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Cellular immunotherapy represented by CD19-directed chimeric antigen receptor T (CAR-T)
cells has achieved great success in recent years. An increasing number of CAR-T therapies
are being developed for cancer treatment, but the frequent and varied adverse events, such
as “on-target, off-tumor toxicity”, limit CAR-T application. Here, we identify the target antigen
expression patterns of CAR therapies in 18 tissues and organs (peripheral blood
mononuclear cells, bone marrow, lymph nodes, spleen, heart, ascending aortic tissue,
trachea, lung, skin, kidney, bladder, esophagus, stomach, small intestine, rectum, liver,
common bile duct, and pancreas) from healthy human samples. The atlas determines target
antigens expressed on some normal cell types, which facilitates elucidating the cause of
“on-target, off-tumor toxicity” in special tissues and organs by targeting some antigens, but
not others. Moreover, we describe the target antigen expression patterns of B-lineage-
derived malignant cells, acute myeloid leukemia (AML), and solid tumors. Overall, the
present study indicates the pathogenesis of “on-target, off-tumor toxicity” during CAR
therapies and provides guidance on taking preventive measures during CAR treatment.

Keywords: single-cell RNA sequencing, chimeric antigen receptor T cells (CAR T cells), target antigen, on-target,
off-tumor toxicity, malignant cells
INTRODUCTION

The clinical applications of CD19-directed chimeric antigen receptor T (CAR-T) cell therapies have
brought about a comprehensive innovation in the field of tumor treatment (1). Encouraged by this,
researchers are trying to extend the applications of CAR-T to other hematological tumors while
making a breakthrough in CAR-T treatment of solid tumors. Compared with conventional
chemotherapy and radiotherapy, CAR-T therapy has the advantage of higher targeting specificity.

However, target antigens with universal practical value are usually also expressed in normal cells,
such as CD19 in the normal B-cell lineage. Therefore, CAR-T has a significant defect, namely “on-
target, off-tumor toxicity”. The following evidence shows that the “on-target, off-tumor toxicity” of
CAR-T treatment is widespread, although a large part of others have not been identified or overlaps
org December 2021 | Volume 12 | Article 7992061
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with other symptoms. CD19-targeting CAR-T therapy not only
leads to B lymphocytopenia but also is related to neurotoxicity. A
unique study showed that the occurrence of neurotoxicity during
CD19-directed CAR-T treatment may be relevant to CD19-
expressing brain mural cells (2). CD38-directed CAR-T cells
have shown strong anti-multiple myeloma (MM) effect, and its
“on-target off-tumor effect” against normal hematopoietic cells
has been identified (3). CD123 (IL3RA)-directed CAR-T cells
attack AML cells but inhibit normal hematopoiesis (4).
Furthermore, the “on-target, off-tumor toxicity” effect of CAR-
T therapy is significant in treating solid tumor types. For
example, HER2-directed CAR-T cells may cause respiratory
distress and cardiac arrest owing to the location of HER2-
expressing normal cell types (5). In addition, carbonic
anhydrase IX (CAIX)-directed CAR-T and fibroblast activation
protein-a (FAP)-directed CAR-T treatment exhibit observable
“on-target, off-tumor toxicity” (6, 7). Indeed, some “on-target,
off-tumor effects” were not foreseen in preclinical animal
experiments because of variability in cross-species reactivity to
nonhuman target antigens, which usually provide a false sense of
safety (8).

From the aspect of single-cell RNA-seq (scRNA-seq) in this
study, we analyzed 121 target antigen expression patterns of
CAR-T in 18 tissues and organs derived from normal human
samples. Next, we analyzed the CAR safety of targeting B lineage-
related target antigens (CD19, MS4A1, CD22, TNFRSF17, CD38,
SLAMF7, and TNFRSF8), AML-related target antigens (CD33,
CD123, and CLEC12A), and solid tumor-related target antigens
(GPC3, B4GALNT1, and ERBB2). Finally, we compared the
expression levels of antigens in malignant cells and
nonmalignant cells. Broadly, our study highlights the diversity
of potential “on-target, off-tumor effects” of CAR-T treatment. It
is also indicated that increasingly enriched single cell omics
datasets are becoming powerful tools to guide medical practice.
RESULTS

A Single-Cell Atlas of the “On-Target, Off-
Tumor Toxicities” of CAR-T in Tissues and
Organs From Healthy Human Samples
The expression of CAR-target antigens in normal organs and
tissues leads to the risk of “on-target, off-tumor” targeting (9).
Accordingly, we examined the expression pattern of CAR-target
antigens in normal cell types at the scRNA-seq level (Figure 1A
and Table 1), which has not yet been characterized. We first
examined the antigen expression pattern in hematopoietic and
immune systems (peripheral blood mononuclear cells [PBMCs],
bone marrow [BM], lymph node [LN], and spleen [SP]), and
found some antigens (such as ITGB7, CD38, CD7, KLRK1, CD5,
CD86, FCGR3A, and SLAMF7) are expressed in multiple immune
and hematopoietic lineages (Figures 1B, C and Supplementary
Figures 1A, 2C, D). B lineage-specific antigens CD19, MS4A1
(CD20), and CD22 are highly expressed in B progenitors (Prog B),
mature B cells, and plasmablasts, which were identified at the
mRNA and/or protein levels (Supplementary Figures 2A, B). As
Frontiers in Immunology | www.frontiersin.org 2
previously reported (10), we found that PROM1 (CD133) is
strongly expressed in hematopoietic stem/progenitor cells
(HSPCs), such as hematopoietic stem cells (HSCs), lymphoid-
primed multipotent progenitors (LMPP), megakaryocyte
progenitors (Prog Mk), and Prog B (Figure 1C), indicating
that CD133 taken as a target may trigger the “on-target, off-
tumor” myeloablative toxicity. Significantly, EPCAM or MUC1-
directed CAR-T therapies may trigger strong cytotoxicity against
erythroid progenitors (Prog RBC) in BM (Figure 1C).

