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G protein-coupled receptor kinase 6 (GRK6) is expressed in various tissues and is
involved in the development of several diseases including lung cancer. We previously
reported that GRK6 is down-regulated in lung adenocarcinoma patients, which induces
cell invasion and metastasis. However, further understanding of the role of GRK6 in lung
adenocarcinoma is required. Here we explored the functional consequence of GRK6
inhibition in lung epithelial cells. Analysis of TCGA data was coupled with RNA sequencing
(RNA-seq) in alveolar epithelial type II (ATII) cells following depletion of GRK6 with RNA
interference (RNAi). Findings were validated in ATII cells followed by tissue microarray
analysis. Pathway analysis suggested that one of the Hallmark pathways enriched upon
GRK6 inhibition is ‘Hallmark_Hypoxia’ (FDR = 0.014). We demonstrated that GRK6
depletion induces HIF1a (hypoxia-inducible factor 1 alpha) levels and activity in ATII cells.
The findings were further confirmed in lung adenocarcinoma samples, in which GRK6
expression levels negatively and positively correlate with HIF1a expression (P = 0.015) and
VHL expression (P < 0.0001), respectively. Mechanistically, we showed the impact of
GRK6 on HIF activity could be achieved via regulation of VHL levels. Taken together,
targeting the HIF pathway may provide new strategies for therapy in GRK6-depleted lung
adenocarcinoma patients.

Keywords: GRK6, HIF, lung adenocarcinoma, hypoxia, EMT
INTRODUCTION

G protein-coupled receptor kinases (GRKs) are a family of kinases that play a critical role in G
protein-coupled receptors (GPCRs) homologous desensitization. GRKs phosphorylate specific
serine and threonine residues of activated GPCRs which promote high affinity binding of
arrestins and then suppress further G protein activation by interrupting receptor-G protein
coupling (1–3). Desensitization of GPCRs has a critical role in maintaining homeostasis. As
such, abnormal GPCRs desensitization can cause a variety of human diseases, including
autoimmune diseases (4), asthma (5), heart failure (6), Parkinson’s disease (7), inappropriate
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diuresis (8) and tumour progression and metastasis (9).
Therefore, GRKs are important therapeutic targets for
these diseases.

G protein-coupled receptor kinase 6 (GRK6) is a member of
the GRK family, which is expressed in various tissues and
involved in the development of several diseases (10–12). High
expression of GRK6 has been reported in hepatocellular
carcinoma (13), colorectal cancer (14); whilst lower expression
was reported in hypopharyngeal squamous cell carcinoma (15)
compared to normal tissues. Further, Grk6 knock out mice
(Grk6-/-) showed a significant increase in the growth and
metastasis of Lewis lung cancer (LLC) compared to the control
mice (Grk6+/+) (2). Our previous study suggested that GRK6
expression was significantly down-regulated in lung
adenocarcinoma patients, and its level was an independent
prognostic factor for overall survival (16). Moreover, we also
showed that the promoter region of the GRK6 gene was hyper-
methylated in lung adenocarcinoma tissues compared to the
normal tissue samples, leading to a down-regulation of GRK6
expression and in turn, inducing cell invasion and metastasis
(17). However, further understanding of the role of GRK6 in
lung adenocarcinoma is required.

In this study, we aimed to investigate the functional
consequence of GRK6 depletion in lung epithelial cells. Analysis
of TCGA data was coupled with RNA sequencing (RNA-seq) in
alveolar epithelial type II (ATII) cells following the depletion of
GRK6 with RNA interference (RNAi). Tissue microarrays were
used to investigate the expression and function of GRK6 in lung
adenocarcinoma. Our data suggests that GRK6 depletion induces
HIF1a (hypoxia-inducible factor 1 alpha) activity. Targeting the
HIF pathway may provide new strategies for therapy in GRK6-
depleted lung adenocarcinoma patients.
MATERIALS AND METHODS

Cell Culture, Transfections, and Reagents
ATII (alveolar epithelial type II, kindly provided by Prof Julian
Downward, The Francis Crick Institute, UK) cells (18–21) were
cultured in DCCM-1 (Biological Industries Ltd) supplemented
with 10% new-born calf serum (NBCS) (Life Technologies), 1%
penicillin, 1% streptomycin, and 1% L-glutamine (all from Life
Technologies). All cells were kept at 37°C and 5% CO2. No
mycoplasma contamination was detected in the cell lines used.

