and
MMP2 were from Santa Cruz Biotechnology.

2.2. Cell Culture and Treatment. A mouse macrophage cell
line (RAW264.7 cells) and mouse aortic smooth muscle cell
(SMC) line (MOVAS cells) were bought from the American
Type Culture Collection (Manassas, VA). Cells were cultured
in high-glucose Dulbecco’s Modified Eagle Medium
(DMEM, HyClone, Logan, UT, USA) supplemented with
10% fetal bovine serum (FBS, Gibco, Australia) at 37°C in a
humidified, 5% CO2 atmosphere. After starved in serum-
free medium overnight, cells were treated with nicotine or
PNU-282987. Additional experiments were performed with
RAW264.7 cells pretreated with U0126 or PNU-282987
and MOVAS cells preincubated with PNU-282987 prior to
exposing to nicotine.

2.3. Western Blot Analysis. Cells were washed twice with
ice-cold phosphate-buffered saline (PBS), lysed with RIPA
Lysis Buffer (Beyotime Institute of Biotechnology, Jiangsu,
China), supplemented with phosphatase inhibitor (Sangon
Biotechnology, Shanghai, China) and PMSF (Roche, Molecu-
lar Biochemicals, Mannheim, Germany), centrifuged, and
quantified with a BCA protein assay kit (Beyotime Institute
of Biotechnology, Jiangsu, China) according to the manufac-
turer’s instructions. Aliquots of total protein were separated
by 10% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) and then transferred to polyvinylidene
fluoride (PVDF) membranes (Bio-Rad Laboratories, Hercu-
les, USA). Membranes were blocked in 5% nonfat milk/TBST
(25mM Tris-HCl, 150mM NaCl, and 0.1% Tween-20;
pH7.4) for 1 h at room temperature and subsequently incu-
bated with primary antibodies overnight at 4°C. After three
washes, membranes were incubated with horseradish perox-
idase- (HRP-) conjugated goat anti-rabbit or -mouse IgG for
1 h, washed again with TBST, and subsequently visualized
using West-Pico ECL kit (Pierce, Rockford, USA).

2.4. Real-Time Reverse Transcription Polymerase Chain
Reaction (RT-PCR). Total RNA was extracted from
RAW264.7 and MOVAS cells using TRIZOL reagent (Invi-
trogen, Carlsbad, USA) and reversely transcribed into cDNA
with PrimeScript RT Master Mix (Takara, Kusatsu, Japan)
according to the manufacturer’s protocol. Quantitative RT-
PCR was performed using SYBR Premix Ex Taq (Takara,
Kusatsu, Japan) on the Applied Biosystems ViiA™ 7 Real-
Time PCR System. The specific primers used in the present
study were as follows: MMP-9: 5′-GCCCTGGAACTCAC
ACGACA-3′ (Forward) and 5′-TTGGAAACTCACACGC
CAGAAG-3′ (Reverse); MMP-2: 5′-GATAACCTGGATGC
CGTCGTG-3′ (Forward) and 5′-GGTGTGCAGCGATGAA
GATGATA-3′ (Reverse); MCP-1: 5′-GCATCCACGTGTTG
GCTCA-3′ (Forward) and 5′-CTCCAGCCTACTCATT
GGGATCA-3′ (Reverse); RANTES 5′-GAAAGAACCGC
CAAGTGTGT-3′ (Forward) and 5′-GCAAGCAGAAACAG
GCAAAT-3′ (Reverse); and GAPDH: 5′-GTATGACTCTA
CCC ACGGCAAGT-3′ (Forward) and 5′-TTCCCGTTGAT
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GACCAGCTT-3′ (Reverse). The cycle threshold (Ct)
obtained for target gene expression was normalized to
GAPDH, and the relative expression was calculated using
the 2−ΔΔCt methods.

2.5. Statistical Analysis. Data were presented as mean± stan-
dard deviations (SD). Densitometric analysis of protein
bands in the Western blot was performed using ImageJ
software from the National Institutes of Health. Data were
analyzed by one-way ANOVA followed by the Dunnett’s
test. Statistical analysis was conducted using SPSS version
22. P < 0 05 was considered statistically significant.

