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Immunometabolism is a dynamic process involving the interplay of metabolism and immune response in health 

and diseases. Increasing evidence suggests that impaired immunometabolism contributes to infectious and in- 

flammatory diseases. In particular, the mitochondrial enzyme aconitate decarboxylase 1 (ACOD1, best known 

as immunoresponsive gene 1 [IRG1]) is upregulated under various inflammatory conditions and serves as a piv- 

otal regulator of immunometabolism involved in itaconate production, macrophage polarization, inflammasome 

activation, and oxidative stress. Consequently, the activation of the ACOD1 pathway is implicated in regulating 

the pathogenic process of sepsis and septic shock, which are part of a clinical syndrome of life-threatening organ 

failure caused by a dysregulated host response to pathogen infection. In this review, we discuss the latest research 

advances in ACOD1 expression and function, with particular attention to how the ACOD1-itaconate pathway af- 

fects infection and sterile inflammation diseases. These new insights may give us a deeper understanding of the 

role of immunometabolism in innate immunity. 
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The innate immune system is comprised of different com-

onents, including various immune cells (e.g., macrophages,

onocytes, dendritic cells [DCs], and neutrophils), which can

apidly recognize invading pathogens through pattern recogni-

ion receptors (PRRs). The innate immune response is not only

he first line of defense against invading pathogens, it also trig-

ers an inflammatory response through the production of var-

ous immune mediators, especially cytokines. [1–3] A cytokine

torm is a pathological hallmark of various critical illnesses

aused by sepsis and septic shock. [4–7] For example, the cur-

ent coronavirus disease 2019 (COVID-19), caused by the virus

esignated as severe acute respiratory syndrome coronavirus

 (SARS-CoV-2), is associated with an excessive activation of

nnate immune response and a cytokine storm. [8 , 9] . Therefore,

nderstanding the mechanism and modulation of inflammatory

esponses during infection is important for the prevention and

reatment of critical diseases. 

Under inflammatory conditions, immune cell activation is

haracterized by significant metabolic changes, including al-
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ered cell-intrinsic metabolite levels, increased aerobic gly-

olysis, a remodeled tricarboxylic acid (TCA) cycle, and im-

aired mitochondria respiration. [10–15] These metabolic repro-

ramming processes are mediated by the upregulation of spe-

ific enzymes, which usually have low expression or activity

nder normal conditions. [10 , 16] The production of metabolites in

he process of metabolic reprogramming can affect the function

f immune cells through different mechanisms, such as signal

ransduction, protein activity modification, and gene expression

egulation. [17–19] Excessive cytokine production further aggra-

ates the reprogramming of the metabolic pathways of immune

ells. The study of immunometabolism, namely the interaction

etween metabolism and immune response, has recently been

reatly expanded, leading to new therapeutic targets for trans-

ational medicine. 

Aconitate decarboxylase 1 (ACOD1, also known as im-

unoresponsive gene 1 [IRG1]) is a key regulator of im-

unometabolism during infection and inflammation. [20–22] It

as first discovered in 1992 as a lipopolysaccharide (LPS)-

nducible gene in murine macrophages. [23] Later, metabolomics

rofiling analyses revealed that ACOD1 is responsible for ita-
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Figure 1. Metabolism of itaconate. Multiple stimuli, such as live pathogens, PAMPs, and DAMPs, trigger the activation of innate immune cells and induce the 

expression of ACOD1 in mitochondria. Activated immune cells (such as monocytes, macrophages, and DCs) undergo metabolic reprogramming and alter the TCA 

cycle to produce high levels of itaconic acid through ACOD1. 

ACOD1: Aconitate decarboxylase 1; DAMPs: Damage-associated molecular patterns; DCs: Dendritic cells; PAMPs: Pathogen-associated molecular patterns; SDH: 

Succinate dehydrogenase; TCA: Tricarboxylic acid. 
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onate production in macrophages during an inflammatory re-

ponse [24] [ Figure 1 ]. Accumulated evidence in different disease

odels shows that ACOD1-dependent itaconate production can

ither promote or inhibit inflammation. In this review, we not

nly explain the expression and function of ACOD1 in innate

mmunity but also discuss the potential of manipulating ACOD1

s a treatment for infectious and inflammatory diseases. 

he Structure and Localization of ACOD1 

Human ACOD1 contains 481 amino acids and is highly con-

erved across species, including in chimpanzees, rats, mice, cat-

le, dogs, chickens, zebrafish, Xenopus species (frogs), and mus-

els. [25–28] Crystal structure analysis showed that human ACOD1

s a homodimer, and eight active site residues (Asp93, Thr97,

is103, His159, Lys207, Lys272, His277, and Tyr318) are re-

uired for its catalytic activity. [26] In Bacillus subtilis, cis -aconitic

cid decarboxylase activity requires His102 (a residue of His103

n humans) instead of His277 and Tyr318, indicating that cer-

ain protein structures of ACOD1 are not conserved. [29] Cell-

taining studies have shown the co-localization of ectopically

verexpressed ACOD1 and MitoTracker, revealing that ACOD1

s a mitochondrial protein. [21 , 30] However, the mitochondrial lo-

alization signal or mitochondrial targeting sequence of ACOD1

emains unknown. 