Subsequently, the expression patterns of CAR-T target
antigens in non-immune tissues and organs were examined.
EGFR, CD34, FAP, ROR2, AXL, ERBB2, IL3RA, KIT, PROM1,
KDR, EPHA2, CD274, MET, MME, ROR1, FOLH1, GPC3, and
TNFRSF10B are highly expressed in cardiac endothelial cells
(ECs), fibroblasts, and smooth muscle cells (SMCs)/pericytes
(Figure 1D and Supplementary Figure 1B). Fibroblasts and
SMCs of ascending aortic tissue express PROM1, ROR1,
IL13RA2, ERBB2, FAP, CD34, AXL, EGFR, and GPC3 at high
levels (Supplementary Figure 2E). Mast cells of ascending aortic
tissue highly express CD22, which may result in a mast cell-
related immune reaction when CD22 is used as a target. The
epithelial components (alveolar type 1 cells [AT1], alveolar type
2 cells [AT2], ciliated cells, and basal cells) of the lung strongly
express multiple target antigens, such as SDC1, MUC1, EPHA2,
EGFR, TNFRSF10B, CD38, CD4, PROM1, MUC16, PSCA,
ERBB2, GPC3, CLDN18, FOLR1, MSLN, MET, EPCAM,
FOLH1, and CEACAM5 (Figure 1E). When these target
antigens are selected, attention should be paid to preventing
lung injury, which has been described in a case report of
pulmonary injury following anti-ERBB2 CAR-T treatment
(11). Several important target antigens (SDC1, MME, AFP,
FOLH1, FOLR1, GPC3, ROR1, TNFRSF10B, MET, EGFR, and
ERBB2) are abundant in the renal epithelialium (Figure 1F). In
addition, MUC1, PROM1, L1CAM, and MSLN are expressed
specifically in the collecting duct principal cells, whereas KIT and
PSCA are expressed in the collecting duct intercalated cells. We
confirmed that TNFRSF10B, MME, SDC1, IL1RAP, MUC1,
PROM1, PMEL, EPHA2, MET, EPCAM, EGFR, and ERBB2
were predominantly expressed in liver epithelial cells
(Figure 1G). We observed that TNFRSF8, CD38, and L1CAM
were preferentially expressed in pancreatic Schwann cells,
NCAM1 in a/b/g/d cells and Schwann cells, AXL in stellate
and Schwann cells, FAP in a cells, PROM1 in ductal cells, and
MSLN, SDC1 plus MUC1 in MUC5B+ ductal cel ls
(Supplementary Figure 2F). Notably, ROR2, EGFR, GPC3,
MET, EPCAM, and ERBB2 are widely expressed in various
pancreatic cell populations. Furthermore, we identified the
target antigen expression patterns of the trachea, bladder,
esophagus, stomach, small intestine, rectum, common bile
duct, and skin tissue (Supplementary Figures 2G, H, 3A–F).
We also established another expression profile with 64 potential
target antigens from 16 tissues and organs (Supplementary
Figures 4, 5).

We constructed a CAR-targeted antigen expression profile of
normal human tissues and organs (PBMCs, BM, SP, LN, heart,
ascending aortic tissue, trachea, lung, skin tissue, kidney, bladder,
December 2021 | Volume 12 | Article 799206
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esophagus, stomach, small intestine, rectum, liver, common bile
duct, and pancreas) at the scRNA-seq levels. Based on these
prediction analyses, we can predict, prevent, and monitor the
“on-target, off-tumor toxicity” of CAR-T treatment in advance at
a more detailed single-cell level.

Inferring the CAR Safety of B Lineage-
Related Target Antigens (CD19, MS4A1,
CD22, TNFRSF17, SDC1, CD38, SLAMF7,
and TNFRSF8)
CD19, MS4A1 (CD20), and CD22 are specific target antigens for
diseases, such as relapsed/refractory large B-cell lymphoma,
mantle cell lymphoma, and diffuse large B-cell lymphoma
(DLBCL). CD19, SDC1 (CD138), CD38, SLAMF7, and
TNFRSF17 (BCMA) were selected for targeting multiple
myeloma (MM). TNFRSF8 (CD30) is a specific marker and
target antigen for Hodgkin lymphoma. These lymphomas or B
leukemia originate from the B-lineage. To obtain the difference
“on-target, off-tumor toxicities” for adopting individualized
preventive measures, we compared the expression pattern of
these seven genes in normal tissues and organs. CD19 and
MS4A1 had little effect on other hematopoietic lineages and
were found to be ideal targets for eliminating B-lineage-derived
cells than the other target antigens (Figure 2A). CD22 is
expressed in B-lineage-derived cells and ASDC (defined by the
expression of AXL and SIGLEC6), which can be identified at the
mRNA and protein levels. CD38 and SLAMF7 are commonly
abundant in non-B-lineages, such as pDCs, T lymphocytes, and
NK cells, which is consistent with previous reports (12).
Interestingly, the mRNA expression patterns of TNFRSF17,
SDC1, GPRC5D, and TNFRSF8 were not identical to the
corresponding protein expression levels. Then BD FACSAira II
was used to analyze the expression level of TNFRSF8 in T
lymphocytes derived from PBMCs (Figure 2B). The results
showed that TNFRSF8 is highly enriched in partial Treg cells,
which is inconsistent with the mRNA expression pattern. Thus,
it was concluded that the protein expression pattern of CAR-
target antigens is more complicated than the mRNA expression
pattern displayed by scRNA-seq, and this problem can be solved
by single-cell proteomics.