3. Results

3.1. Nicotine Stimulated Phosphorylation of ERK1/2 and c-
Jun in RAW264.7 Cells. Nicotine is the main ingredient of
cigarette smoke, and plasma concentration of nicotine is
rapidly increased after a single cigarette, ranging from
10–50 ng/ml [20]. To investigate the underlying mecha-
nisms of nicotine-induced AAA, RAW264.7 cells were
exposed to 10 ng/ml nicotine for 0, 10, 20, 30, 60, and
120min. Western blot analysis (Figure 1(a)) revealed that
10 ng/ml nicotine resulted in significant increase in the
phosphorylation of ERK1/2 and c-Jun from 10min to
60min; however, nicotine had no effect on p65 phosphor-
ylation. Then, RAW264.7 cells were treated with nicotine for
30min at the concentrations of 0, 1, 10, and 100ng/ml. As
seen in Figure 1(e), the phosphorylation of ERK1/2 and
c-Jun was upregulated by nicotine, whereas the protein
levels of p-p65 remained unchanged. These data suggest
that nicotine may exert biological effects via modulating
ERK1/2 and c-Jun signaling pathway in RAW264.7 cells.

3.2. U0126 Abolished Nicotine-Induced Activations of ERK1/2
and c-Jun and Expression of MMP-9, MMP-2, MCP-1, and
RANTES in RAW264.7 Cells. In order to further determine
whether ERK1/2 and c-Jun signaling pathway is involved in
nicotine-induced expression of MMP-9, MMP-2, MCP-1,
and RANTES, RAW264.7 cells were pretreated with 10 μm
and 20 μm U0126 for 30min prior to 30min or 3 h nicotine
exposure at the concentration of 10 ng/ml. Nicotine-induced
activation of ERK1/2 and c-Jun was significantly abolished by
U0126 (Figure 2(a)). Also, nicotine-induced upregulation of
MMP-9, MMP-2, MCP-1, and RANTES was remarkably
decreased shown in Figure 2(d). Moreover, quantitative
RT-PCR showed that U0126 inhibited nicotine-induced
MMP-9, MMP-2, MCP-1, and RANTES mRNA expression
(Figures 2(i), 2(j), 2(k), and 2(l)). The results indicate that
nicotine induces upregulation of MMP-9, MMP-2, MCP-1,
and RANTES through activating ERK1/2/c-Jun pathway in
RAW264.7 cells.

3.3. Nicotine Increased Phosphorylation of c-Jun in MOVAS
Cells. We also explored whether nicotine had any effect on
the ERK1/2, c-Jun, and p65 in MOVAS cells. Similarly,
MOVAS cells were treated with 10ng/ml nicotine for 0, 10,
20, 30, 60, and 120min. As shown in Figure 3(a), nicotine-
induced phosphorylation of c-Jun markedly increased at
10min and 20min and then gone down from 30min to

120min. In contrast, nicotine suppressed ERK1/2 phos-
phorylation and had no effect on the activation of p65.
Then, MOVAS cells were exposed to nicotine at various
concentrations (0, 1, 10, and 100ng/ml) for 30min. The
phosphorylation of c-Jun was significantly elevated at all
three concentrations, whereas ERK1/2 phosphorylation
was inhibited (Figure 3(e)). The activation of p65 was
not affected by nicotine at different concentration. These
data reveal that c-Jun may be an important transcription
factor involving in nicotine-induced biological effects in
MOVAS cells. Inconsistent with RAW264.7 cells, MOVAS
cells treated with nicotine exhibited contrary tendency
between ERK1/2 and c-Jun. It is worth mentioning that
Cho et al. had showed that U0126 had no effect on
TNFα-induced activation of c-Jun in VSMCs [21]. There-
fore, we hypothesized that nicotine evoked different signal
transduction pathway to play biological roles in different
cell types.