he Expression and Upregulation of ACOD1 

The expression of ACOD1 is cell- and tissue-specific. Under

ormal conditions, the expression of ACOD1 is very low. Un-

er stress conditions, especially inflammatory stimulation, the
79 
xpression of ACOD1 is upregulated by macrophages, mono-

ytes, and DCs in the innate immunity system. Pathogen-

ssociated molecular patterns (PAMPs), such as LPS, lipote-

choic acid, poly I:C, and CpG-DNA, are structural compo-

ents or products of microorganisms, which can strongly up-

egulate ACOD1 expression by combining different PRRs in

acrophages. In addition, live pathogens (e.g., bacteria, viruses,

ungi, protozoa, spirochetes, and Chlamydia ), cytokines (e.g.,

nterferon beta 1 [IFNB1], interferon-gamma [IFNG], tumor

ecrosis factor [TNF], and interleukin-1 𝛽 [IL1B]), and small

olecule drugs (e.g., cycloheximide, carbon monoxide releas-

ng molecule-2, cobalt protoporphyrin IX, or chemical inducer

f heme oxygenase-1 [HMOX1]) can stimulate the expression of

COD1 in immune cells in a context-dependent manner. [22 , 31 , 32] 

hese findings make inducible ACOD1 a biomarker of an acti-

ated innate immune response. 

In addition to immune cells, the expression of ACOD1 is also

pregulated in the tissue under infection, such as nervous tis-

ue infected by West Nile virus (WNV) or Zika virus (ZIKV), [33] 

ung tissues infected by influenza A virus (IAV) [34] or respiratory

yncytial virus (RSV) or Chlamydia pneumoniae , [35 , 36] splenic tis-

ues infected by Leishmania donovani , [37] and pouch membrane

issues exposed to monosodium urate (MSU). [38] Overall, these

ndings highlight that the upregulation of ACOD1 may be a uni-

ersal genetic event in infection and inflammation. 

Although the precise mechanism of ACOD1 upregulation is

oorly understood, the activation of several immune-related

ranscription factors contributes to ACOD1 expression. [39 , 40] 

he upregulated ACOD1 also acts as a feedback mechanism

o regulate the activation of transcription factors. For exam-

le, lipid A induces Acod1 mRNA upregulation by activating
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wo transcription factors, namely nuclear factor kappa B sub-

nit 1 (NFKB1) and interferon regulatory factor 3 (IRF3), [41] 

hile the increased expression of ACOD1 inhibits NFKB1 and

RF3, leading to LPS tolerance. [42] This negative feedback mech-

nism between ACOD1 and NFKB1 can be mediated by the

eubiquitinase TNF alpha-induced protein 3 (TNFAIP3, also

nown as A20), which inhibits NFKB1 activation and subse-

uent ACOD1 expression in myeloid cells in response to LPS,

NF, or carbon monoxide (CO). [31 , 42–44] Increased ACOD1 ex-

ression limits NFKB1 activation by sustaining the expression

f TNFAIP3. In addition, ACOD1-mediated itaconate produc-

ion leads to the expression of activating transcription factor 3

ATF3), thereby inhibiting the translation of the NFKB inhibitor

eta (NFKBIZ) and subsequent interleukin-6 (IL6) expression. [45] 

nlike NFKB, the transcriptional factor signal transducer and ac-

ivator of transcription 1 (STAT1), STAT3, or CCAAT enhancer-

inding protein beta (CEBPB) contributes to ACOD1 upregu-

ation in activated macrophages caused by infection with My-

obacterium tuberculosis ( Mtb ) or Salmonella , [30 , 46] but it is un-

lear whether ACOD1 affects the activity of these transcriptional

actors. In conclusion, the mechanism of inducible ACOD1 up-

egulation involves multiple transcription factors, which pro-

uce complex regulatory feedback for regulating the immune

esponse. 

he Immunological Activities of ACOD1 

ACOD1 is identified as the enzyme that catalyzes the produc-

ion of itaconate through the decarboxylation of cis -aconitate [24] 

Figure 1] . ACOD1-dependent itaconate production is increased

n activated macrophages in vitro and in vivo , which contributes

o a broad range of immunological activities. [24 , 47 , 48] In addition

o limiting inflammation, the activation of the ACOD1 pathway

lso promotes an inflammation response. Moreover, the recip-

ocal regulation between ACOD1 and other inflammatory medi-

tors has been found to shape the immune response. Along with

he feedback effect between ACOD1 and pro-inflammatory tran-

cription factors (e.g., NFKB1) discussed earlier, we will now

eview the dual role of ACOD1 in immune regulation. 