Short interfering RNA (siRNA) oligos against GRK6 or
control siRNA were purchased from Biomics Biotechnologies
Co., Ltd, China. Sequences are available from an earlier
publication (17). Cells were transfected with the indicated
siRNA oligos at a final concentration of 35 nM using
Dharmafect 2 reagent (Dharmacon).

RNA Isolation, Library Construction,
and Sequencing
To identify global transcriptomic changes in ATII cells
upon GRK6 depletion, RNA sequencing (RNA-seq) was
performed. In brief, ATII cells were transfected with either
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control siRNA or siRNA against GRK6 for 3 days. Total RNA
was isolated using an RNeasy mini kit (Qiagen) according to the
manufacturer’s instructions and quantified using a Nanodrop
Spectrophotometer 2000c (Thermo Fisher Scientific). A total
amount of 3 µg RNA per sample was used as input material for
library construction. Sequencing libraries were generated using
NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB,
Ipswich, Massachusetts, USA) following the manufacturer’s
instructions. Libraries were pooled in equimolar and sequenced
using the paired-end strategy (2 × 150) on the Illumina NovaSeq
6000 platform following the standard protocols (Novogene, UK).
RNA-seq data have been deposited in the Gene Expression
Omnibus (GEO) database (accession code GSE164921).

RNA-seq Data Analysis
Quality control of RNA-seq data was performed using FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and
MultiQC (22). Trim Galore (https://github.com/FelixKrueger/
TrimGalore) was used to trim adapters, reads with low quality
(< 30), and short length (< 50 bp). RNA-seq reads were mapped
to Human genome Ensembl GRCh38 using Hisat2 (23) (version
2.1.0) with default codes. Sam files were transformed into bam
files using samtools (24) (version 1.9). The read counts of each
gene were summarized using featureCounts (25) (version 1.6.5).
Raw read counts were imported into RStudio (version 3.6.1) and
analysed by using R package of DESeq2 (26) (version 1.26.0).
Transcripts with low abundance (under 10 counts across all
samples) were removed. Genes with a false discovery rate (FDR)
P-value less than 0.05 adjusted by using Benjamini–Hochberg
(BH) method (or q-value) were considered as differentially
expressed genes (DEGs). Gene ontology (GO) enrichment
analysis was generated through ToppGene (ToppGene Suite
for gene list enrichment analysis and candidate gene
prioritization) website (https://toppgene.cchmc.org/).
Parameter was set with a FDR < 0.05. All downstream analysis
was performed in RStudio (version 3.4.4).

Data Mining GRK6 Related Data From the
Cancer Genome Atlas (TCGA)
The expression of mRNAs in the TCGA lung adenocarcinoma
(LUAD) (IlluminaHiSeq) dataset was obtained from the UCSC
Xena Browser (https://xenabrowser.net/). To separate the low
and high GRK6 group in the TCGA dataset, hierarchical cluster
was performed on the high correlated genes with GRK6 via
Pearson analysis in RStudio (version 3.4.4). According to the
correlation analysis, there were 17 samples in the high GRK6
group and 26 samples in the low GRK6 group. Then, an unpaired
t-test was performed to identify significantly expressed mRNAs
(FDR < 0.05) between the high and low GRK6 groups in RStudio
(version 3.4.4). Codes are available upon request.

