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Simple Summary: Supplementation of ovariectomized rats with Camelina sativa oil, which is rich
in polyunsaturated fatty acids (PUFA), especially n-3 family fatty acids, can be an effective way
to improve bone parameters. Administration of 5 g/kg body weight and 9 g/kg body weight of
camelina oil to rats suppressed a decrease in densitometric, tomographic, and strength parameters of
femurs and an increase in the serum level of the C-terminal telopeptide of type I collagen caused by
estrogen deficiency. Furthermore, ovariectomized rats receiving camelina oil were characterized by
a high level of osteocalcin.

Abstract: The aim of the present study was to determine the effect of administration of Camelina sativa
oil (CO) as a source of polyunsaturated fatty acids (PUFA) on bone parameters in ovariectomized
rats (OVX). Overall, 40 10-week-old healthy female Wistar rats were divided into 4 groups with
10 animals in each. Rats in the control group (SHO) were subjected to a sham operation, whereas
experimental rats (OVX) were ovariectomized. After a 7-day recovery period, the SHO the rats
received orally 1 mL of physiological saline for the next 6 weeks. The OVX rats received orally
1 mL of physiological saline (OVX-PhS), 5 g/kg BW (OVX-CO5), or 9 g/kg BW (OVX-CO9) of
camelina oil. The use of camelina oil had a significant effect on body weight, lean mass, and fat
mass. The camelina oil administration suppressed the decrease in the values of some densitometric,
tomographic, and mechanical parameters of femur caused by estrogen deficiency. The CO treatment
increased significantly the serum level of osteocalcin and decreased the serum level of C-terminal
telopeptide of type I collagen in the OVX rats. In conclusion, camelina oil exerts a positive osteotropic
effect by inhibiting ovariectomy-induced adverse changes in bones. Camelina oil supplementation
can be used as an efficient method for improving bone health in a disturbed state. However, further
research must be carried out on other animal species supplemented with the oil.

Keywords: camelina oil; bone; polyunsaturated fatty acids; rat; ovariectomy

1. Introduction

Pathological bone and cartilage changes are an increasing problem in both livestock
and companion animals. The health conditions include osteopenia with different etiologies,
osteoporosis, osteochondrosis, rickets, and osteoarthritis [1–4]. In both groups of animals,
they cause movement disorders and pain and reduce the quality of their life. In the case of
pigs and poultry, they lead to production losses.

Hence, to improve the health of bones and minimize production losses, intensive studies
are conducted to identify factors that can act preventively or therapeutically in bone diseases.
One of the possibilities is the use of botanical compounds. In recent years, oilseeds and

Animals 2021, 11, 1343. https://doi.org/10.3390/ani11051343 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-9145-1960
https://orcid.org/0000-0002-9706-6676
https://orcid.org/0000-0002-5439-2420
https://orcid.org/0000-0003-3961-5291
https://doi.org/10.3390/ani11051343
https://doi.org/10.3390/ani11051343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11051343
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11051343?type=check_update&version=1


Animals 2021, 11, 1343 2 of 13

plant oils have aroused great interest. They are a source of n-3 and n-6 polyunsaturated
fatty acids (PUFA), which have received considerable attention for their role in mitigation of
bone disorders. Most PUFAs from the n-3 and n-6 families are not synthesized by mammals.
Therefore, their precursors, i.e., such essential acids as α-linolenic acid (ALA, 18:3 n-3) and
linoleic acid (LA, 18:2 n-6), must be supplied with food. The involvement of elongases and
desaturases leads to formation of eicosapentaenoic acid (EPA, 20:5 n-3), docosahexaenoic acid
(DHA, 22:6 n-3), and arachidonic acid (AA, 20:4 n-6). EPA and AA are substrates for pro-
duction of eicosanoids; they compete for the same enzymes in the metabolic pathways [5,6].
Eicosanoids derived from n-3 PUFAs (3-series prostaglandins, 3-series thromboxanes, 5-series
leukotrienes, E-series resolvins) generally have anti-inflammatory effects, whereas those pro-
duced from n-6 PUFAs (2-series prostaglandins, 2-series thromboxanes, 4-series leukotrienes)
act as pro-inflammatory agents [7]. Eicosanoids derived from n-6 PUFAs influence the synthe-
sis of pro-inflammatory cytokines, i.e., interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor
necrosis factor-α (TNF-α), which participate in the development of such skeletal disorders as
osteopenia, osteoporosis, or arthritis [8].