etabolic rewiring 

Succinate dehydrogenase (SDH) is the enzyme involved in

he citric acid cycle and electron transport chain. [49] Itaconate

cts as an endogenous inhibitor of SDH [ Figure 2 ]. Due to the

tructural similarity of itaconate to succinate, itaconate com-

etitively limits the activity of SDH during inflammation. [50] 

or example, ACOD1-dependent itaconate production can im-

air SDH activity, reduce succinate oxidation, and promote suc-

inate accumulation in LPS-activated macrophages, finally re-

ulting in a decrease in the oxygen consumption rate and in-

ibiting the production of mitochondrial reactive oxygen species

mROS). [48 , 51 , 52] In contrast, the loss of itaconate production in

cod1 -deficient macrophages decreases the level of succinate,

eading to increased expression of hypoxia-inducible factor 1

ubunit alpha (HIF1A), IL1B, and other inflammatory cytokines

n response to LPS. [51] ACOD1 and itaconate also restrict ZIKV

eplication in mouse neurons by inhibiting SDH activity, sup-

orting that itaconate exerts an anti-inflammatory effect in a

uccinate-dependent manner. [33] 
80 
Of note, ACOD1-dependent itaconate production drives the

mmune paralysis of human monocytes, and 𝛽-glucan (a fungal

ell wall component) reverses this effect by reducing ACOD1

xpression and restoring SDH expression. [53] Accumulated suc-

inate caused by the ACOD1-itaconate pathway favors the

etabolic adaptation of bacteria Pseudomonas aeruginosa in

issue-resident macrophages and epithelial cells from infected

ice. [54] These findings indicate that an appropriate level of ita-

onate is important for initiating an immune response. 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an

nzyme involved in breaking down glucose to obtain energy

hrough glycolysis. [55] The 4-octyl itaconate (4-OI)-induced

lkylation of cysteine residue (Cys) 22 on the protein GAPDH

nhibits its enzymatic activity, thereby downregulating aero-

ic glycolysis and subsequent production of IL1B, NOS2, and

NF in activated macrophages. [56] The anti-inflammatory effect

f itaconate can be counteracted by over-expressing wild-type

APDH, rather than cys-22 mutant GAPDH. [56] Moreover, the

ctivity of GAPDH-mediated glycolysis is enhanced in Acod1 -

eficient macrophages following LPS exposure. [56] These find-

ngs indicate that itaconate inhibits glycolysis through the alky-

ation of GAPDH. 

Itaconate also regulates other metabolic rewiring pathways,

ncluding prenylation, mitochondria substrate-level phosphory-

ation, and the glyoxylate shunt. Prenylation, a modification

f proteins by isoprenoid lipids, aids viruses in anchoring to

ell membranes. [57] ACOD1 induced by the vesicular stomati-

is virus (VSV) and itaconate upregulation enhance the synthe-

is of geranylgeranyl diphosphate and the prenylation processes

hat follow, facilitating the entry and replication of viruses in

acrophages. [58] The inhibitory effect on viral infection caused

y Acod1 deficiency can be abrogated by the addition of 4-OI

r dimethyl itaconate (DMI) in murine bone marrow-derived

acrophages (BMDMs). [58] Mitochondrial substrate-level phos-

horylation is a process by which adenosine triphosphate (ATP)

s generated in the absence of oxidative phosphorylation. [59] 

he inhibition of Acod1 by siRNA reverses LPS-induced mi-

ochondrial substrate-level phosphorylation impairment, show-

ng an elevated oxygen consumption rate. Macrophages treated

ith itaconate or overexpressed with Acod1 lose the capacity

f mitochondrial substrate-level phosphorylation to mount an

mmune defense, although this observation requires more evi-

ence from in vivo research. [60] Despite affecting the metabolic

athway in host immune cells, itaconate also inhibits the

ctivity of isocitrate lyase, a critical enzyme of glyoxylate

hunt in Mtb , thereby exhibiting an antimicrobial effect by

imiting bacterial growth. [24] Overall, the contribution of ita-

onate to inflammation-related metabolic rewiring is context-

ependent. 

xidative stress 

Reactive oxygen species (ROS) plays a dual role in inflamma-

ion regulation and pathogen clearance. [61 , 62] LPS or IFNB1 trig-

ers ACOD1-dependent ROS production and activates STAT1

nd STAT3, thereby promoting the expression of transporter 1

TP binding cassette subfamily B (TAP1) and proteasome 20S

ubunit beta 9 (PSMB9), which are transporters involved in anti-

en processing. [63] Similarly, increased ACOD1 in LPS-treated or

PS-tolerized macrophages promotes ROS-mediated TNFAIP3
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Figure 2. Role of ACOD1-dependent itaconate production in signal transduction. ACOD1-mediated itaconate production impairs SDH activity, decreases succinate 

oxidation, and promotes succinate accumulation, thereby suppressing the inflammatory processes mediated by succinate, such as ROS production, HIF1A activity, 

and IL1B expression. Itaconate alkylates the Cyss on KEPA1 or GAPDH, leading to increased NFE2L2 activation or inhibited glycolysis, thereby limiting the expression 

of inflammatory genes (e.g., IL1B, IL6, TNF, and NOS2) or ROS production. In addition, itaconate-mediated ATF3 expression inhibits the NFKBIZ pathway. 