Identification of Top Hit Genes and
Pathway Analysis
The statistically significant (FDR < 0.05) differentially expressed
mRNAs in the TCGA (IlluminaHiseq) dataset that were highly
expressed in the low GRK6 lung adenocarcinoma group were
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merged with statistically different genes in the RNA-sequencing
dataset, which showed higher gene expression in siGRK6 samples
compared to the control samples by using RStudio (version 3.4.4)
to identify the top hit candidate gene(s) (Figure 2).

For pathway analysis, Metascape (https://metascape.org/gp/
index.html#/main/step1) was used to detect functional
enrichment of the identified top hit genes. The pathways were
sorted from the lowest q-value and pathways with a q-value of
less than 0.05 were chosen to create a histogram plot in
GraphPad Prism 8.

Western Blot Analysis
Western blot analysis was performed with lysates from cells
lysed with urea buffer (8M urea, 1M thiourea, 0.5% CHAPS, 50
mM DTT and 24 mM spermine). The bound proteins were
separated on SDS polyacrylamide gels and subjected to
immunoblotting with the indicated antibodies. Primary
antibodies were from Proteintech (GRK6, Catalog No. 11439-
1-AP, 1:1000) BD Transduction Laboratories™ (HIF1a,
Catalog No. 610958, 1:1000) and Cell Signalling Technology
(b-tubulin, Catalog No. 86298, 1:5000). Signals were detected
using an Odyssey imaging system (LI-COR) or an ECL
detection system (GE Healthcare, Chicago, IL, USA), and
evaluated using ImageJ (version1.42q) software (National
Institutes of Health) (Bethesda, MD, USA).

qRT-PCR
Real-time quantitative RT-PCR was performed using gene-
specific primers (QuantiTect Primer Assays, Qiagen) for CA9
(QT00011697), NDRG1 (QT00059990) or ACTB (b-actin)
(QT01680476) with QuantiNova SYBR Green RT-PCR kits
(Qiagen). Relative transcript levels of target genes were normalised
to ACTB (b-actin).

Clinical Data and Tissue Samples
The study population comprised of 174 lung adenocarcinoma
(LUAD) patients who were examined and treated at the Thoracic
Surgery Department of the Affiliated Hospital of Nantong
University and Thoracic Surgery Department of Second
Affiliated Hospital of Nantong University between January 1,
2015, and December 31, 2016. The median age of patients at the
time of diagnosis was 63 years (range 41–83 years). Study
protocol was approved by the Ethics Committee of the
Affiliated Hospital of Nantong University (No. 2018-L068),
and all experiments were performed in accordance with
approved guidelines of the Affiliated Hospital of Nantong
University. Written informed consent was obtained from the
patients for publication of this study and any accompanying
images. Details of the clinical and demographic information were
collected retrospectively. All patients underwent standard
surgery aiming for maximal tumour resection. Patient clinical
data were recorded in detail, and the diagnoses were confirmed
by at least two pathologists. Tumour histological grades and
clinical stages were evaluated according to the pathological
results after surgery. All tumours were staged according to the
pathological tumour/node/metastasis (pTNM) classification (7th
edition) of the International Union against Cancer.
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Tissue Microarray (TMA) Construction and
Immunohistochemistry Analysis (IHC)
Tissue microarray system (Quick-Ray, UT06, UNITMA, Korea) in
the Department of Clinical Pathology, Nantong University
Hospital, Jiangsu, China, was used to generate TMA.
Specifically, core tissue biopsies (2 mm in diameter) were taken
from individual FFPE blocks and arranged in recipient paraffin
blocks. TMA specimens were cut into 4 µm sections and placed on
super frost-charged glass microscope slides. TMA analysis was
used as a quality control for hematoxylin and eosin staining.
Tissue sections were deparaffinized and rehydrated through
graded ethanol. Antigen retrieval was performed with 0.01 M
citrate buffer pH 6.0 and microwave heat induction. Endogenous
peroxidase activity was blocked with 3%H2O2 for 30min. Sections
were then incubated with a rabbit polyclonal antibody specific to
GRK6 (1:100; Proteintech, 11439-1-AP), HIF1a (1:100;
Proteintech, 20960-1-AP) and VHL (1:100; Abcam, ab140989)
at 4°C overnight, followed by incubation with a biotinylated anti-
rabbit secondary antibody at 37°C for 30 min. Slides were then
processed using horseradish peroxidase and 3,3-diaminobenzidine
chromogen solution and counterstained with hematoxylin. The
staining intensity of GRK6, HIF1a or VHL for each slide was
evaluated and scored by two independent pathologists. Staining
intensity was scored as follows: 0 (negative), 1+ (weak staining), 2+
(moderate staining), and 3+ (intense staining). For each of the four
staining intensity scores, the percentage of cells stained at each
intensity were determined. The intensity percentage score was the
product of staining intensity and percentage of stained cells. The
final staining scores were then evaluated from the sum of the four
intensity percentage scores; thus, the staining score had a range
from the minimum value of 0 (no staining) to a maximum of 300
(100% of cells with 3+ staining intensity), as described previously
(27). The cut-off of 140 was selected to evaluate expression: score
0–140 was considered low expression, while 141–300 was
considered high expression. For all subsequent analyses, GRK6,
HIF1a and VHL protein expression levels were considered either
as “low” or “high” according to these cut-off values.