There are many papers in the databases on the impact of various oils of plant and
animal origin, as well as individual PUFAs on bone metabolism and properties in both
animals and humans. A positive effect of seeds, flax oil, soybean oil, sunflower oil, sesame
oil, and olive oil on bone tissue has been demonstrated [9–14]. However, there are also
studies indicating a controversial impact of these oils [12,15–17].

In recent years, bioproducts from Camelina sativa, i.e., seeds, oil, and cake, have aroused
considerable interest. Camelina sativa, a species from the Brassicaceae family also called false
flax, gold-of-pleasure, wild flax, linseed dodder, German sesame, or Siberian oilseed, is one
of the oldest cultivated plants. The history of cultivation of camelina goes back to the Bronze
Age when this plant was used for consumption in Europe [18]. Camelina is a very fast
growing annual or winter annual plant. The advantages of camelina include its relatively
low habitat and agrotechnical requirements [19]. It grows in ruderal habitats and in arable
fields. This plant resembles a weed: it has very low soil requirements and high drought
tolerance. Camelina, therefore, offers lower production costs than other oilseed plants [20].
The increasing interest in the false flax in recent years is related to the high content of
unsaturated fatty acids (around 90%) and PUFAs (50–60%), which are very valuable for
animal and human health [21,22]. It has been found that the fatty acid composition of
camelina oil is more favorable than the composition of a number of other plant oils,
such as olive, flax, rapeseed, and sunflower oils. Camelina oil is characterized by high
content of ALA (35–50%), lower content of LA (15–24%), and high content of tocopherols
(about 800 mg/kg) and phenolic compounds, which results in greater oxidative stability
compared to other oils containing large amounts of unsaturated acids [21–27]. Regardless
of the fatty acids, the high nutritional value of camelina oils is also related to the content
of other bioactive compounds such as tocopherols, carotenoids, and phytosterols, which
lower the cholesterol level in blood, as well as optimal nutritional quality indices: the
thrombogenicity index and the atherogenicity index [24,26,27]. Camelina oil also contains
anti-nutritional substances like erucic acid and glucosinolates [21,22]. In an animal study,
camelina bioproducts were found to influence positively the PUFAs content in eggs and
meat of broiler chickens and rabbits, which is beneficial for human nutrition [28–30]. In
quail, camelina was reported to prevent lipid oxidation without any adverse effect on
performance and carcass characteristics [31]. Moreover, camelina oil in combination with
conjugated linoleic acid improved bone densitometric parameters in broiler chickens [32].
However, there is no research on its effect on bone tissue when it is supplemented alone in
mammals. Camelina oil also increased plasma n-3 fatty acid content and reduced plasma
n-6 fatty acid content and serum triglyceride levels in pigs [33]. However, higher content
of camelina bioproducts in food was found to cause a decrease in weight and feed intake,
as well as poor feed conversion in animals [34,35]. With the properties mentioned above,
camelina has been increasingly being appreciated for the last 20 years.
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However, the influence of camelina bioproducts as a source of PUFAs on the metabolism
of the skeletal system is very poorly known. Considering the prevalence of bone and joint
disorders in animals and the composition of PUFAs in camelina oil, it can be assumed that
supplementation with this product may positively influence bone tissue. Thus, the present
study aimed to identify the potential osteotropic effects of camelina oil in female rats with
experimental osteopenia induced by bilateral ovariectomy.