3.4. PNU-282987 Suppressed Nicotine-Stimulated Activation
of ERK1/2 and c-Jun and Upregulation of MMP-9, MMP-2,
MCP-1, and RANTES in RAW264.7 Cells. The cholinergic
anti-inflammatory pathway is composed of the efferent vagus
nerve, the neurotransmitter acetylcholine, and α7-nAChR
[17]. Recently, the potential role vagus nerve stimulation in
cardiovascular disease has emerged [18]. To determine the
effect of α7-nAChR on nicotine-stimulated expression of
MMPs and inflammation cytokines, cells were stimulated in
the presence of the α7-nAChR selective agonist. In the first
experiment, RAW 264.7 cells were exposed to 10 μm PNU-
282987 for 0, 15, 30, 60, 90, and 120min. Western blot anal-
ysis showed that PNU-282987 markedly suppressed the
phosphorylation of ERK1/2 and c-Jun (Figure 4(a)). Never-
theless, p65 phosphorylation had a descending tendency
without statistical significance. Then, RAW264.7 cells were
pretreated with PNU-282987 at various concentrations (0,
1, 10, and 100 μm) for 30min prior to 10 ng/ml nicotine expo-
sure for 30min or 3 h. As shown in Figure 4(e), nicotine-
induced activation of ERK1/2 and c-Jun was abolished by
PNU-282987 at the concentrations of 10 and100 μm. At the
same concentrations, PNU-282987 suppressed nicotine-
stimulated upregulation of MMP-9, MMP-2, MCP-1, and
RANTES (Figure 5(a)). In addition, quantitative RT-PCR
showed that PNU-282987 also attenuated nicotine-induced
MMP-9, MMP-2, MCP-1, and RANTES mRNA expression
(Figures 5(f), 5(g), 5(h), and 5(i)). These results suggest that
α7-nAChR agonist inhibits nicotine-induced upregulation
ofMMP-9, MMP-2,MCP-1, and RANTES throughmodulat-
ing ERK1/2/c-Jun signaling in RAW264.7 cells.

3.5. PNU-282987 Attenuated Nicotine-Induced Activations of
c-Jun and Expression of MMP-9, MMP-2, MCP-1, and
RANTES in MOVAS Cells. In the second experiment,
MOVAS cells were treated with 10 μm PNU-282987 for 0,
15, 30, 60, 90, and 120min. Western blot analyses indicated
that ERK1/2 and c-Jun phosphorylation was remarkably
decreased at different time points, whereas the phosphory-
lation of p65 was not changed (Figure 6(a)). Then,
MOVAS cells were pretreated with PNU-282987 at various
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Figure 1: Nicotine stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and c-Jun in RAW264.7 cells. (a)
RAW264.7 cells were treated with 10mg/ml nicotine for 0, 10, 20, 30, 60, and 120min. (e) RAW264.7 cells were exposed to
nicotine for 30min at the concentrations of 0, 1, 10, and 100mg/ml. Cell lysates were collected and protein levels of p-ERK1/2,
ERK1/2, p-c-Jun, c-Jun, p-p65, and p65 were measured by Western blot. The band optical density values (means± SD) of p-ERK1/2 (b, f),
p-c-Jun (c, g), and p-p65 (d, h) were evaluated using ImageJ software, with all experiments being analyzed as three different independent
experiments and GAPDH used as an internal control. ∗p < 0 05 and ∗∗p < 0 01 versus controls.

4 Mediators of Inflammation



RAW264.7 cells

p-ERK1/2

ERK1/2

p-c-Jun

c-Jun

GAPDH
Nicotine (ng/ml)

U0126 (�휇m)

kDa
42
44

44

42
43

43

37
0 10 10 10
0 0 10 20

(a)

2.00
⁎⁎

1.50

p-
ER

K1
/2

/G
A

PD
H

0.50

1.00

0.00
Nicotine (ng/ml)

U0126 (�휇m)
0 10 10 10

## ##

0 0 10 20

(b)

1.20

1.00

0.80

0.60

0.40

0.20

0.00

⁎⁎

p-
c-

Ju
n/

G
A

PD
H

##
##

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

(c)

RAW264.7 cells kDa
MMP-9

MMP-2

MCP-1

RANTES

GAPDH

92

72

18

16

37
Nicotine (ng/ml)

U0126 (�휇m)
0 10 10 10
0 0 10 20

(d)

0.50

0.00

⁎⁎

M
M

P-
9/

G
A

PD
H

## #

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

1.50

1.00

(e)

0.80

0.60

0.40

0.20

0.00

⁎⁎

M
M

P-
2/

G
A

PD
H

##
##

1.20

1.00

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

(f)

0.80

0.60

0.40

0.20

0.00

⁎⁎

M
CP

-1
/G

A
PD

H

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

##

##

(g)

⁎

RA
N

TE
S/

G
A

PD
H

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

##
#

0.50

0.00

1.50

1.00

(h)

⁎⁎

2.00

2.50

1.50
M

M
P-

9 
m

RN
A

0.50

1.00

0.00
Nicotine (ng/ml)

U0126 (�휇m)
0 10 10 10
0 0 10 20

## ##

(i)