Statistical Analysis
Two-tailed, unpaired Student’s t-test for the TCGA data were
performed in RStudio (version 3.4.4). For multiple t-test, P-values
were adjusted by using Benjamini-Hochberg (BH) method. Codes
are available upon request. Fisher’s exact test was used to evaluate
the relationship of GRK6 and HIF1a expression in lung
adenocarcinoma patient samples in IHC using GraphPad Prism
8 software. P < 0.05 was considered statistically significant.
RESULTS

Global Transcriptomic Changes in ATII
Cells Upon GRK6 Depletion
We previously reported that GRK6 knockdown promotes cell
migration and invasion in lung epithelial cells (17). To
determine if, and how, lung epithelial cells responded to GRK6
inhibition, we characterised the global transcriptomic changes in
May 2021 | Volume 11 | Article 654812
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alveolar epithelial type II (ATII) cells transfected with either
siRNAs against GRK6 (siGRK6) or control siRNA (Control) by
performing RNA sequencing (RNA-seq). Principal component
analysis (PCA) showed good separation between Control
compared to siGRK6 samples (n = 3 in each group)
(Supplementary Figure 1).

Genes with a false discovery rate (FDR) adjusted P value (or q-
value) of less than 0.05 were considered as differentially expressed
genes (DEGs). In total, 7,116 DEGs were identified, including
3,430 up-regulated (Supplementary Table 1) and 3,686 down-
regulated (Supplementary Table 2). We then performed gene
ontology (GO) enrichment analysis of the identified DEGs using
ToppGene (ToppGene Suite for gene list enrichment analysis and
candidate gene prioritization) website (https://toppgene.cchmc.
org/). The results were grouped into molecular function (MF),
biological process (BP), and cellular component (CC).
Interestingly, several disease-related pathological terms were
identified, including mRNA metabolism, ribonucleoprotein
complex biogenesis, and regulation of cellular response to stress
(FDR < 0.05; Figures 1A, B; Supplementary Tables 3 and 4).