It is unclear whether these target antigens are also expressed
in non-immune cell types. We examined the expression patterns
of these genes in the heart, lung, liver, pancreas, kidney, skin,
stomach, ascending aortic tissue, trachea, bladder, esophagus,
small intestine, rectum, and common bile duct (Figures 2C–F
and Supplementary Figure 6). Surprisingly, it was discovered
that rare non-immune cells also express these B-lineage-specific
genes with low mRNA levels. CD38 and TNFRSF8 are expressed
in cardiac fibroblasts, SMCs, pericytes, and ECs, suggesting the
potential cardiotoxicity of anti-CD38 and anti-CD30 CAR-T
cells (Figure 2C). The CD38 and SDC1 expression patterns
revealed the pulmonary toxicity and hepatotoxicity of anti-CD38
and anti-CD138 CAR-T cells (Figures 2D, E). Unexpectedly,
these B-lineage-specific genes were also expressed in pancreatic
acinar and ductal cells (Figure 2F). These B-lineage-specific gene
expression patterns in other tissues and organs (kidney, skin,
Frontiers in Immunology | www.frontiersin.org 3
stomach, ascending aortic tissue, trachea, bladder, esophagus,
small intestine, rectum, and common bile duct) revealed that the
real expression patterns of CAR-target antigens were far more
complex than what had been usually perceived (Supplementary
Figure 6). The pattern diagram of cell types of these highly
expressed antigens in various tissues and organs is shown
in Figure 2G.

Inferring the CAR Safety of AML-Related
Target Antigens (CD33, CD123, and
CLEC12A)
The choice of AML-related target antigens in CAR-T
immunotherapy is challenging. Therefore, we selected to
analyze the expression pattern of common AML-related target
antigens (CD33, CD123, and CLEC12A) in normal tissues and
organs. Targeting CD33, CD123, and CLEC12Amainly damaged
CD14-positive monocytes, CD16-positive monocytes, and DC
populations, as well as minimal damage to other hematopoietic
lineages (such as B lineages, T lymphocytes, and NK cells). It is
worth noting that all these genes are expressed in partial HSPCs
at the mRNA level. A more serious concern is that CLEC12A has
a higher frequency than CD33 and CD123 in platelets at the
mRNA level (Figure 3A), although a previous study showed that
CLEC12A is not expressed in platelets at the protein level (13).
CD123 is abundant in the ECs of various organs, such as cardiac
ECs, lung ECs, skin ECs, liver ECs and urinary bladder ECs
(Figures 3B–E, and Supplementary Figure 7H), and targeting
this antigen may lead to endothelial-specific cross-reactivity and
endothelial cell toxicity by targeting CD93 (14). A small number
of cardiac fibroblasts and aortic fibroblasts/SMCs/MSCs also
expressed CD123 (Figure 3B). CD33, CD123, and CLEC12A
are present in a few lung epithelial cells (Figure 3C). CD33-
directed CAR-T may eliminate skin Langerhans cells (Figure 3D),
which weakens the ability of the skin to fight pathogenic
microorganisms. Next, we examined the expression patterns of
CD33, CD123, and CLEC12A in the urinary system, and
discovered a small population of bladder fibroblasts expressing
CD33 or CLEC12A (Supplementary Figure 7H). Compared with
CD33 and CLEC12A, CD123 was predominant in multiple
pancreatic cell types. We also presented the expression patterns
of these genes in the SP, esophagus, trachea, stomach, small
intestine, and rectum (Supplementary Figure 7). In conclusion,
it is inferred that the probability of CD33-directed CAR-T
triggering “on-target, off-tumor toxicity” is lower than that of
CD123- and CLEC12A-directed CAR-T cells. Moreover, CD123-
directed CAR-T might impair the systemic endothelial system,
and CLEC12A-directed CAR-T is inclined to attack normal
lymphocytes (Figure 3F).

Inferring the CAR Safety of Solid Tumor-
Related Target Antigens (GPC3,
B4GALNT1, and ERBB2)
Compared to hematologic malignancies, the understanding of
the “on-target, off-tumor toxicity” of CAR therapies for solid
tumors has been lagging. The common target antigens of solid
tumor types exist on normal cells, leading to severe “on-target,
December 2021 | Volume 12 | Article 799206
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off-tumor toxicity”, which constrains their application.
Therefore, we analyzed the common target antigens (GPC3,
B4GALNT1, and ERBB2 [HER2]) in various tissues and
organs at the scRNA-seq level. ERBB2 and GPC3 are expressed
Frontiers in Immunology | www.frontiersin.org 4
in immune cell types. ERBB2-directed CAR-T cells may
presumably eliminate ERBB2-positive CD8+ TEM, NK cells,
and bone marrow cells (Supplementary Figure 8). Moreover,
GPC3-directed CAR-T cells may attack a portion of naïve T
A B C