2. Materials and Methods
2.1. Animals and Experimental Design

In total, 40 10-wk-old healthy female Wistar rats (initial BW of approximately 220–240 g)
were used in the study. Before the experiment, the rats were acclimatized to the new en-
vironmental conditions of the vivarium for 7 days. During the experiment, the rats were
housed in a room with controlled temperature (22 ± 2 ◦C) and humidity (55 ± 10%) under
a 12:12 h light–dark cycle with access to commercial diet for laboratory animals (Agropol,
Motycz, Poland) and water at all times (except for a period of overnight fasting prior to
the surgery and euthanasia). The rats were kept in plastic cages with sawdust bedding.
On the day of the surgery, the rats were anaesthetized with an intramuscular injection of
ketamine (Biowet-Puławy, Puławy, Poland), xylazine (SPOFA, Prague, Czech Republic),
and atropinum sulphuricum (Polfa-Warszawa, Warsaw, Poland) at the doses of 10, 10,
and 0.1 mg/kg of BW, respectively, and submitted to a sham operation (SHO; n = 10) or
an ovariectomy (OVX) (n = 30). During the SHO operation, an incision was made in the
abdominal wall, the viscera were repositioned manually, and the wound was sutured.
In turn, the ovaries were removed during OVX. After the surgery, the rats were placed
individually in plastic cages for a 7-day recovery period. No symptoms of postoperative
complications were observed. No analgesics were administered to the rats during the post-
operative period. Subsequently, the OVX rats were randomly divided into three groups
receiving orally 1 mL of physiological saline (OVX-PhS) (n = 10) or camelina oil in the
amount of 5 g/kg/BW (OVX-CO5; n = 10) or 9 g/kg/BW (OVX-CO9; n = 10) once a day
for 6 weeks of the experiment. The doses were selected based on the literature data on the
use flax oil, which is also characterized by a high ALA content. To determine the amount
of oil administered, the BW of the rats was monitored every two days. The control rats
(SHO; n = 10) received orally 1 mL of physiological saline. Animal plastic feeding tubes
(Fuchigami, Kyoto, Japan) were used for the oral administration of oil or PhS. After 6 weeks
of the experimental treatment, overnight fasted rats were weighted and euthanized by CO2
overdose. Then, blood was collected by cardiac puncture, and euthanasia was confirmed
by cervical dislocation. Blood samples were collected into sterile tubes for clotting and
then centrifuged at 3000 rpm for 30 min. Some serum samples were kept at −70 ◦C and
others were stored at −20 ◦C until analysis. After euthanasia, the body composition, bone
mineral density, and bone mineral content of total skeleton were determined. Afterwards,
the right femora were dissected, cleaned of soft tissues, weighed, and frozen at −20 ◦C
until further analysis.

2.2. Analysis of Fatty Acids in Camelina Oil

The fatty acids in the camelina oil were analyzed as methyl esters by gas chromatogra-
phy. Fatty acid methyl esters (FAME) were prepared according to regulation No. PN-ISO
5509:1996 [36]. FAME analysis was performed using a gas chromatograph Agilent 6890N
(Agilent Technologies, Santa Clara, CA, USA) equipped with a flame ionization detector
and a HP-SSAP capillary column (30 m × 0.53 mm × 1 µm) according to PNEN ISO
5508:1996 [37]. The results for each fatty acid were expressed as % of total FAME. The
composition of fatty acids in the camelina oil is presented in Table 1.
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Table 1. Fatty acid composition of camelina oil. The contents of particular fatty acids are presented
as a percentage of total FAME.

Fatty Acids Content

C14:0 0.05
C15:0 0.02
C16:0 5.12
C16:1 0.13
C17:0 0.06
C18:0 2.42
C18:1 14.94
C18:2 17.42
C18:3 33.95
C20:0 1.35
C20:1 14.35
C20:2 1.44
C20:4 1.03
C22:0 0.3
C22:1 2.91
C24:0 0.18
C24:1 0.67

Total n-6 PUFA 19.89
Total n-3 PUFA 33.95

2.3. Densitometric Analysis (DXA) of the Body Composition, Whole Skeleton, and Isolated Femur

Bone mineral density (Tot.BMD) and bone mineral content (Tot.BMC) of the total skeleton
and isolated right femora (fBMD, fBMC) were determined with the dual-energy X-ray absorp-
tiometry method (DXA) using a Norland Excell Plus Densitometer (Norland, Fort Atkinson,
WI, USA) equipped with Norland Illuminatus Small Subject Scan software v. 4.3.1. dedicated
to small animals. The DXA method was also used for evaluation of the body composition
parameters, e.g., lean mass (LM) and fat mass (FM). LM, FM, Tot.BMD, and Tot.BMC were
measured immediately after euthanasia. Previously frozen femurs were kept at room tempera-
ture for 12 h before scanning. The scanning was performed using the following parameters:
scout scan speed 100 mm/s, resolution 3.0 × 3.0 mm; measurement scan speed 10 mm/s,
resolution 1.0 × 1.0 mm [38]. The region of interest (ROI) after the scout scan was defined
manually. The densitometer was calibrated before every measurement series using quality
assurance phantoms provided by the manufacturer in agreement with established procedures.
To ensure credibility, all scans were performed by the same operator.

2.4. Peripheral Quantitative Computed Tomography (pQCT) of Isolated Femur

The right femurs were scanned by peripheral quantitative computed tomography
(pQCT) using an XCT Research SA Plus system with software version 6.2.C (Stratec Medi-
zintechnik GmbH, Pforzheim, Germany) [38]. The scans were performed in the middle
diaphysis (at 50% of bone length) for the analysis of shaft microarchitecture and cortical
bone tissue. Total bone mineral content (T.BMC), total volumetric bone mineral density
(T.vBMD), total bone area (T.Ar), cortical bone area (Ct.Ar), cortical bone mineral content
(Ct.BMC), cortical volumetric bone mineral density (Ct.vBMD), cortical thickness (Ct.Th),
periosteal (Peri.C), and endocortical (Endo.C) circumferences, polar moment of inertia of
cortical bone (PMI), and strength-strain index (SSI) were determined. Femur diaphysis
was tested with the threshold set at 0.790 cm−1 and at cortical mode 2. Initial scan was
performed at a speed of 10 mm/s, while proper scan was carried out at a speed of 4 mm/s.
The pQCT system was calibrated before every measurement series with the use of the
quality assurance phantom (pQCT QA-Phantom).
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2.5. Mechanical Testing