Candidate Pathways Enriched Upon GRK6
Inhibition Are Identified by TCGA Analysis
Coupled With RNA-seq
To understand the role of GRK6 in lung adenocarcinoma, we
performed TCGA analysis coupled with the RNA-seq data
described above. As shown in Figure 2A, correlation analysis
was performed in the TCGA lung adenocarcinoma (LUAD)
(IlluminaHiseq) dataset; samples were separated into high vs.
low GRK6 expression based on an unsupervised hierarchical
clustering (Supplementary Figure 2). We identified 2,345
genes as differentially expressed in the high vs. low GRK6
samples in the TCGA dataset (Figure 2B). A total of 7,116
genes were differentially expressed in ATII cells transfected
with control siRNA or siRNA against GRK6 (siGRK6) in
RNA-seq, among which 3,430 up-regulated (Figure 2C). By
cross-referencing the results from the TCGA analysis with the
RNA-seq analysis, we identified 274 candidate genes, which
were highly expressed in low GRK6 samples in the TCGA
dataset (Figure 3A; Supplementary Table 5) and in siGRK6
samples in the RNA-seq analysis (Figure 3B; Supplementary
Table 6).

Metascape (https://metascape.org/gp/index.html#/main/
step1) was used to investigate whether these genes were
enriched in certain cellular pathways. We found that several
Hallmark pathways, including mitotic spindle, epithelial
mesenchymal transition (EMT), protein secretion, IL2
(interleukin 2) STAT5 (signal transducer and activator of
transcription 5) signalling, glycolysis, hypoxia and TGFb
signalling, were enriched upon GRK6 inhibition in lung
adenocarcinoma (Figure 3C; Table 1).

GRK6 Inhibition Induces Hypoxia-Inducible
Factor (HIF) Activity in the Lungs
One of the Hallmark pathways enriched upon GRK6 inhibition
is ‘Hallmark_Hypoxia’ (FDR = 0.014; Figure 3C; Table 1). In
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our RNA-seq analysis, knockdown of GRK6 in ATII cells
(Figure 4A) led to significant increases in several hypoxia-
induced genes, including CA9 (carbonic anhydrase 9), NDRG1
(N-Myc downstream-regulated 1), SLC2A1 (solute carrier
family 2 member 1, also known as GLUT1 , glucose
transporter 1), P4HA1 (prolyl 4-hydroxylase subunit alpha 1)
and ENO1 (enolase 1) (28) (Figure 4A). A significant increase
in the mRNA levels of CA9 (P < 0.0001) and NDRG1 (P < 0.001)
were confirmed with Q-RT-PCR (Figure 4B). In addition, the
protein level of HIF1a, a key regulator of the cellular response
to hypoxia (29), was significantly increased upon GRK6
depletion in the ATII cells as shown by western blot (Figures
4C, D; P < 0.01). To check how GRK6 may regulate HIF
activity, the mRNA levels of HIF1a (HIF1A), HIF2a (EPAS1),
HIF1b (ARNT) and VHL (Von Hippel-Lindau) were screened
in the RNA-seq dataset. No changes in the expression levels of
HIF1A, EPAS1 and ARNT were observed (Figure 4E; P > 0.05),
while the VHL mRNA level was decreased upon GRK6
inhibition in ATII cells (Figure 4E; P < 0.001). These
findings suggest that GRK6 inhibition induces HIF activity in
the lungs potentially by regulating VHL, which functions as a
master regulator of HIF activity by targeting the HIFa subunit
for degradation (30–33).

To further validate the in vitro findings, the correlation
between GRK6 expression and HIF1a levels or GRK6
express ion and VHL levels were analysed in lung
adenocarcinoma samples using tissue microarrays (Figure 5).
Representative images of low and high expression of GRK6,
HIF1a or VHL in lung adenocarcinoma samples are shown in
Figures 5A–C, respectively. Importantly, the percentage of
patients with high HIF1a expression (61%) in the low GRK6
group was significantly higher than in the high GRK6 group
(41%) (Figure 5D; P < 0.05), while patients with low GRK6
tended to have a low level of VHL compared to those within high
GRK6 group (Figure 5D; P < 0.0001).
DISCUSSION

Lung cancer is the most prevalent and the leading cause of cancer
death (34). Adenocarcinoma is the most common type of lung
cancer, in both smokers and non-smokers, in females and males,
and represents 40% of the lung cancer cases (35). Lung
adenocarcinoma progresses from the small airway; one of the
most abundant cell types present here are alveolar type II
epithelial cells, which secrete mucus and other substances (36).
Lung adenocarcinoma is one of the most aggressive cancers and
the survival rate of patients is short after diagnosis with an overall
survival rate of less than 5 years (35). The major challenge for
lung adenocarcinoma is its resistance to conventional
radiotherapies and chemotherapies (35).