3.00

2.00

1.00

0.00

⁎⁎

M
M

P-
2 

m
RN

A

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

##
##

(j)

3.00

4.00

2.00

1.00

0.00

⁎⁎

M
CP

-1
 m

RN
A

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

##
##

(k)

3.00

2.00

1.00

0.00

⁎⁎

RA
N

TE
S 

m
RN

A

Nicotine (ng/ml)
U0126 (�휇m)

0 10 10 10
0 0 10 20

###

(l)

Figure 2: U0126 attenuated nicotine-induced activations of extracellular signal-regulated kinase1/2 (ERK1/2) and c-Jun and upregulation of
matrix metalloproteinase- (MMP-) 9, MMP-2, monocyte chemotactic protein- (MCP-) 1, and regulated upon activation normal T cell
expressed and secreted (RANTES) in RAW264.7 cells. (a) RAW264.7 cells were pretreated with 10 μm and 20 μm U0126 for 30min prior
to 10 ng/ml nicotine exposure for 30min. (d) RAW264.7 cells were pretreated with 10 μm and 20 μm U0126 for 30min prior to 10 ng/ml
nicotine exposure for 3 h. (b, c, e–h) The intensity of protein bands (means± SD) in the Western blot were quantified by using ImageJ
software and normalized to GAPDH. Representative results from three independent experiments are shown. (i) MMP-9, (j) MMP-2,
(k) MCP-1, and (l) RANTES mRNA levels were determined by real-time reverse transcription polymerase chain reaction. All experiments
were analyzed as triplicate independent experiments. ∗p < 0 05 and ∗∗p < 0 01 versus controls; #p < 0 05 and ##p < 0 01 versus the group
treated with nicotine.
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Figure 3: Nicotine increased the phosphorylation of c-Jun in MOVAS cells. (a) MOVAS cells were exposed to 10 ng/ml nicotine for 0, 10, 20,
30, 60, and 120min. (e) MOVAS cells were treated with nicotine for 30min at the concentrations of 0, 1, 10, and 100 ng/ml. The expression of
phosphorylated extracellular signal-regulated kinase1/2 (p-ERK1/2), ERK1/2, p-c-Jun, c-Jun, p-p65, and p65 were analyzed with Western
blot. (b–d, f–h) Densitometric analysis of protein bands was performed via ImageJ software. GAPDH was utilized as an internal control,
and all experiments were analyzed as three different independent experiments. ∗p < 0 05 and ∗∗p < 0 01 versus controls.
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Figure 4: PNU-282987 suppressed nicotine-stimulated activation of extracellular signal-regulated kinase1/2 (ERK1/2) and c-Jun in
RAW264.7 cells. (a) RAW264.7 cells were treated with 10 μm PNU-282987 for 0, 15, 30, 60, 90, and 120min. (e) RAW264.7 cells were
pretreated with 10 μm PNU-282987 for 60min prior to 10 ng/ml nicotine exposure for 30min. Protein levels of p-ERK1/2, ERK1/2, p-c-
Jun, c-Jun, p-p65, and p65 were measured by Western blot, and the intensity of protein bands (means± SD) (b–d, f, g) were assessed
using ImageJ software, with all experiments being analyzed as three different independent experiments and GAPDH used as an internal
control. ∗p < 0 05 and ∗∗p < 0 01 versus controls; #p < 0 05 and ##p < 0 01 versus the group treated with nicotine.
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concentrations (0, 1, 10, and 100 μm) for 60min prior to
10 ng/ml nicotine treatment for 30min or 3 h. As shown
in Figure 6(e), nicotine-induced activation of c-Jun was
attenuated by PNU-282987 at the concentrations of 10
and 100 μm. The inhibition of ERK phosphorylation by
nicotine was further enhanced in MOVAS cells pretreated
with PNU-282987. Moreover, PNU-282987 suppressed
nicotine-stimulated excretion of MMP-9, MMP-2, MCP-
1, and RANTES from MOVAS cells (Figure 7(a)). Also,
quantitative RT-PCR showed that PNU-282987 also
reduced nicotine-induced mRNA expression of MMP-9,
MMP-2, MCP-1, and RANTES shown in Figures 7(f),
7(g), 7(h), and 7(i). These results suggest that α7-nAChR
agonist inhibits nicotine-induced expression of MMP-9,
MMP-2, MCP-1, and RANTES via c-Jun in MOVAS cells.