After DXA and pQCT scanning, the mechanical parameters of isolated femurs were
determined by a 3-point bending test with the use of a Zwick–Roell Testing Machine Z010
(Zwick–Roell GmbH and Co. KG, Ulm, Germany) as described earlier [38]. The apparatus
was equipped with a measuring head (XForce HP series) with an operation range from 0
to 1 kN at a constant speed of 10 mm/min. After measuring the length, the bones were
placed on two supports, and the measuring head loaded the midshaft perpendicularly to
the horizontal axis at 50% of bone length. The distance between the supports was set at
40% of femur length. The data were analyzed with testXpert II 3.1 software (Zwick–Roell
GmbH and Co. KG, Ulm, Germany). The ultimate force, work to fracture, and Young’s
modulus were determined.

2.6. Markers of Bone Metabolism

Serum interleukin-6 (IL-6), osteocalcin, and C-terminal telopeptide of type I collagen
(CTX-I) concentrations were measured using a commercial Rat IL-6 ELISA kit (DIACLONE
SAS, Besançon, France, No. 670.010.096), a Rat MIDTM Osteocalcin EIA kit (Immunodiag-
nostic Systems Ltd., Boldon, Tyne and Wear, UK, No. AC-12F1), and a RatLaps CTX-ITM
EIA kit (Immunodiagnostic Systems Ltd., Boldon, Tyne and Wear, UK, No. AC-06F1),
respectively. The analysis of bone metabolism markers was performed using a Benchmark
Plus microplate reader equipped with MicroplateManager software Version 5.2.1 (Bio-Rad
Laboratories Inc., Hercules, CA, USA).

2.7. Statistical Aanalysis

All data were presented as mean values ± S.E.M. A one-way analysis of variance
(ANOVA) and Tukey’s test were used to test the significant differences among the groups. For
all comparisons, p < 0.05 was considered as statistically significant. The analysis of significant
differences was performed with the use of STATISTICA 13.1 software (StatSoft, Inc. Tulsa,
OK, USA).

3. Results
3.1. Body Weight, Body Composition, Bone Mass, and Length

The final BW and LM were significantly higher in the experimental rats than in the
SHO group (Table 2). The BW in the CO-supplemented groups was by 10% higher than in
the SHO group. There were no significant differences in BW and LM between the OVX-
PhS and OVX rats treated with CO. The largest enhancement of LM was observed in the
OVX-CO5 group (by 24% vs. SHO). Moreover, all experimental groups were characterized
by higher values of FM, compared to the SHO animals. However, significant differences in
comparison to the control animals were found in the OVX-CO9 group. The CO treatment
significantly increased femur weight, compared to the SHO and OVX- PhS rats (Table 2).

3.2. DXA Parameters of Whole Skeleton and Femur

The values of the DXA parameters of the whole skeleton and isolated femurs are
presented in Table 2. The ovariectomy significantly decreased total skeleton BMC and BMD
by 12% and 8%, respectively, in comparison to these values in the SHO rats. Both groups
receiving CO were characterized by higher Tot.BMC than the OVX-PhS group, i.e., by
12% and 18%, respectively. The values of this parameter were similar to those in the SHO
group. Statistically significant differences in the Tot.BMD values were observed between
the OVX-PhS and SHO groups. No significant differences in Tot.BMD were found between
the SHO and CO-treated groups. The values of femur BMC and BMD were significantly
lower in the OVX-PhS group than in the SHO and both OVX-CO groups, i.e., by 10%, 12%,
and 11% for fBMC and by 3.5%, 7.2%, and 5.6% for fBMD, respectively. The values of fBMD
and fBMC in the SHO and OVX-CO groups were similar.
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Table 2. Final body weight, parameters of body composition, and densitometric and mechanical properties of femur.