ACOD1: Aconitate decarboxylase 1; ATF3: Activating transcription factor 3; Cys: Cysteine residue; GAPDH: Glycolytic enzyme glyceraldehyde 3-phosphate dehy- 

drogenase; HIF1A: Hypoxia-inducible factor 1 subunit alpha; IL6: Interleukin 6; IL1B: Interleukin-1 𝛽; KEAP1: Kelch-like ECH-associated protein 1; NFE2L2: Nuclear 

factor erythroid 2-like 2; NFKBIZ: NFKB inhibitor zeta; NOS2: Nitric oxide synthase 2; SDH: Succinate dehydrogenase; ROS: Reactive oxygen species; TNF: Tumor 

necrosis factor. 
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ranscription. [42 , 43] As a negative regulator of NFKB1 signal-

ng, the upregulation of TNFAIP3 induced by ACOD1 inhibits

he activation of NFKB1 and IRF3, thereby reducing the release

f IL1B, IL6, TNF, and IFNB1. [42 , 43] In Acod1 -overexpressing

acrophages, ROS scavengers abrogate the upregulation of

AP1, PSMB9, and TNFAIP3, indicating that ROS plays an in-

ispensable role in ACOD1-driven inflammatory gene expres-

ion 

[42 , 63] [ Figure 3 ]. Consistent with the view that ACOD1-

ediated ROS production promotes inflammation, ACOD1 fa-

ors ROS-dependent lung inflammation and lung tissue dam-

ge during RSV infection. [35] Nonetheless, whether ACOD1-

ediated ROS production depends on itaconate production re-

ains to be investigated. 

Immune cells also use the production of ROS to fight

athogens. When exposed to LPS, elevated ACOD1 enhances the

roduction of ROS in the mitochondria by promoting the utiliza-

ion of fatty acids during oxidative phosphorylation. [30] The bac-
81 
ericidal activity of ROS is reduced after the depletion of Acod1

n a zebrafish infection model. [30] Thus, ACOD1-mediated ROS

roduction plays dual roles in modulating the immune response.

Nuclear factor erythroid 2-like 2 (NFE2L2, also known as

RF2) is the master transcription factor that activates antiox-

dant genes to prevent oxidative damage during inflamma-

ion. [64] Under normal circumstances, NFE2L2 is mainly de-

raded by a proteasome pathway mediated by kelch-like ECH-

ssociated protein 1 (KEAP1). In contrast, cell-permeable ita-

onate derivatives 4-OI and DMI can inhibit the activity of

EAP1 by alkylating the cysteine residues (cys-151, cys-257,

ys-288, cys-273, and cys-297) on KEAP1, thereby increas-

ng the stability of the NFE2L2 protein. This process does not

ely on itaconate-mediated SDH inhibition. [65] Consequently,

COD1-dependent itaconate production and subsequent acti-

ation of NFE2L2 limit the production of ROS and inflamma-

ory cytokines in LPS models [45 , 64 , 65] and in sterile inflammation
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Figure 3. Role of ACOD1-dependent ROS production in signal transduction. ACOD1-dependent ROS production activates STAT1 and STAT3, thereby increasing the 

expression of TAP1 and PSMB9, which are transporter proteins for promoting the presentation of MHC-I on the cell surface. ACOD1-dependent ROS production also 

promotes the expression of TNFAIP3 by increasing the methylation of H3K4. TNFAIP3 acts as a negative regulator of NFKB1 signaling to inhibit NFKB1 and IRF3 

activation, subsequently reducing the release of IL1B, IL6, TNF, and IFNB1. Increased TNFAIP3 inhibits ACOD1 transcription. 

ACOD1: Aconitate decarboxylase 1; ATP: Adenosine triphosphate; H3K4me3: H3K4 methylation; IFNB1: Interferon beta 1; IL6: Interleukin 6; IL1B: Interleukin-1 𝛽; 

IRF3: Interferon regulatory factor 3; MHC-I: Class I major histocompatibility complex; NFKB1: Nuclear factor-kappa B subunit 1; PSMB9: Proteasome 20S subunit 

beta 9; ROS: Reactive oxygen species; STAT1: Signal transducer and activator of transcription 1; STAT3: Signal transducer and activator of transcription 3; TAP1: 

Transporter 1 ATP binding cassette subfamily B; TNF: Tumor necrosis factor; TNFAIP3: TNF alpha-induced protein 3. 
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odels, such as those for acute kidney injury, liver ischemia–

eperfusion injury, and abdominal aortic aneurysms. [66–68] How-

ver, it is possible that the activation of the NFE2L2 pathway is

ue to the stress response caused by ACOD1-mediated ROS pro-

uction. 