4. Discussion

In the present study, we demonstrated for the first time that
stimulation of α7-nAChR suppressed nicotine-induced
upregulation of inflammatory cytokines and MMP. MCP-1
and RANTES, as representative of CC chemokine family,
had also been demonstrated involvement in AAA develop-
ment [7, 22] and thought to play greater roles than other che-
mokines [23]. MCP-1 promoted macrophage infiltration,
increased the MMP-9 expression in SMCs, and induced
apoptosis of SMCs within AAA, either through a direct
mechanism or via activation of macrophages [22, 24, 25].
RANTES, similarly to MCP-1, acts on multiple immune
cells and plays an important role in chronic and acute
inflammation [26]. MMP-9 and MMP-2, which degrade
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Figure 5: PNU-282987 abrogated nicotine-induced upregulation of matrix metalloproteinase- (MMP-) 9, MMP-2, monocyte chemotactic
protein- (MCP-) 1, and regulated upon activation normal T cell expressed and secreted (RANTES) in RAW264.7 cells. (a) RAW264.7 cells
were pretreated with 10 μm PNU-282987 for 60min prior to 10 ng/ml nicotine exposure for 3 h. The band optical density values (means
± SD) of (b) MMP-9, (c) MMP-2, (d) MCP-1, and (e) RANTES in the Western blot were quantified by using ImageJ software and
normalized to GAPDH. Representative results from three independent experiments are shown. (f) MMP-9, (g) MMP-2, (h) MCP-1, and
(i) RANTES mRNA levels were examined by real-time reverse transcription polymerase chain reaction. All experiments were analyzed as
triplicate independent experiments. ∗p < 0 05 and ∗∗p < 0 01 versus controls; #p < 0 05 and ##p < 0 01 versus the group treated with nicotine.
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Figure 6: PNU-282987 inhibited nicotine-stimulated activation of c-Jun in MOVAS cells. (a) MOVAS cells were exposed to 10 μm PNU-
282987 for 0, 15, 30, 60, 90, and 120min. (e) MOVAS cells were pretreated with 10 μm PNU-282987 for 60min prior to 10 ng/ml
nicotine exposure for 30min. Cell lysates were collected, and protein levels of phosphorylated extracellular signal-regulated kinase1/2 (p-
ERK1/2), ERK1/2, p-c-Jun, c-Jun, p-p65, and p65 were measured by Western blot. (b–d, f, g) Densitometric analysis of protein bands was
performed via ImageJ software, with all experiments being analyzed as three different independent experiments and GAPDH used as an
internal control. ∗p < 0 05 and ∗∗p < 0 01 versus controls; #p < 0 05 and ##p < 0 01 versus the group treated with nicotine.
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the extracellular matrix, work in concert to form AAA,
and both MMP-9 and MMP-2 knockout mice are resistant
to aneurysm development [27]. Inflammation and extra-
cellular matrix degradation play crucial roles in AAA for-
mation. Therefore, it is likely that suppression of MCP-1,
RANTES, MMP-9, and MMP-2 through activation of α7-
nAChR resulted in the attenuation of nicotine-induced
AAA development.

The molecular mechanisms associated α7-nAChR ago-
nist with suppression of nicotine-induced AAA formation
may be ERK1/2 and AP-1- (c-Jun-) mediated signaling path-
way in macrophages and SMCs. ERK1/2 belongs to mamma-
lian mitogen-activated protein kinase (MAPK) family, which
play a crucial role in various cellular responses, including cell
proliferation, differentiation, and survival [28, 29]. Tran-
scription factor AP-1 family comprises multiple Jun (c-Jun,
JunB, and JunD) and Fos (c-Fos, FosB, Fral, and Fra2) mem-
bers [30]. AP-1 had been found involvement in several