D

E

F

G

FIGURE 1 | Identification of the expression pattern of CAR target antigens in normal tissues and organs at single-cell transcriptome level. (A) Schematic
representation of selected tissues and organs for analyzing target antigens. (B) Dot plot shows the expression levels of CAR target antigens in PBMCs. (C) Dot plot
shows the expression levels of CAR target antigens in BM. UMAP projections of heart-derived cells (D), lung-derived cells (E), kidney-derived cells (F), and liver-
derived cells (G), colored by clusters, and dot plots showing the expression level of CAR target antigens in different clusters.
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lymphocytes (Figure 4A). GPC3 is abundant in cardiac and
aortic fibroblasts, B4GALNT1 in cardiac and aortic SMCs, and
ERBB2 in cardiac fibroblasts and aortic SMCs (Figure 4B).
B4GALNT1 was hardly observed in lungs, kidneys, and
pancreas, while GPC3 and ERBB2 are commonly expressed in
normal cells, such as AT1, AT2, basal cells, kidney epithelial cells,
and various pancreatic cells (Figures 4C–E). ERBB2 also exists in
normal epithelial cells of the small intestine and rectum, at high
levels, and in liver hepatocytes/cholangiocytes (Figure 4F and
Supplementary Figure 8B). Predictably, targeting these antigens
may impair the function of skin because skin fibroblasts express
GPC3, skin pericytes express B4GALNT1, and hair follicle-
related cells express ERBB2 at high levels (Figure 4G). In
addition, we acquired the expression pattern of these genes in
the common bile duct, bladder, trachea, and esophagus, from
which it was identified that these antigens extensively exist in
normal tissues and organs (Supplementary Figure 8C).
Eventually, it is known that B4GALNT1 is a relatively ideal
target, but targeting GPC3 and ERBB2 might lead to severe “on-
target, off-tumor toxicity” in some tissues (Figure 4H).

The Expression Levels of Targets in
Normal Cells and Malignant Cells
Many CAR-T therapies, in fact, efficiently killed tumor cells
expressing high levels of target antigens but not tumor cells or
normal cells with lower levels of target antigens (15–21). The
CAR-T anti-tumor activity and “on-target, off-tumor toxicity”
are dependent on the target antigen density. Locoregional HER2-
specific CAR-T injection through intra-CNS delivery was well
tolerated and showed no evidence of “on-target, off-tumor
toxicity” (22). Another study also showed that side effects
could be avoided by optimizing CAR design, decreasing the
dose of CAR-T cells, and improving the treatment plan (such as
omit t ing post- in fus ion IL-2 and lymphodeple t ing
chemotherapy) (23). We compared several tumor types with
normal tissues at scRNA-seq levels to provide a broader and
more realistic perspective of “on-target, off-tumor toxicity”. First,
we compared the target antigen expression levels of reactive non-
malignant lymph nodes (rLN) and malignant lymph nodes
(DLBCL, follicular lymphomas [FL], and transformed FL
[tFL])-derived B-lineage cells (Supplementary Figure 9A). The
target antigen expression levels of non-malignant and malignant
cells were highly variable (Figure 5A). We found that CD19
expression levels were significantly decreased in some samples
(DLBCL2, 1/3 samples; FL1 and FL3, 2/4 samples; tFL1, 1/2
samples), MS4A1 in DLBCL1 and DLBCL3 (2/3 samples), CD22
in some DLBCL samples (DLBCL1 and DLBCL3, 2/3 samples)
and FL1 (1/4 samples). In addition, we also found that
TNFRSF17 was significantly increased in DLBCL1, FL3, and
Frontiers in Immunology | www.frontiersin.org 5
tFL2 compared with the rLN samples, CD38 in some DLBCL
samples (DLBCL1 and DLBCL2, 2/3), and SLAMF7 in DLBCL3.
Next, we compared the AML-related antigen (CD33, IL3RA, and
CLEC12A) expression levels of normal EC populations from the
heart and liver, normal BM-derived HSPC, and AML patient-
derived progenitor-like cells (Supplementary Figure 9B).
CLEC12A was strongly positive in almost all AML samples
(Figure 5B). We also observed significant upregulation of
CD33 and IL3RA in almost all AML samples compared to the
normal BM HSPC. Interestingly, the target antigen (CD33,
IL3RA, and CLEC12A) expression levels in AML progenitor-
like populations in AML patients during treatment were highly
variable. Strikingly, the IL3RA expression level in the heart and
lung-derived EC populations was significantly higher than that
of hematopoietic cells at the mRNA level, which might lead to
vascular leak when targeting IL3RA (24). Moreover, the
expression levels of IL3RA in different subsets, such as liver
sinusoidal EC and macrovascular EC, are different, which
remind us that there exist many uncertainties of “on-target, off-
tumor toxicity” because of the cell heterogeneity and thus need to
further identification (Figure 5C). To further confirm the
expression level of the target antigen in solid tumors, GPC3 was
examined in hepatocellular carcinoma (HCC) and adjacent liver
(25). GPC3 is highly expressed in malignant cell subsets of HCC
(Figure 5D). Disturbingly, some normal hepatic stellate cells and
EC also express GPC3 at a high level. Moreover, we examined
GPC3 and ERBB2 expression levels in gastric cancer (GC)
(Supplementary Figure 9C and Figure 5E). These primary
gastric tissue-derived epithelial cells express GPC3 at high levels
in some GC samples (Cancer_4, Cancer_5, Cancer_6, and
Cancer_7, 4/10) and a normal tissue sample (Normal_5, 1/10).
ERBB2 is widely expressed in epithelial populations of both
normal samples (Normal_2, Normal_3, Normal_5, Normal_6,
Normal_10, 5/10) and gastric cancer samples (Cancer_1,
Cancer_2, Cancer_3, Cancer_4, Cancer_6, Cancer_7, Cancer_8,
Cancer_9, and Cancer_10, 9/10) at high levels. Taken together,
although the proportion and expression level of some target
antigens in tumors usually increases, there are still some normal
cells that express these antigens at high levels. This expression
pattern demonstrates that identifying the difference in antigen
expression levels in the same patient before CAR-T treatment is
critically important and may help reduce the probability of “on-
target, off-tumor toxicity.”
CONCLUSION

With the rapid increase in CAR-T clinical trials, numerous
treatment-related side effects have been observed, which severely
TABLE 1 | Common CAR-target antigens (57 genes).