acrophage polarization 

Depending on the stimuli, macrophages are extremely plastic

ells that can have two distinct functional phenotypes via classi-

al M1 activation or alternative M2 activation. [69] The M1-like

henotype is characterized by an increased pro-inflammatory

tate, while M2-type macrophages have an anti-inflammatory

henotype. [69] The dysregulated state of macrophage M1–M2

olarization leads to inflammatory conditions or diseases by

hanging the production profile of pro-inflammatory or anti-

nflammatory cytokines. [70] Metabolic reprogramming, includ-

ng itaconate production, plays a significant role in the modula-

ion of macrophage polarization. One study showed that under

ormal and hypoxic conditions, the overexpression of Acod1 in

acrophages leads to the upregulation of the M1 marker nitric

xide synthase 2 (NOS2), [71] highlighting a molecular link be-

ween hypoxia and inflammation mediated by ACOD1. In con-

rast, the suppression of Acod1 in mouse macrophages reduces

taconate production, resulting in an increased expression of the

2 marker arginase 1 (ARG1). [72] These findings demonstrate

he potential role of the activation of the ACOD1–itaconate axis

n maintaining inflammation by M1 polarization. 
82 
nflammasome inhibition 

Inflammasomes are intracellular multiprotein complexes that

espond to various PAMPs and damage-associated molecular

atterns (DAMPs). [73 , 74] Activated inflammasomes trigger the

leavage of pro-caspase-1 (pro-CASP1) or pro-caspase-11 (pro-

ASP11) into active CASP1 or CASP11, thereby leading to mat-

ration and secretion of interleukin 1 cytokines (e.g., IL1B

nd interleukin-18 [IL18]), cleaved gasdermin D (GSDMD)-

ediated pyroptosis, or the release of coagulation factor and

AMPs (e.g., high mobility group box 1 [HMGB1] and sequesto-

ome 1 [SQSTM1]). [75–85] The NOD-like receptor (NLR) fam-

ly pyrin domain containing 3 (NLRP3) inflammasome is one

f the best-characterized inflammasomes, consisting of its sen-

or NLRP3, the adaptor apoptosis-associated speck-like protein

ontaining a caspase recruitment domain (ASC), and the effec-

or zymogen (pro-CASP1). [86] The activation of NLRP3 inflam-

asomes requires a priming signal (e.g., toll-like receptor lig-

nds) and the subsequent second signal (e.g., ATP, nigericin,

nd MSU). [87] DMI inhibits the expression of LPS-induced genes

e.g., Il1b, Il18, Casp1 , and Asc ) that are associated with inflam-

asome activation and function in BMDMs, [51] indicating that

MI inhibits inflammasome activation at the priming phase.

onsistently, 4-OI shares similar properties with DMI that blocks

ro-IL1B induction and IL1B secretion, resulting in an immuno-

uppressive phenotype of macrophages. In contrast, natural ita-

onate suppresses IL1B release, rather than pro-IL1B induction,

uggesting that natural itaconate-mediated inhibition of inflam-
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Figure 4. Role of ACOD1 in inflammasomes. In response to signal 1 and signal 

2, the sensor NLRP3, the partner NEK7, the adaptor ASC, and the effector CASP1 

assemble activated NLLRP3 inflammasomes, which trigger the maturation and 

secretion of cytokines (e.g., IL1B and IL18) or cleaved GSDMD-mediated pyrop- 

tosis. ACOD1 induced by signal 1 promotes the production of itaconate, which 

modifies Cys548 on NLRP3 and Cys77 on GSDMD. This process is called ita- 

conation. Itaconated NLRP3 fails to interact with NEK7 in response to signal 2, 

whereas itaconated GSDMD loses the ability to trigger pyroptosis. 

ACOD1: Aconitate decarboxylase 1; ASC: Apoptosis-associated speck-like pro- 

tein containing a caspase recruitment domain; CASP1: Caspase 1; Cys: Cysteine 

residue; GSDMD: Gasdermin D; IL18: Interleukin 18; IL1B: Interleukin-1 𝛽; NEK7: 

NIMA-related kinase 7; NLRP3: NLR family pyrin domain containing 3. 
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asome function is due to a defective second signal. [52] These

ifferent inhibitory effects between modified and unmodified

taconate may attribute to the stronger electrophilic properties

f itaconate derivatives. [52] 

Mechanistically, itaconate inhibits the activation of NLRP3

nflammasomes by modifying the Cys-of NLRP3 or GSDMD, and

his process of protein posttranslational modification is called

taconation. Cys 548 on NLRP3 is itaconated by 4-OI, thereby

locking the interaction between NLRP3 and NIMA-related ki-

ase 7 (NEK7), a key step in the activation process. [88] In the

ate stage of macrophage activation, itaconate modifies the

ys 77 on GSDMD, which reduces the sustained CASP1 acti-

ation and GSDMD cleavage, and decreases IL1B and pyropto-

is. [89] Conversely, macrophages from Acod1 -deficient mice ex-

ibit depleted itaconate and increased NLRP3 inflammasome ac-

ivation, while increased ACOD1 expression in HEK293T cells
83 
as the opposite effect. [88 , 89] Thus, both endogenous and ex-

genous itaconate regulates the activation of NLRP3 inflam-

asomes [ Figure 4 ]. Overall, these findings establish an anti-

nflammatory role for ACOD1 in blocking inflammasome acti-

ation, mainly through itaconation. 

COD1 in Infectious and Inflammatory Diseases 

ACOD1 plays a significant role at the intersection of the

ost’s inflammatory response to infectious and sterile threats.

nfectious diseases are disorders caused by microorganisms (es-

ecially bacteria and viruses), while sterile inflammatory oc-

urs in the absence of microorganisms. Typical sterile inflam-

atory diseases include peripheral arterial diseases, ischemia–

eperfusion injury diseases, and neuroinflammatory diseases.

hese inflammatory reactions contribute to the progress of

athophysiology. In this section, we discuss the complex role of

COD1 in immune-related pathological conditions and diseases

 Figure 5 ]. 