Parameters SHO OVX-PhS OVX-CO5 OVX-CO9

BW (g) 295 ± 2 a 305 ± 6 324 ± 7 b 324 ± 10 b

LM (g) 213 ± 5 a 258 ± 8 b 264 ± 7 b 247 ± 6 b

FM (g) 23.8 ± 2.4 a 36.6 ± 5.8 47.1 ± 7,0 58.0 ± 11.9 b

Tot.BMC (g) 8.58 ± 0.20 a 7.55 ± 0.11 b 8.49 ± 0.24 a 8.94 ± 0.35 a

Tot.BMD (g/cm2) 0.143 ± 0.003 a 0.133 ± 0.002 b 0.137 ± 0.001 0.136 ± 0.001
Femur

weight (g) 0.78 ± 0.05 a 0.77 ± 0.04 a 0.85 ± 0.06 b 0.89 ± 0.08 b

length (mm) 34.9 ± 0.05 34.8 ± 0.06 35.3 ± 0.03 35.1 ± 0.06
fBMD (g/cm2) 0.094 ± 0.002 a 0.091 ± 0.001 b 0.098 ± 0.002 a 0.096 ± 0.001 a

fBMC (g) 0.336 ± 0.010 a 0.301 ± 0.006 b 0.341 ± 0.008 a 0.338 ± 0.007 a

Ultimate force (N) 111.3 ± 7.3 a 96.4 ± 7.1 a 176.9 ± 13.2 b 157.8 ± 12.3 b

Work to fracture (mJ) 14.35 ± 2.08 ac 10.86 ± 2.77 a 37.75 ± 6.33 b 29.82 ± 4.94 bc

Young’s modulus (GPa) 3.38 ± 0.15 2.79 ± 0.13 3.43 ± 0.39 3.03 ± 0.34

The results are means ± S.E.M (n = 10). The values in the rows are significantly different (p ≤ 0.05) as indicated by the superscripts: a, b, c.
Abbreviations: SHO —shame operated rats receiving physiological saline; OVX-PhS —ovariectomized rats receiving physiological saline;
OVX-CO5 —ovariectomized rats receiving camelina oil in the amount of 5 g/kg/BW; OVX-CO9 —ovariectomized rats receiving camelina
oil in the amount of 9 g/kg/BW; BW—body weight; LM—lean mass; FM—fat mass; Tot. BMC—bone mineral content of total skeleton; Tot.
BMD—bone mineral density of total skeleton; fBMD—bone mineral density of femur; fBMC—bone mineral content of femur.

3.3. pQCTMeasurements of Femur

The results of the pQCT measurement of cortical bone tissue in the femur midshaft
are shown in Table 3. The lowest values of most of the analyzed parameters were observed
in the OVX-PhS group. The camelina oil treatment significantly elevated T.vBMD, T.BMC,
Ct.A, and Ct.Th, compared to these parameters in the OVX-PhS rats. The bone parameters
were increased in the OVX-CO5 and OVX-CO9 groups as follows: T.vBMD—by 11.5%
and 8%; T.BMC—by 8% and 9%; Ct.Ar—by 8% and 7%; and Ct.Th—by 10% and 8%,
respectively. Moreover, Ct.BMC in the OVX-CO9 group was by 9% higher in comparison
to the OVX-PhS group.

Table 3. Tomographic analysis (pQCT) of bone tissue in the middle part of femur diaphysis.

Parameters SHO OVX-PhS OVX-CO5 OVX-CO9

T.vBMD (mg/mm3) 805 ± 6 a 764 ± 9 b 852 ± 7 c 827 ± 6 ac

T.BMC (mg/mm) 7.30 ± 0.11 7.15 ± 0.04 a 7.74 ± 0.19 b 7.81 ± 0.18 b

Ct.vBMD (mg/mm3) 1420 ± 4 1419 ± 3 1424 ± 5 1430 ± 4
Ct.BMC (mg/mm) 6.83 ± 0.12 a 6.74 ± 0.06 a 7.19 ± 0.17 7.32 ± 0.14 b

T.Ar (mm2) 9.09 ± 0.18 9.08 ± 0.19 9.31 ± 0.23 9.69 ± 0.17
Ct.Ar (mm2) 4.73 ± 0.07 4.77 ± 0.06 a 5.13 ± 0.11 b 5.11 ± 0.09 b

Ct.Th (mm) 0.527 ± 0.003 a 0.522 ± 0.004 a 0.569 ± 0.011 b 0.558 ± 0.006 b

Peri.C (mm) 10.7 ± 0.1 10.7 ± 0.1 10.8 ± 0.1 10.9 ± 0.1
Endo.C (mm) 7.41 ± 0.10 6.89 ± 0.64 7.37 ± 0.15 7.46 ± 0.10
PMI (mm4) 10.35 ± 0.37 10.17 ± 0.33 11.24 ± 0.45 11.58 ± 0.42
SSI (mm3) 5.67 ± 0.12 5.45 ± 0.10 5.97 ± 0.19 6.17 ± 0.22