CAR-target Antigens
(57 genes)

CD19, MS4A1, CD22, TNFRSF17, CD38, SDC1, TNFRSF8, IL3RA, CD7, NCAM1,
CD34, CLEC12A, CD4, MME, CD5, SLAMF7, IL1RAP, FCGR3A, ITGB7, TNFRSF13B,
TRBC1, CD33, ROR1, MUC1, KLRK1, KIT, CD274, CD70, PROM1, AFP,
AXL, CD80, CD86, DLL3, TNFRSF10B, FAP, MAGEA1, MAGEA4, MUC16, PMEL,
ROR2, KDR, EPHA2, L1CAM, CLDN18, PSCA, FOLR1, IL13RA2, MET, EPCAM,
EGFR, FOLH1, GPC3, CEACAM5, ERBB2, B4GALNT1, MSLN
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FIGURE 2 | Expression patterns of B-lineage-specific antigens (CD19, MS4A1, CD22, TNFRSF17, CD38, SDC1, SLAMF7, GPRC5D, and TNFRSF8) in human normal
tissues and organs. (A) Dot plots show the expression levels of B-lineage-specific antigens in PBMCs, BM, LN, and SP at mRNA level or protein level. (B) Flow
cytometric analysis of abandoned human PBMCs after medical examination. Representative FACS dot plots for CD30 in normal CD8+ T cells (DAPI−CD4−CD8+), CD4+ T
cells (DAPI−CD4+CD8− but excluding Treg), and Treg cells (DAPI−CD4+CD8−CD127low/−CD25+). Frequency histogram of CD30+ cells in CD8+ T cells, CD4+ T cells, and
Treg cells. Violin plots show the expression level of B-lineage-specific antigens in heart-derived clusters (C), lung-derived clusters (D), liver-derived clusters (E), and
pancreas-derived clusters (F). (G) Schematic diagram of high B-lineage-specific antigen-expressing cell types in different tissues and organs.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. CAR-T “On-Target, Off-Tumor Toxicity”
restricts the further application of CAR-T cells. One of the most
important CAR-T treatment-related side effects is “on-target, off-
tumor toxicity”, Substantial evidence of “on-target, off-tumor
toxicity” has been shown in CAIX-directed CAR-T (6), FAP-
directed CAR-T (7), CD19-directed CAR-T (2), CD133-directed
CAR-T (26), HER2-directed CAR-T (27), EGFR-directed CAR-T
(28), CD38-directed CAR-T (3), CD138-directed CAR-T (29),
CD33-directed CAR-T (30–32), and CD123-directed CAR-T (33,
34). This reminds us that most of the existing CAR target antigens
are not as highly specific as we previously expected.

To determine which normal cells may be improperly targeted by
CAR-T cell therapies, we chose 18 normal tissues/organs and
analyzed CAR target antigen expression patterns via publicly
available scRNA-seq datasets. scRNA-seq is a powerful tool for
the understanding of the different cell subsets (35), analyzing rare
cell types (36), and exploring the complex regulatory networks and
developmental trajectories (37, 38). Finally, we obtained the
expression patterns of 121 target antigens in normal tissues or
organs at the single-cell level. Based on this, predictions can bemade
about the “on-target, off-tumor toxicity” of CAR-T therapies, which
can guide the minimization or monitoring of these side effects.
Based on the expression patterns of target antigens that we have
identified, clinical researchers can comprehend the antigens
expressed in normal cell types, especially in special cell types of
tissues and organs, such as CD22-expressing mast cells in ascending
aortic tissue and EPCAM-expressing erythroid progenitors. B-
lineage-related target antigens (CD19, MS4A1, CD22, TNFRSF17,
CD38, SLAMF7, and TNFRSF8) not only exist in B lineage-derived
normal or malignant tumor cells but are also expressed in other
immune cell types (CD22/CD38/SLAMF7-expressing ASDC,
CD38-expressing proliferating T lymphocytes, and SLAMF7-
expressing cDC1) and non-immune cell types (CD38-expressing
cardiac fibroblasts, SDC1-expressing AT1/AT2/basal cells, and
CD22/CD38/SDC1/TNFRSF8-expressing pancreatic acinar/ductal
cells) at a certain frequency. CD123 is enriched in the EC population
and pancreatic cells, suggesting that CD123-directed CAR therapy
may cause vascular endothelial dysfunction and pancreatic injury.
Compared with CD123 and CLEC12A, targeting CD33 may have
reduced damage to non-immune cell types. GPC3 and ERBB2, as
common solid tumor target antigens, are frequently diffused in
various tissues and organs; therefore, reducing the damage to
important organs while targeting these antigens is a top priority.
Other target antigens have also shown potential in CAR-T therapy,
such as IGF1R (39, 40), CD1A (41, 42), CCR9, and CXCR4. Our
results showed that IGF1R is widely expressed in various lineages
from three germ layers, while the expression of CD1A, CCR9, and
CXCR4 is relatively limited to immune cell types (Supplementary
Figure 10). Moreover, we should solve the problems of self-
activation and fratricide of CAR-T cells before targeting these
antigens (CCR9 and CXCR4). It should be noted that, although
scRNA-seq can provide reliable information, the expression pattern
of antigens at the protein level is complicated. These could be solved
using single-cell proteomics technology.