COD1 in infectious diseases 

Sepsis is a severe clinical syndrome characterized by a dys-

egulated host response to infection (e.g., from bacteria and

iruses), which can lead to hypotension, tissue damage, im-

unocoagulation, multiple organ failure, and even death. [90–93] 

reclinical studies using animal models of acute endotoxemia

onfirmed the protective effect of ACOD1 in limiting lethal in-

ammation in sepsis. [24] The administration of 4-OI prolongs

urvival, reduces inflammatory cytokine release (e.g., IL1B,

NF, and IL6), and reduces lactate production in mice exposed

o lethal endotoxemia. [56 , 65] In mouse models, the treatment of

ndotoxemia with CO and HMOX1 inducers reduces the produc-

ion of TNF in liver tissue and serum by inducing the expression

f ACOD1. [31] Clinically, although there is acute inflammation

n the early stage of sepsis, the immunosuppression in the late

tage is the main cause of patient death. Thus, ACOD1-mediated

mmune paralysis may lead to life-threatening secondary infec-

ions during sepsis. [42 , 53] In contrast, 𝛽-glucan treatment inhibits

PS-induced ACOD1 expression and restores the immune activ-

ty of macrophages [42 , 53] which provides a potential strategy to

estore immune responsiveness in patients with sepsis. 

In addition to the endotoxemia model, the role of ACOD1 in

epsis has also been studied in bacterial or viral infection mod-

ls in vitro and in vivo . ACOD1 mainly exhibits bactericidal ef-

ects during acute bacterial infections. For example, Mtb infec-

ion, during the etiology of tuberculosis, promotes the expres-

ion of ACOD1 and subsequent itaconate production in mouse

acrophages and DCs. [46] The loss of Acod1 in macrophages in-

reases the intracellular replication of Mtb . [24 , 94 , 95] Consistently,

cod1 -deficient mice are more susceptible to Mtb infection, lead-

ng to increased mycobacterial burden and lethal inflammation

n the lungs. [94 , 95] This phenotype is reversed by itaconate, [94] 

ndicating that ACOD1-mediated itaconate production can pre-

ent Mtb infection. 

Another frequent cause of severe pneumonia in humans is

egionella pneumophila infection. IFNB1 or IFNG limits the in-

racellular growth of L. pneumophila by inducing the expression

f ACOD1 and itaconate production in vitro and in vivo . [37 , 96] 

nfection from Salmonella enterica serovar Typhimurium ( S. Ty-
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Figure 5. ACOD1 in immune-related diseases. A: Itaconate protects mice against experimental sepsis by reducing inflammatory cytokine production and release 

(e.g., IL1B, TNF, and IL6) in the early stage. The upregulation of ACOD1 also leads to immune paralysis at the late stage. B: ACOD1-induced itaconate and ROS are 

delivered to pathogen-containing vacuoles, thereby contributing to bacterial killing during infection. C: ACOD1-induced itaconate production triggers bacteria or 

virus-infected cells to undergo metabolic reprogramming, thereby favoring the survival of pathogens. D: ACOD1-related immune response in disease. ACOD1 plays a 

context-dependent role in inflammatory diseases. Generally, excessive inflammation leads to tissue injury and multiple diseases, whereas appropriate inflammation 

is beneficial for the recovery from diseases. 

ACOD1: Aconitate decarboxylase 1; IL6: Interleukin 6; IL1B: Interleukin-1 𝛽; ROS: Reactive oxygen species; TNF: Tumor necrosis factor. 
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himurium ) or Mycobacterium avium (M. avium) is also restricted

y the induction of ACOD1 expression or itaconate produc-

ion. [24 , 30 , 40 , 43 , 97] In contrast, the deletion of Acod1 in mice

r zebrafish larvae leads to enhanced susceptibility to S. Ty-

himurium or M. avium infection. Mechanistically, enhanced

ethering between mitochondria and bacteria-containing vac-

oles facilitates the subsequent delivery of itaconate into the

acuoles, leading to reduced replication of S. Typhimurium or M.

vium . [40 , 97] Alernatively, ACOD1-dependent mROS production

elivers itaconate to bacteria-containing phagosomes, thereby

ontributing to bacterial killing during S. Typhimurium infec-

ion. [30 , 98] Furthermore, ACOD1 is upregulated in Staphylococ-

us aureus - or Escherichia coli -infected human blood cells, [99] Lis-

eria monocytogenes -infected primary murine macrophages and

plenic tissue, [21] Burkholderia pseudomallei -infected J774A.1

ells (a murine macrophage cell line), [100] and Brucella melitensis -

nfected BMDMs, [101] indicating a wide role for ACOD1 in the

efense against bacterial infections. 

Unlike in bacterial infections, ACOD1 plays a dual role in vi-

al infections. On the one hand, the antiviral effect of ACOD1

as been observed during WNV, ZIKV, and hepatitis B virus

HBV) infections. [33 , 102 , 103] Acod1 -deficient mice show higher

ortality, increased brain viral load, and worsening neurolog-

cal diseases after ZIKV infection, which is rescued by 4-OI

reatment. [33] On the other hand, ACOD1 favors viral infection
84 
nder certain conditions. For example, RSV infection induces

COD1 expression and subsequent ROS production in A549

ells (a human alveolar epithelial cell line) and lung tissues of

SV-infected mice, leading to increased inflammatory cell in-

ltration, oxidative damage, and lung injury in vivo . [35] Simi-

arly, VSV-induced ACOD1 expression and itaconate production

romote geranylgeranyl diphosphate synthesis and prenylation,

hereby facilitating virus entry and intracellular replication. [58] 

onsequently, the suppression of ACOD1 impairs viral over-

rowth and protects mice from RSV and VSV infection-induced

ung injury. [35 , 58] Further understanding the different mecha-

isms of ACOD1 in viral infection may help clarify the selectiv-

ty of viral immunity. 