Hypoxia is one of the typical features of the tumour
microenvironment that increases the aggressiveness of different
tumours such as lung cancer (37), colorectal cancer (38),
hepatocellular carcinoma (39) and oesophageal squamous cell
carcinoma (40). Hypoxic conditions lead to the activation of
May 2021 | Volume 11 | Article 654812
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various transcription factors, such as HIF1; and the activation of
downstream signalling pathways that regulate cell death, motility
and proliferation (41). HIF1 is a heterodimeric transcription
factor, capable of controlling the cellular adaptive response to
hypoxia and has two subunits; HIF1a and HIF1b (42, 43).
Cellular oxygen concentration regulates the protein expression
Frontiers in Oncology | www.frontiersin.org 5
of HIF1a so is a key factor for cellular adaptive response to
hypoxia (43). HIF activities can also be up-regulated by other
mechanisms (44, 45).

G protein-coupled receptor kinases (GRKs) are a family of
kinases which can desensitize G protein-coupled receptors
(GPCRs) homologous (1). GRK6 is of the members of
A

B

FIGURE 1 | Global transcriptomic changes in ATII cells upon GRK6 depletion. (A) REVIGO TreeMap showing Gene Ontology (GO) analysis of upregulated
differentially expressed genes (DEGs) in ATII cells transfected with siRNAs against GRK6 vs. control siRNA. Common colours represent groupings based on parent
GO terms, and each rectangle is proportional to the relative enrichment of the GO term compared to the whole genome. Genes with false discovery rate (FDR) < 0.05 were
considered as DEGs. (B) Scatter plot showing the top 10 enriched GO terms from 3 categories (biological process, cellular component, and molecular function) according
to rich factors. Rich factor is the percentage of DEGs enriched gene count in the given annotated GO terms. The sizes of circles represent gene counts, and the colours of
circles represent the -Log10 of the adjusted P−values (padj). Values less than 0.05 were considered as statistically significant.
May 2021 | Volume 11 | Article 654812
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theGRK family (10–12) and we previously showed that GRK6 is
down-regulated in lung adenocarcinoma, which is associated
with malignant tumour progression (16, 17), by an
unknown mechanism.

To identify global transcriptomic changes in ATII cells upon
GRK6 depletion, RNA-seq coupled with siRNA-mediated
depletion of GRK6 was performed in ATII cells. We identified
3,430 up-regulated and 3,686 down-regulated DEGs. GO
functional analysis with DEGs demonstrated that DEGs
are mainly enriched in mRNA metabolism, ribonucleoprotein
complex biogenesis, and regulation of cellular response to stress.
To understand the role of GRK6 in lung adenocarcinoma,
analysis of TCGA data was coupled with the RNA-seq data,
described above. Pathway analysis suggested that one of the
Frontiers in Oncology | www.frontiersin.org 6
Hallmark pathways enriched upon GRK6 inhibition is
‘Hallmark_Hypoxia’. We demonstrated that GRK6 depletion
induces HIF1a expression and activity in ATII cells. The
findings were further confirmed in lung adenocarcinoma
samples, in which GRK6 expressions negatively correlate with
HIF1a protein levels. Mechanistically, the impact of GRK6 on
HIF activity could be achieved via regulation of VHL levels,
which is a master regulator of HIF activity by targeting the
prolyl-hydroxylated HIF1a subunit for ubiquitylation and rapid
proteasomal degradation (30–33). This study provides evidence
that GRK6 inhibition causes a decrease in VHL expression,
leading to HIFa stabilisation with increased activity in lung
adenocarcinoma, although the underlying mechanism merits
further investigation.
A B