Compared to their normal counterparts, some antigens of
malignant cells from different patients are highly variable because
of drug-specific selection and genetic variation (43, 44). For
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example, CD38 was consistently downregulated in the emerging
resistant clones in response to a combined therapy regimen
(daratumumab, carfilzomib, lenalidomide and dexamethasone)
(45). Our results also defined the variable expression of target
antigens in normal and malignant cells, which suggests that
identifying the difference in target antigen expression levels
between malignant cells and their normal counterparts before
CAR-T treatment is important to avoid unnecessary “on-target,
off-tumor toxicity”. Indeed, most side effects observed during CAR-
T treatment, such as cytokine release syndrome and immune
effector cell-associated neurotoxicity syndrome, can be reversed if
they are treated promptly. The “on-target, off-tumor toxicity” of
CD19-directed CAR-T cells, such as B-cell dysplasia and
hypogammaglobulinemia, can be reversed after a few months of
CAR-T cell infusion because of the existence of HSPC and plasma
cells. This evidence indicates that “on-target, off-tumor toxicity” of
CAR-T cell therapy can be reduced by accurate treatment, and the
physiological homeostasis can be restored because of the existence
of stem/progenitor cells and antigen low-expressing cells.

In conclusion, we developed a comprehensive single-cell atlas
for target antigens of CAR therapy in normal tissues and organs,
which helped us capture antigen-expressing rare cell types
missed in the assessment of bulk tissues.
MATERIALS AND METHODS

Flow Cytometry Analysis
Venous blood samples from healthy donors were collected in
EDTA anticoagulant tubes and stored at 4°C. PBMCs were
isolated by density gradient centrifugation using Ficoll–Paque
PLUS (Cat No. 17-1440-03, GE Healthcare). PBMCs were
blocked by FcR (CD16/32) Blocking Reagent (Cat No. 130-
059-901, Miltenyi Biotec) antibody, and stained with the
following antibodies: APC/Cyanine7 anti-human CD4
antibody (A161A1, Cat No. 357415, Biolegend), FITC anti-
human CD8a antibody (RPA-T8, Cat No. 301050, Biolegend),
PE-Cyanine 7 anti-human CD127 antibody (A7R34, Cat No. 25-
1271-82, eBioscience), PerCP/Cyanine5.5 anti-human CD25
antibody (BC96, Cat No. 302626, Biolegend), and APC anti-
human CD30 antibody (BY88, Cat No. 333910, Biolegend).
Finally, the cells were resuspended in 400 ul 0.1 ug/ml DAPI
solution (Cat No. C0060, Salarbio) and analyzed using an Arial II
cytometer (BD Biosciences). Flow cytometry data were analyzed
using FlowJo (Three Star, Ashland OR). Percentage data were
presented as mean ± SD using GraphPad Prism.
scRNA-seq Datasets
The scRNA-seq datasets of the trachea (GSM4850591), stomach
(GSM4850590), spleen (GSM4850589), small intestine
(GSM4850588), skin (GSM4850587), rectum (GSM4850586),
lymph node (GSM4850583), liver (GSM4850582), heart
(GSM4850581), esophagus (GSM4850580), common bile duct
(GSM4850579), and bladder (GSM4850577), were acquired from
the GEO database (Accession NO. GSE159929) (46). The scRNA-
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FIGURE 3 | Expression pattern of AML antigens (CD33, IL3RA, and CLEC12A) in human normal tissue and organs. CD33, IL3RA, and CLEC12A-expressing
proportions (expression value >0) of PBMC/BM-derived cells (A), heart-derived cells, ascending aortic tissue-derived cells (B), lung-derived cells (C), skin-derived
cells (D), liver-derived cells, common bile duct-derived cells, pancreas-derived cells (E), are illustrated in UMAP plots. (F) Schematic diagram of high AML antigen-
expressing cell types in different tissues and organs.
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FIGURE 4 | Expression patterns of solid tumor antigens (GPC3, B4GALNT1, and ERBB2) in human normal tissues and organs. (A) GPC3 and ERBB2-expressing
proportions (expression value >0) of PBMC-derived cells. (B) Violin plots show the expression levels of GPC3, B4GALNT1, and ERBB2 in heart-derived clusters and
ascending aortic tissue-derived cells. GPC3, B4GALNT1, and ERBB2-expressing proportions (expression value >0) of lung-derived cells (C), kidney-derived cells (D),
and pancreas-derived cells (E). (F) UMAP plots show the expression level of ERBB2 in small intestine-derived cells and rectum-derived cells. (G) UMAP plots show
the expression levels of GPC3, B4GALNT1, and ERBB2, in skin-derived clusters. (H) Schematic diagram of high GPC3/B4GALNT1/ERBB2-expressing cell types in
different tissues and organs.
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seq datasets of the ascending aortic tissue (GSM4704931,
GSM4704932, and GSM4704933) were obtained from
GSE155468. The scRNA-seq datasets of the normal lung samples
were extracted from GSE135893 by performing “subset(x = lung,
subset = orig.ident == c(“F00409”,”F01157”,”F01174”, “F01365”,
”F01366”, ”F01367”, ”F01394”, ”HD65”, ”HD66”, ”HD67”,
”HD68”, ”HD70”))” (47). The multimodal PBMC reference
dataset was downloaded from https://atlas.fredhutch.org/data/
nygc/multimodal/pbmc_multimodal.h5seurat. The multimodal
human bone marrow mononuclear (BMNC) reference dataset
was obtained by performing “InstallData (“bmcite”)”, and
“LoadData(ds = “bmcite”)” in R. The human pancreas dataset
Frontiers in Immunology | www.frontiersin.org 10
was downloaded from http://singlecell.charite.de/pancreas/Adult_
Pancreas/adult_pancreas_2020.rds (48).