In addition to the previously mentioned bacterial and vi-

al infections, the immune function of ACOD1 is confirmed in

ther pathogen infections, including Chlamydia and spirochete

nd protozoan infections. For example, Chlamydia pneumoniae -

nduced Acod1 mRNA expression in lung tissue is associated

ith reduced pulmonary inflammatory infiltration in an MYD88

nnate immune signal transduction adaptor (MYD88)-dependent

anner. [36] ACOD1 is related to the pro-inflammatory response

f Borrelia burgdorferi spirochete infection, the cause of Lyme

isease. [20] The upregulation of ACOD1 contributes to the sus-

eptibility of splenic macrophages to the parasite L. dono-

ani , [104] but limits neurotoxicity in brain macrophages (mi-
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roglia) that is mediated by the parasite Toxoplasma gondii . [105] 

oreover, microglia that fail to induce ACOD1 expression dur-

ng lymphocytic choriomeningitis virus (LCMV) infection de-

elop into a neuroprotective phenotype, supporting the neuro-

oxic effect of ACOD1. [ 105 ] Taken together, these findings con-

rm a context-dependent role of ACOD1 during pathogen infec-

ions. 

COD1 in sterile inflammatory diseases 

In addition to pathogen infections, inflammation can also be

riggered by tissue damage and stress, leading to various dis-

ases. The abnormal expression of ACOD1 is also related to the

evelopment of sterile inflammatory diseases. Below, we high-

ight some examples of how ACOD1 is implicated in those dis-

ases. 

eripheral artery disease 

Peripheral artery disease is a circulatory problem in which

cclusions in arteries to organs cause tissue ischemia. Severe pe-

ipheral artery disease often results in tissue necrosis and limb

mputation. [106] In peripheral artery disease, macrophages are

ecruited into the occluded vessels to induce a potent M1 po-

arization, leading to decreased angiogenesis and arteriogene-

is. [107 , 108] The ACOD1–itaconate pathway mediates M1 polar-

zation, leading to impaired perfusion recovery in experimen-

al peripheral artery disease. [72] The suppression of ACOD1 by

iR93 mimic or Acod1 knockout in macrophages induces an

2-like phenotype, which is beneficial for the recovery of is-

hemic muscle. [72] Studies of these topics are advancing our un-

erstanding of the mechanism of ACOD1-mediated macrophage

olarization in peripheral artery disease. 

schemia–reperfusion injury disease 

In addition to ischemic injury, re-established blood supply

ay increase local inflammation and ROS production, lead-

ng to secondary injury in ischemic tissue, called ischemia–

eperfusion injury. [109] Despite the upregulation of Acod1 be-

ng involved in ligands (soluble CD74 and recombinant migra-

ion inhibitory factor [MIF]) that induced necroptosis of car-

iac myofibroblasts, [110] itaconate exerts an anti-inflammatory

ffect and reduces the myocardial infarction size in a mice model

f ischemia–reperfusion injury. [51] A similar protective effect

or ACOD1 and itaconate has been validated in experimental

odels of ischemia–reperfusion injury of the liver, kidneys, and

rain. [32 , 66 , 67] It is unclear whether and to what extent different

mmune cells confer increased itaconate production resulting

n decreased ischemia–reperfusion injury. Additional investiga-

ions are required to determine the specific effect of ACOD1 in

schemia–reperfusion injury, especially investigations that use

enetic models of ACOD1 inhibition in different cells or tissues.

euroinflammatory disorders 

Activated microglia (macrophages of the brain and spinal

ord) mediate dysregulated neuroinflammatory processes,

hich contributes to the pathogenesis of neurological dis-

ases. [111] In addition to promoting LCMV infection in microglia,

he pathological effects of ACOD1 have also been observed in

ice exposed to a high-fat diet, leading to chronic neuroin-

ammation and ultimately cognitive impairment. [71] However,
85 
he administration of DMI in mice with experimental autoim-

une encephalomyelitis or ischemic stroke suppresses neuroin-

ammation and ameliorates disease severity, [32 , 112] indicating

hat ACOD1 and itaconate may have non-overlapping functions.

n addition, 𝛼-synuclein increases the expression of ACOD1 in

icroglia, indicating an inflammatory state in Parkinson’s dis-

ase. [113] These findings highlight the functional role of ACOD1

n highly specialized macrophages in tissue. 