C

FIGURE 2 | The analysis to identify candidate genes upon GRK6 inhibition. (A) In brief, TCGA analysis coupled to RNA sequencing in ATII cells upon GRK6 depletion
(siGRK6) was used (details in Methods). FDR: false discovery rate. (B) Heat-map showing DEGs (differentially expressed genes) between low GRK6 (n = 26) and high
GRK6 (n = 17) expressing lung adenocarcinoma samples from TCGA analysis. Red indicates up-regulation and blue indicates down-regulation. Genes with false
discovery rate (FDR) adjusted P-values less than 0.05 were considered as DEGs. P-values were adjusted by using Benjamini-Hochberg (BH) method. (C) Heat-map
showing DEGs in ATII cells transfected with siRNA against GRK6 (siGRK6) vs. control siRNA (Control). Red indicates up-regulation and blue down-regulation. n = 3
samples per group. DESeq2 Wald test was performed for statistical analysis. Genes with a false discovery rate (FDR) adjusted P-values of less than 0.05 were considered
as DEGs. P-values were adjusted by using Benjamini-Hochberg (BH) method.
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A

C

B

FIGURE 3 | Candidate pathways enriched upon GRK6 inhibition are identified by TCGA analysis coupled to RNA sequencing. (A) Heat-map showing genes that are
over-expressed in lung adenocarcinoma samples with low GRK6 (n = 26) compared to those with high GRK6 (n = 17) from TCGA analysis. Red indicates up-regulation
and blue down-regulation. Genes with false discovery rate (FDR) adjusted P-values less than 0.05 were considered as DEGs. P-values were adjusted by using
Benjamini-Hochberg (BH) method. (B) Heat-map showing DEGs (differentially expressed genes) that are over-expressed in ATII cells transfected with siRNA against
GRK6 (siGRK6) vs. control siRNA. Red indicates up-regulation and blue down-regulation. n = 3 samples per group. DESeq2 Wald test was performed for statistical
analysis. Genes with FDR adjusted P-values less than 0.05 were considered as DEGs. P-values were adjusted by using Benjamini-Hochberg (BH) method.
(C) Pathways enriched upon GRK6 inhibition are visualised on a bar chart, showing number of shared genes and -Log10 (q value).
TABLE 1 | List of pathways enriched upon GRK6 inhibition.

Number of
shared genes

-Log10

(q-value)
Genes

HALLMARK MITOTIC SPINDLE 13 4.653 APC, ARHGAP5, NOTCH2, RFC1, ROCK1, TIAM1, TRIO, ARHGAP29, RASAL2,
ARHGEF12, SUN2, DYNLL2, PPP4R2

HALLMARK EPITHELIAL
MESENCHYMAL TRANSITION

12 4.122 CALU, CD44, CD59, DPYSL3, FBN2, FN1, ITGAV, NOTCH2, PTX3, SDC1, TGFBI,
SLIT2

HALLMARK PROTEIN SECRETION 8 3.664 CLCN3, GOLGA4, IGF2R, PAM, RPS6KA3, ZW10, SCRN1, STX12
HALLMARK UV RESPONSE DN 9 3.321 RUNX1, LTBP1, NOTCH2, ATXN1, NRP1, MAGI2, NR1D2, SIPA1L1, MIOS
HALLMARK IL2 STAT5 SIGNALING 10 3.042 CD44, IGF2R, ITGAV, PRNP, TIAM1, NRP1, DENND5A, TWSG1, RRAGD,