Quality Control
Cells from the LN, SP, stomach, small intestine, rectum,
esophagus, common bile duct, skin, trachea, bladder, heart,
and liver were filtered with a gene expression number per cell
between 200 and 10,000, and the mitochondrial percentage per
cell was below 15. Cells from the ascending aortic tissue, kidney,
and lung were filtered with a gene expression number per cell
between 200 and 10,000, with a mitochondrial percentage below
10, 50, and 20, respectively.
A B C

D E

FIGURE 5 | The difference of expression patterns of solid tumor antigens (GPC3, B4GALNT1, and ERBB2) in malignant cells and nonmalignant cells. (A) Dot plot
shows the expression level of target antigens (CD19, MS4A1, CD22, TNFRSF17, CD38, SDC1, SLAMF7, and TNFRSF8) in B lineage-related cells derived from
lymphomas (DLBCL, FL, and tFL) and rLN. (B) Dot plot shows the expression level of target antigens (CD33, IL3RA, and CLEC12A) in hematopoietic stem/
progenitor-like cells obtained from BM samples of AML patients and healthy donors, and in normal liver/heart EC clusters. “AML314.D31” represents the sample of
patient AML314 after 31 days of treatment. BM5.34p means the sample of BM CD34-positive cells derived from healthy donor BM5, and BM5.34p38n means the
sample of BM CD34-positive and CD38-negative cells derived from healthy donor BM5. (C) The expression level of IL3RA in liver sinusoidal endothelial cells and
macrovascular endothelial cells. (D) GPC3 expression levels in adjacent liver and hepatocellular carcinoma at scRNA-seq level. (E) GPC3 and ERBB2 expression
levels of the epithelial lineages in normal primary gastric tissues and gastric cancers.
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Data Processing
We mapped the LN and SP scRNA-seq datasets to Satijalab’s
reference of 162,000 PBMCs measured with 228 antibodies in
Seurat V4 (49). Other datasets also were processed in Seurat V4,
and the “NormalizeData” function was used to normalize the
expression matrix. Then “FindVariableFeatures”, “ScaleData”,
and “RunPCA” were used to process the datasets. Clusters
were calculated using the FindClusters function with a
resolution of 0.5 and visualized using the uniform manifold
approximation and projection (UMAP) dimensional reduction
method. All major cell clusters were identified by feature genes,
as shown in Supplementary Figure 1B. “DotPlot” function,
“VlnPlot” function, “FeaturePlot” function, and “DimPlot”
function with “cells.highlight=WhichCells(object, expression
=gene> 0)” were used to visualize gene expression.

Comparison of Gene Expression Profiles
of AML Malignant Progenitors With
Normal BM HSPCs and Liver/Heart EC
Single-cell gene expression data for AML BM cells and normal
BM cells were obtained from GSE116256 (50). Sixteen AML
patient-derived 34 samples, four healthy donor-derived five
samples, healthy donor-derived liver EC (extracted from
cluster 6/7 in Figure 1G), and healthy donor-derived heart EC
(extracted from cluster 2/3/10 in Figure 1D) were combined by
the function “merge” in Seurat V4. Cells from each dataset were
filtered with a gene expression number per cell between 200 and
10,000, with a mitochondrial percentage below 10. The batch effect
was removed using the “SCTransform(object, vars.to.regress =
“percent.mt”)” and “RunHarmony(object, group.by.vars=
“orig.ident”)” function. Clusters were calculated using the
FindClusters function with a resolution of 0.5 and visualized using
the UMAP dimensional reduction method. Then, the stem/
progenitor-like subpopulations and EC subpopulations were
extracted by “subset(object, idents = c(0,3,10,11,13,16,18,21,8,19))”.
Finally, the expression level was compared using the “Dotplot”
function with “group.by = “orig.ident”. Liver EC population was
calculated using FindClusters function with a resolution of 0.5, and
the representative genes (liver sinusoidal EC: LYVE1, CD14,
CLEC4G, and CLEC4M; macrovascular EC: PECAM1, VWF,
CD34, and AQP1) were presented (51).

Comparison of Gene Expression Profiles
of Lymphomas With rLN
Single-cell gene expression data of lymphomas (three DLBCL
samples, four FL samples, and two tFL samples) and rLN (three
samples) were obtained from https://www.zmbh.uni-heidelberg.de/
Anders/scLN-index.html (52). These datasets were merged in
Seurat V4 and filtered with a mitochondrial percentage below 10.
“SCTransform” and “RunHarmony” functions were used to remove
the batch effect as mentioned above. Clusters were calculated using
the FindClusters function with a resolution of 0.5, and the B lineage-
related subpopulations were extracted by “subset(object, idents = c
(0,1,3,4,5,8,10,11,12,13,14,15,17,18,19,20,21,22))”. Finally, the
expression level was compared using the “Dotplot” function with
“group.by = “orig.ident”.
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Comparison of Gene Expression Profiles
of Hepatocellular Carcinoma With
Adjacent Liver
We compared the GPC3 expression level of hepatocellular
carcinoma with the adjacent liver on an online website
(https://db.cngb.org/PRHCCdb), which is shared by the
laboratory of Jia Fan (25).