physiological and pathological cellular processes including
proliferation, inflammation, differentiation, growth, apopto-
sis, cell migration, and transformation [30, 31]. This study
showed that nicotine increased expression of MCP-1,
RANTES, MMP-9, and MMP-2 through activating ERK1/
2/AP-1 (c-Jun) signaling pathway in RAW264.7 cells and
AP-1 (c-Jun) in MOVAS cells. These results indicated that
AP-1 (c-Jun) might play an important role in nicotine-
induced AAA formation, which is further confirmed by the
report that AP-1 (c-Jun) was remarkably elevated in human
AAA [32]. Stimulation of α7-nAChR by PNU-282987 signif-
icantly inhibited nicotine-induced activation of ERK1/2 and
AP-1 (c-Jun) in RAW264.7 and MOVAS cells and then sup-
pressed nicotine-stimulated upregulation of MCP-1,
RANTES, MMP-9, and MMP-2. Interestingly, nicotine
might activate c-Jun through different signaling pathways
in RAW264.7 and MOVAS cells. Our previous study demon-
strated that nicotine activated and PNU-282987 inhibited
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Figure 7: PNU-282987 downregulated nicotine-induced expression of matrix metalloproteinase- (MMP-) 9, MMP-2, monocyte chemotactic
protein- (MCP-) 1, and regulated upon activation normal T cell expressed and secreted (RANTES) in MOVAS cells. (a) MOVAS cells were
pretreated with 10 μm PNU-282987 for 60min prior to 10 ng/ml nicotine exposure for 3 h. The band optical density values (means± SD) of
(b) MMP-9, (c) MMP-2, (d) MCP-1, and (e) RANTES in the Western blot were quantified by using ImageJ software and normalized to
GAPDH. Representative results from three independent experiments are shown. (f) MMP-9, (g) MMP-2, (h) MCP-1, and (i) RANTES
mRNA levels were determined by real-time reverse transcription polymerase chain reaction. All experiments were analyzed as triplicate
independent experiments. ∗p < 0 05 and ∗∗p < 0 01 versus controls; #p < 0 05 and ##p < 0 01 versus the group treated with nicotine.
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JNK signaling in MOVAS cells, which could be another
upstream pathway of c-Jun [33]. The elucidation of such sig-
naling pathways will reveal novel molecular targets that may
provide a new therapeutic strategy for AAA. It needed to
mention that nicotine could not evoke the activation of NF-
κB p65 in this study. Although it is well known that NF-κB
regulates expression of multiple inflammatory cytokines, it
may play little role in the process of nicotine-induced secre-
tion of MCP-1 and RANTES.

The nAChRs are a family of ligand-gated ion channel
receptors composed of 17 subunits α1–α10, β1–β4, γ, δ, and
ε [34]. In addition to the central and peripheral nervous sys-
tem, the nAChRs have been identified in vascular tissue and
immune cells [34, 35]. The different subunit combinations
result in functionally diverse nAChR subtypes that havediffer-
ent ligand affinity, cation permeability, and signaling [36, 37].
The involvement of nAChR in nicotine-induced expression
of inflammatory cytokines and MMP and development of
AAA remains unknown. Nevertheless, accumulating evi-
dence points towards a protective role for α7-nAChR in
inflammation-based cardiovascular diseases. Cheng et al.
showed that α7-nAChR activation reduced the expression
of TNFα and IL-6 and alleviated viral myocarditis [38].
Treatment with PNU-282987 inhibitedADP-induced platelet
aggregation inhumanplatelets, andhematopoieticα7-nAChR
deficiency increased number of peritoneal leukocytes and
expression of inflammatory mediators by both peritoneal leu-
kocytes (TNFα and CRP) and the spleen (TNFα) [39], both
thought to be important risk factors in atherosclerotic lesion
development [40]. Stimulation of α7-nAChR by AR-R1779
attenuates atherogenesis in apolipoprotein E-deficient mice
treated with AngII possibly through an anti-inflammatory
effect and reduction of blood pressure and lipid levels [41].

In contrast to nicotine that activates multiple nAChRs
subtypes, PNU-282987 is a selected agonist for α7-nAChR.
Thus, we inferred that distinct effects of nicotine and PNU-
282987 might be mediated by differential nAChR subtypes.
In accordance with the assumption, a recent study by de
Moura and McMahon showed that PNU-282987 failed to
substitute for the nicotine discriminative stimulus in male
C57BL/6J mice [42]. Another study showed that nicotine-
induced catecholamine release from the adrenal glands was
modulated by α3β4nAChR, but not by α7nAChR [43].

5. Conclusion

Taken together, α7-nAChR agonist inhibits nicotine-induced
upregulation of inflammatory cytokines and MMP through
modulating ERK1/2/AP-1 signaling in RAW264.7 cells and
AP-1 in MOVAS cells. α7-nAChR agonist is expected to be
a new therapeutic strategy for AAA. However, more studies,
experimental and clinical ones, are necessary to gain further
insights into the function and signaling of nAChRs and offer
rational therapeutic strategies.
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