The results are means ± S.E.M (n = 10). The values in the rows are significantly different (p ≤ 0.05) as indicated by the superscripts: a, b, c.
Abbreviations: T.vBMD—total volumetric bone mineral density; T.BMC—total bone mineral content; Ct.vBMD—cortical volumetric bone mineral
density; Ct.BMC—cortical bone mineral content; T.Ar—total bone area; Ct.Ar—cortical bone area; Ct.Th—cortical thickness; Peri.C—periosteal
circumferences; Endo.C—endocortical circumferences; PMI—polar moment of inertia of the cortical bone; SSI—strength-strain index.

3.4. Mechanical Parameters of Femur

The results of the mechanical tests of bone are presented in Table 2. Although there
were no statistically significant differences between the OVX-PhS and SHO rats, the values
of the tested parameters were lower in the OVX rats in all cases. The ultimate force
was significantly increased in the OVX-CO5 and OVX-CO9 groups in comparison to the
OVX-PhS group. The values of ultimate force in the OVX-CO5 and OVX-CO9 groups
were by 84% and 64% higher than in the OVX-PhS group. In turn, the values of work to
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fracture were also significantly higher in the OVX animals treated with CO than in those
receiving PhS. Neither the ovariectomy nor the camelina oil treatment affected the Young’s
modulus significantly.

3.5. Biochemical Markers of Bone Metabolism

The values of the biochemical markers of bone metabolism are presented in Table 4.
The lowest serum osteocalcin concentration was noted in the control SHO rats. The ovariec-
tomy caused an increase in the osteocalcin concentration. A significantly higher concentra-
tion of osteocalcin was observed in the CO-treated ovariectomized rats than in the SHO and
OVX-PhS rats. The serum CTX-I concentration was significantly elevated in the OVX-PhS
animals in comparison to the SHO and CO-treated groups. The serum concentration of
CTX-I was by 63%, 36%, and 36% higher in OVX-PhS than in SHO, OVX-CO5, and OVX-
CO9, respectively. The IL-6 concentration increased in the OVX-PhS animals compared
with the SHO rats. No significant changes were observed between the CO-treated groups
and the other groups. However, the concentration of IL-6 was lower in both CO groups
than in the OVX-PhS animals.

Table 4. Biochemical markers of bone metabolism.

Parameters SHO OVX-PhS OVX-CO5 OVX-CO9

Osteocalcin (ng/mL) 129.7 ± 8.4 a 246.9 ± 14.8 b 378.2 ± 25.1 c 356.7 ± 23.0 c

CTX-I (ng/mL) 18.37 ± 1.95 a 30.01 ± 2.11 b 22.13 ± 1.68 a 22.14 ± 1.74 a

IL-6 (pg/mL) 280.3 ± 26.2 a 457.2 ± 53.7 b 307.5 ± 32.1 292.7 ± 39.9

The results are means ± S.E.M (n = 10). The values in the rows are significantly different (p ≤ 0.05) as indicated by the superscripts: a, b, c.
Abbreviations: CTX-1—C-terminal telopeptide of type I collagen; IL-6—interleukin-6.

4. Discussion

Ovariectomy results in deficient estrogen production and consequent negative changes
in bone metabolism, leading to bone loss and increased susceptibility to fractures. However,
a number of mechanisms may contribute of this effect. Ovary removal in rats also results in
progressive bone loss and changes in bone parameters. Such changes in the densitometric,
tomographic, and strength parameters were earlier found in experimental animals [39–41].

In the present study, the OVX rats exhibited significant bone loss manifested in the
reduction in Tot.BMD, Tot.BMC, fBMD, fBMC, work to fracture, and T.vBMD. Moreover,
the changes in the Il-6 and CTX-I levels detected in this study confirm the negative effect
of ovariectomy on bone metabolism. In the OVX rats, the IL-6 and CTX-I levels were
elevated in comparison to those in the control rats. Ovariectomy stimulates the IL-6
production, which is known to be up-regulated in a state of estrogen deficiency [42], and
leads to an increase in the CTX-I concentration. Estrogen deficiency can also increase
the concentration of IL-1, TNF-α [42], and other bone metabolism markers, i.e., bone
alkaline phosphatase (bALP) as a marker of bone formation and bone disorders, as well as
tartrate-resistant acid phosphatase (TRAP) as a bone resorption marker [43].