Comparison of Gene Expression Profiles
of Gastric Cancer With Healthy Primary
Gastric Tissue
The datasets of ten gastric cancer samples (GSM5573467,
GSM5573468, GSM5573470, GSM5573472, GSM5573473,
GSM5573475, GSM5573477, GSM5573478, GSM5573479, and
GSM5573481) and ten healthy primary gastric tissues
(GSM5573466, GSM5573469, GSM5573471, GSM5573474,
GSM5573476, GSM5573486, GSM5573488, GSM5573490,
GSM5573490, and GSM5573496) were downloaded from
GSE183904, and combined by the function “merge” in Seurat
V4. Cells from each dataset were filtered with a gene expression
number per cell between 200 and 10000, with a mitochondrial
percentage below 20. The batch effect was removed using the
“SCTransform(object, vars.to.regress = “percent.mt”)” and
“RunHarmony(object, group.by.vars = “orig.ident”)” functions.
Clusters were calculated using the FindClusters function with a
resolution of 0.5 and visualized using the UMAP dimensional
reduction method. Then the epithelial subpopulations were
extracted by “subset(object, idents = c(1,4,8,10,16,23,24))”.
Finally, the expression level was compared using “Dotplot”
function with “group.by = “orig.ident”.
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Supplementary Figure 1 | Identification of feature genes of different clusters in
normal tissues and organs. (A) UMAP projections of PBMC/BM-derived cells. (B)
Expression levels of representative genes for different cell types from 13 tissues and
organs (heart, ascending aortic tissue, trachea, lung, skin, esophagus, stomach,
small intestine, rectum, kidney, bladder, liver, and common bile duct).

Supplementary Figure 2 | Identification of the expression pattern of CAR target
antigens in normal tissues and organs (PBMCs, BM, LN, SP, trachea, and bladder).
Dot plot shows the protein expression levels of CAR target antigens in PBMCs (A)
and BM (B). UMAP projections of LN-derived cells (C), SP-derived cells (D),
pancreas-derived cells (E), ascending aortic tissue-derived cells (F), trachea-
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derived cells (G), and bladder-derived cells (H), colored by clusters, and dot plots
showing the expression levels of CAR target antigens in different clusters.

Supplementary Figure 3 | UMAP projection of esophagus-derived cells (A),
stomach-derived cells (B), small intestine-derived cells (C), rectum-derived cells
(D), common bile duct-derived cells (E), and skin-derived cells (F), and dot plots
showing the expression levels of CAR target antigens in different clusters.

Supplementary Figure 4 | The expression patterns of 64 potential target
antigens. (A) The gene list of 64 potential target antigens. Dot plot shows the
expression levels of 64 potential target antigens in PBMCs (B), SP (C), BM (D), LN
(E), heart (F), ascending aortic tissue (G), trachea (H), lung (I), and skin (J).

Supplementary Figure 5 | The expression patterns of 64 potential target
antigens in esophagus (A), stomach (B), small intestine (C), rectum (D), liver (E),
common bile duct (F), and pancreas (G).

Supplementary Figure 6 | Violin plots show the expression levels of B-lineage-
specific antigens in kidney-derived clusters (A), skin-derived clusters (B), stomach-
derived clusters (C), ascending aortic tissue-derived clusters (D), trachea-derived
clusters (E), bladder-derived clusters (F), esophagus-derived clusters (G), small
intestine-derived clusters (H), rectum-derived clusters (I), and common bile duct-
derived clusters (J).

Supplementary Figure 7 | Expression patterns of AML antigens (CD33, IL3RA,
and CLEC12A) in human normal tissues and organs. (A) UMAP plots show the
protein expression level of IL3RA in PBMC/BM-derived clusters. CD33, IL3RA, and
CLEC12A-expressing proportions (expression value > 0) of SP-derived cells (B),
esophagus-derived cells (C), trachea-derived cells (D), stomach-derived cells (E),
small intestine-derived cells (F), rectum-derived cells (G), kidney-derived cells,
bladder-derived cells (H), are illustrated in UMAP plots.

Supplementary Figure 8 | Expression levels of solid tumor antigens (GPC3,
B4GALNT1, and ERBB2) in human normal tissues and organs. (A) GPC3 and
ERBB2-expressing proportions (expression value > 0) of BM-derived cells. (B) Violin
plot shows the expression level of ERBB2 in liver-derived clusters. (C) Violin plots
indicate the expression levels of GPC3, B4GALNT1, and ERBB2 in common bile
duct-derived clusters, bladder-derived clusters, trachea-derived clusters, and
esophagus-derived clusters.

Supplementary Figure 9 | (A) UMAP projection of lymphoma- and rLN-derived
cells, and dot plot showing the expression levels of representative genes for different
cell types. (B) UMAP projection of AML- and healthy donor-derived BM cells, and
dot plot showing the expression levels of representative genes for different cell
types. (C) UMAP projection of single cells of normal primary gastric tissue and
gastric cancer, and dot plot showing the expression levels of representative genes
for different cell types.

Supplementary Figure 10 | (A) Dot plots show the expression levels of target
antigens (IGF1R, CD1A, CCR9, and CXCR4) in PBMCs, BM, Trachea, lung,
stomach, esophagus, kidney, small intestine, rectum, liver, bladder, common bile
duct, pancreas, heart, ascending aortic tissue, and skin. (B) Summarization of
high IGF1R/CD1A/CCR9/CXCR4-expressing subpopulations in various tissues
and organs.
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