ulmonary fibrotic diseases 

A dysregulated inflammatory response in lung tissue is a

rucial factor in pulmonary fibrotic diseases, including cys-

ic fibrosis and idiopathic pulmonary fibrosis, [114 , 115] but the

ontribution of ACOD1 in these diseases are different. In the

ystic fibrosis airway, ACOD1-dependent itaconate production

elps bacteria to undergo metabolic reprogramming, thereby

romoting their survival, lung colonization, and persistent in-

ection in the airways. [54 , 116] Idiopathic pulmonary fibrosis is

eatured by a deposition of excessive extracellular matrix in

he lung parenchyma, and this process is regulated by air-

ay macrophages. [117 , 118] In a bleomycin-induced pulmonary

brosis model, the loss of Acod1 results in increased expres-

ion of profibrotic genes (e.g., Cebpb , transforming growth fac-

or 2 [ Tgf2 ], and Smad family member 7 [ Smad7 ]) in airway

acrophages and persistent fibrosis in mice. The application

f itaconate decreases the fibrotic activity of lung fibroblasts

nd ameliorates the severity of pulmonary fibrosis in vivo . [119] 

hus, although itaconate shows therapeutic potential in idio-

athic pulmonary fibrosis, researchers should carefully consider

ts application to avoid unexpected bacterial infection favored

y itaconate. 

heumatoid arthritis 

Rheumatoid arthritis is an autoimmune disease that can

ause joint pain and damage. ERG240 is an inhibitor of

ranched-chain amino acid transaminase 1 (BCAT1), which in-

ibits LPS-induced ACOD1 expression and subsequent itaconic

roduction in macrophages. [120] The administration of ERG240

educes the severity of rheumatoid arthritis and crescentic

lomerulonephritis in murine models. [120] Through microarray

nalysis, investigators have identified highly upregulated genes,

ncluding Acod1 , in synovial macrophages in mice with colla-

en antibody-induced arthritis or in air pouch membranes stim-

lated by MSU crystals. [38 , 121] Collectively, these findings indi-

ate the association of ACOD1 with collagen- or crystal-induced

nflammation or inflammatory arthropathies (such as rheuma-

oid arthritis or gout), but additional studies are needed to pre-

isely determine the function of ACOD1 in these conditions. 

ther diseases 

In an animal model of psoriasis induced by imiquimod,

FKBIZ-driven skin inflammation was inhibited by DMI and

ncreased by Acod1 depletion. [45 , 89] In a mouse model of ab-

ominal aortic aneurysm induced by angiotensinogen, 4-OI

uppressed the formation of abdominal aortic aneurysms in

polipoprotein E ( Apoe )-deficient mice by inhibiting NFE2L2-

ediated vascular inflammation, while Acod1 deficiency ex-

rted the opposite effect. [68] In a dextran sodium sulfate (DSS)-

nduced ulcerative colitis mouse model, DMI inhibited the in-

ammatory response by decreasing the secretion of cytokines
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IL1B and C-C motif chemokine ligand 2 [CCL2]) from in-

estinal epithelial cells, thereby reducing macrophage infiltra-

ion. [122] Researchers have found that 4-OI not only protects

gainst urate-induced peritonitis in vivo by inhibiting NLRP3-

ependent inflammasome activation 

[88] but also suppresses the

nflammation response of peripheral blood mononuclear cells

PBMCs) from cryopyrin-associated periodic syndrome patients

ith NLRP3 mutations. [88 , 123] These studies support a beneficial

ffect of ACOD1-mediated itaconate in alleviating excessive in-

ammation in immunological disorders. 

onclusions and Perspective 

Emerging evidence on inducing ACOD1 expression in im-

unometabolism supports it as a therapeutic approach, espe-

ially for infection and inflammatory diseases. [22] To date, the

mmunoregulatory role of ACOD1 has been revealed mostly in

rocesses of innate immunity, including metabolism reprogram-

ing, oxidative stress, macrophage polarization, inflammasome

nhibition, and inflammatory gene regulation. The function of

COD1 in adaptive immune cells (e.g., T cells and B cells)

r adaptive immunity has not been well-defined, although the

xpression of ACOD1 in macrophages may affect antigen pre-

entation and the function of T cells in infection or antitu-

or immunity. [124] Another characteristic of ACOD1’s immune

unction is closely related to its production of itaconate. The

nti-inflammatory activity of itaconate makes it a promising

herapeutic strategy to limit the pathological consequences of

mmune-mediated diseases in multiple preclinical models. How-

ver, the induction of ACOD1 or the use of itaconate also has

etrimental effects, such as promoting virus replication, aggra-

ating tissue damage, inducing immune paralysis, or causing

ell death (e.g., ferroptosis). [35 , 53 , 125 , 126] Nevertheless, identify-

ng itaconate-independent functions of ACOD1 may facilitate

he development of more precise treatments to overcome the

ide effects of itaconate. 

In addition to ACOD1, oxoglutarate dehydrogenase (OGDH)

lso contributes to the production of itaconate. [127] Thus, it is

mportant to investigate the signaling, mechanism, and regu-

ation of OGDH-dependent itaconate production in the context

f inflammation and immune response. Since ACOD1 is mainly

nduced and expressed in myeloid cells, OGDH-dependent ita-

onate production may play a wide range of roles in physiolog-

cal processes. Given that itaconate derivatives and endogenous

taconate have opposite immunological effects due to their dis-

inct electrophilic properties, an appropriate form of itaconate

o select should be considered in future experiments. [52] More

mportantly, whether itaconate is useful in clinical situations

eeds further verification. 
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