SPRED2
HALLMARK GLYCOLYSIS 9 2.418 CD44, ENO1, IL13RA1, PAM, SDC1, TGFBI, P4HA2, HS2ST1, RRAGD
HALLMARK HYPOXIA 8 1.847 ENO1, GBE1, PAM, PFKFB3, TGFBI, P4HA2, KDM3A, RRAGD
HALLMARK TGF BETA SIGNALING 4 1.701 ACVR1, APC, SLC20A1, NOG
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Earlier reports suggest that hypoxia regulates mRNA
translation (46). RNA-binding proteins (heterogeneous nuclear
ribonucleoproteins) have a role in post-transcriptional gene
regulation under hypoxic conditions and are associated with
hypoxia-induced transcripts that regulate encoded protein levels
(47). Hypoxia can affect tumour cells; by acting as a stressor and
inhibiting cell growth or inducing cell death. Alternatively, it can
act by contributing to cancer progression and resistance to
treatments, leading to hypoxia-induced genomic and
proteomic changes in the cancer cells (48, 49).

We previously demonstrated that cell migration and
invasion in lung epithelial cells is induced upon GRK6
knockdown (17). In addition to the hypoxia, this analysis
showed EMT is also enriched upon GRK6 inhibition, which
Frontiers in Oncology | www.frontiersin.org 8
can explain our previous findings (17). The hypoxic tumour
microenvironment can regulate EMT (50, 51). EMT is a
biological process and the cell polarity and cell-cell adhesion
of epithelial cells are lost and in turn become mesenchymal
cells, which have migratory and invasive features (52). In a
similar manner to our findings (17), previous studies in
medulloblastoma (53) and Lewis lung carcinoma (2) show
that when GRK6 was downregulated, migration and
metastasis were increased. Consistently, it has been found
that hypoxia-related genes CA9, NDRG1, SLC2A1, P4HA1
and ENO1 induced EMT in hepatocellular carcinoma (54),
bladder cancer (55), laryngeal cancer (56) and gastric cancer
(57, 58), respectively. Our study showed an increase of hypoxia-
induced gene expression and HIF1a expression in GRK6
A

C D

E

B

FIGURE 4 | GRK6 depletion induces HIF (hypoxia-inducible factors) activity in ATII (alveolar epithelial type II) cells. (A) RNA-seq showing relative expressions
of GRK6, CA9, NDRG1, SLC2A1, P4HA1 and ENO1 in ATII cells transfected with control or GRK6 siRNA. Data are mean ± s.d. n = 3 samples per group. Multiple
t-test was performed for statistical analysis. Genes with false discovery rate (FDR) adjusted P-values less than 0.05 were considered as DEGs. P-values were
adjusted by using Benjamini-Hochberg (BH) method. (B) Fold change in mRNA levels of CA9 and NDRG1 in ATII cells transfected with control or GRK6 siRNA.
ACTB (b-actin)-normalised mRNA levels in control cells were used to set the baseline value at unity. Data are mean ± s.d. n = 3 samples per group. Multiple t-test
was performed for statistical analysis. (C) Protein expression of HIF1a and GRK6 in ATII cells transfected with control or GRK6 siRNA. b-tubulin was used as a
loading control. (D) Quantification of (C). Graph showing protein level of HIF1a in ATII cell line with indicated transfections. Data are mean ± s.d. n = 3 per group.
Two tailed, unpaired Student’s t-test was performed for statistical analysis. P-value less than 0.05 was considered as statistically significant. (E) RNA-seq showing
relative expression of HIF1A, ARNT, EPAS1 and VHL in ATII cells transfected with control or GRK6 siRNA. Data are mean ± s.d. n = 3 samples per group. Multiple t-
test was performed for statistical analysis. Genes with FDR adjusted P-values less than 0.05 were considered as DEGs. P-values were adjusted by using Benjamini-
Hochberg (BH) method.
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knockdown cells, this suggests that GRK6 knockdown may
induce EMT in lung adenocarcinoma.

In summary, this study shows that GRK6 is involved in
different disease-related pathological features; mRNA
metabolism, ribonucleoprotein complex biogenesis, regulation
of cellular response to stress, as well as EMT and hypoxia.
Targeting the HIF pathway may provide new strategies for
therapy in GRK6-depleted lung adenocarcinoma patients.
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