The results of our study indicate that the camelina oil treatment reduced the ovariectomy-
stimulated negative changes in bone tissue. After the application of CO, we observed
suppression in osteoclast-pathway activity, as evidenced by the suppression of the decrease
in the values of Tot.BMC, T.vBMD, fBMD, fBMC, and work to fracture caused by estrogen
deficiency. Moreover, the CO treatment restored the elevated level of the CTx values in the
OVX rats to the SHO values. In a human study, a significant decrease in the CTX level was
found after supplementation with n-3 PUFAs [44]. The decrease in bone resorption markers
was also observed by Griel et al. [45]. In a study conducted by Boulbaroud et al. [43], flaxseed
and sesame oil supplementation decreased bALP and TRAP levels. However, there are also
literature data that indicate no changes in bone resorption and formation markers in healthy
individuals [46].

Based on the present results, it can be assumed that CO also affects bone formation.
This is evidenced by the higher values of some parameters in the OVX oil-receiving animals
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compared to the SHO group. Primarily, the OVX rats receiving CO had significantly
higher serum osteocalcin levels than the SHO animals. This increase in the osteocalcin
concentration may evidence bone turnover on the one hand and bone formation on the
other. However, the simultaneous increase in the values of bone mass, Ct.Th, Ct.BMC, and
T.vBMD indicates stimulation of bone formation.

Previous studies have shown that n-3 PUFAs supplementation reduced bone loss in OVX
rats [47,48]. Moreover, a positive effect of dietary soybean, as well as flaxseed and sesame
oils, on femur bone density and calcium content in bone ash was observed in osteoporotic
rats by Wahba et al. [9]. In turn, a positive effect of flaxseed and sesame oils connected with
partial mitigation of osteoporotic changes in OVX rats was described by Boulbaroud et al. [43].
A beneficial impact of flaxseed oil and soybean oil on the prevention of negative changes
in bone rats was also reported by Hassan et al. [10] and El-Saeed et al. [13]. As shown by
Elbahnasawy et al. [14], enhanced bone formation and reduction in bone loss markers, as
reflected by reduced CTX levels in plasma, was observed after administration of soybean
and flaxseed oils in a GC-induced osteoporosis model. Thus, our results are in line with
other studies.

There are several mechanisms by which n-3 and n-6 fatty acids affect bone tissue. For
instance, PUFAs can modulate calcium absorption, production of inflammatory cytokine
and prostaglandins, and regulation of osteoblast and osteoclast activity by changing the
fatty acid composition in bone cell membranes [49,50]. n-3 PUFAs have been reported
to suppress osteoclast activity and improve osteoblast activity [51,52]. PUFAs influence
intestinal calcium absorption via both active and passive transport. DHA, but not EPA
and AA, stimulated active calcium transport by increasing Ca2+-ATPase activity in the
basolateral membrane of duodenal enterocytes [53]. However, supplementation with fish
oil and evening primrose oil also resulted in an increase in calcium transport across the
basolateral membrane [54]. The changes in calcium transport are caused by the incorpora-
tion of long-chain PUFAs into the cell membrane. On the one hand, this leads to increased
membrane fluidity, permeability, and speed of flip-flop transport across the membrane
and, in consequence, cellular uptake of different molecules, particularly via passive trans-
port [55,56]. On the other hand, increased membrane unsaturation alters the dispersion of
lipid rafts within membranes and can modulate the activity of membrane proteins, e.g.,
Ca2+-ATPase [57,58].

Inflammatory cytokines play a crucial role in the pathogenesis of osteoporosis by
stimulation of bone resorption and inhibition of osteosynthesis. IL-1, IL-6, and TNF-α are
involved in bone metabolism [8]. n-6 PUFAs increase the synthesis of proinflammatory
cytokines by bone cells, whereas n-3 acids attenuate this effect [45,59]. Upon increasing
dietary intake of n-3 PUFAs, n-3 acids partially replace n-6 acids in the cell membranes,
and the increasing n-3/n-6 PUFA ratio may result in changes in membrane function, and
reduction in the synthesis of proinflammatory factors [60–62]. Flaxseed oil supplementation
was reported to reduce the TNF-α level [45,63]. In turn, no changes in IL-1 and IL-6 levels
after flaxseed and walnut oil supplementation were observed [45]. In our study, we
investigated the serum level of IL-6, which was elevated by the ovariectomy. The camelina
oil supplementation reversed this effect. However, these results were not statistically
significant. Il-6 is known to promote the development of osteoclasts and to stimulate bone
resorption [8]. Its production was stimulated by 2-series prostaglandins (PGE2) [64,65]
and Il-1 [66]. PGE2 is one of the modulators of bone remodeling. It has been shown to
mediate both bone formation and resorption [67,68]. At a physiological concentration,
PGE2 positively influences bone growth [69,70].

Modification of dietary PUFAs leads to alterations in prostaglandin metabolism [71–73].
PUFAs n-6 and n-3 are precursors for PGE2 and PGE3, respectively. Dietary PUFAs, partic-
ularly the n-6/n-3 ratio, are important factors for the bone marrow fatty acid profile, and
this in turn determines the capacity of bone for synthesis of PGE2 [72–74]. It was found that
a rise in the dietary n-6/n-3 ratio was accompanied by an increase in the level of PGE2 and
a decline in Ca, P, and Mg contents in bone [73]. On the other hand, a low ratio of n-6/n-3
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PUFAs decreased PGE2 production and improved bone formation [69]. AA, cleaved from
membrane phospholipids of osteoblasts, is a substrate of cyclooxygenase-2 (COX-2) for
PGE2 synthesis. Some data indicate that n-6 PUFAs up-regulate COX-2 expression and stim-
ulate production of PGE2, whereas n-3 PUFAs diminish COX-2 expression [75]. An increase
in the n-3 PUFAs content in diet may lead to displacement of AA from phospholipids and
reduction in PGE2 synthesis [71,76]. PGE3 synthesized from EPA also mediates bone cell
function. However, AA is more easily synthesized to PGE2 than EPA is to PGE3 [77]. The
reduction in PGE2 was observed in rats after flaxseed and menhaden oil administration,
but it was not accompanied by changes in femur area, BMC, and BMD [72]. Similar results
were observed in chicken receiving flaxseed oil alone or in combination with palm oil [78].
The decreased PGE2 concentration was not associated with changes in bone characteristics.
However, flaxseed oil supplementation led to an increase in the ALP concentration and
a decrease in the TRAP concentration.

A high level of PGE2 leads to bone resorption [79,80]. This may be related to stimula-
tion of the expression of the receptor activator of nuclear factor NF-kB ligand (RANKL)
on osteoblast and its receptor (receptor activator of nuclear factor NF-kB, RANK) on os-
teoclasts and reduction in the expression of the decoy receptor, osteoprotegerin (OPG), on
osteoblasts by the high level of PGE2 [81,82]. The binding of RANKL to OPG prevents
osteoclastogenesis, whereas binding to RANK stimulates this process [83]. Currently, the
balance of RANKL/OPG is considered very important for bone metabolism and the patho-
genesis of resorptive bone disease [84]. Thus, a high level of PGE2 has a stimulating effect
on osteoclastogenesis and OC activity [85,86]. It has been found that AA leads to enhanced
synthesis of RANKL, which binds to RANK on osteoclast precursors stimulating osteo-
clastogenesis and maturation of osteoclasts [79]. Moreover, AA inhibits the synthesis of
OPG [82]. PGE3 synthesized from EPA also promotes osteoclastogenesis but the conversion
EPA to PGE3, as mentioned before, is less efficient.

The favorable effect of n-3 acids on bone tissue was observed not only in rats, but also
in other animal species [87]. Higher values of the cortical wall thickness, cross-sectional
area, cortical index, BMC, BMD, maximum elastic strength, and maximum strength were
determined for femurs of pigs after linseed oil supplementation [88]. Flax oil alone or in
combination with palm oil had a positive effect on the biomarkers of bone growth and
increased tibia calcium levels in broiler chickens [78]. However, no significant differences
in BMD, BMC, strength parameters, and ash percentage after flaxseed supplementation
were observed in piglets and chickens [15,89,90]. The source of PUFAs, i.e., the type of
oil, seems to be important for the impact of PUFAs on bone tissue. Equally important is
the ratio of n-3 to n-6 PUFAs. Nevertheless, the literature data on the effect of individual
vegetable oils on animal bones are not explicit.

5. Conclusions

Our research has shown that camelina oil has a positive osteotropic effect via inhibition
of adverse changes in bones caused by ovariectomy. The administration of the oil yielded
similar or even better densitometric, tomographic, and mechanical parameters of the
bones in the OVX rats in comparison with the values in the control rats. These results are
confirmed by the changes in the concentration of bone metabolism markers. The decrease
in the serum concentration of CTX-I with the simultaneous increase in the concentration of
osteocalcin indicates suppression of bone tissue resorption by inhibition of the osteoclastic-
pathway on the one hand and an increase in bone turnover with a simultaneous advantage
of bone formation over resorption on the other hand. Camelina oil supplementation can
be an efficient method for improving bone health in a disturbed health state. However,
further research must be carried out on other animal species supplemented with this oil. In
addition, it is also necessary to investigate the effect of camelina oil on bones in individuals
without bone changes.
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