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Abstract

Dengue virus, the causative agent of dengue disease which may have hemorrhagic complications, poses a global
health threat. Among the numerous target cells for dengue virus in humans are monocytes, macrophages and mast
cells which are important regulators of vascular integrity and which undergo dramatic cellular responses after infection
by dengue virus. The strategic locations of these three cell types, inside blood vessels (monocytes) or outside blood
vessels (macrophages and mast cells) allow them to respond to dengue virus infection with the production of both
intracellular and secretory factors which affect virus replication, vascular permeability and/or leukocyte extravasation.
Moreover, the expression of Fc receptors on the surface of monocytes, macrophages and mast cells makes them
important target cells for antibody-enhanced dengue virus infection which is a major risk factor for severe dengue
disease, involving hemorrhage. Collectively, these features of monocytes, macrophages and mast cells contribute to
both beneficial and harmful responses of importance to understanding and controlling dengue infection and disease.
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Introduction

Dengue is the most common mosquito-transmitted viral
infectious disease, and therefore represents a major global
health threat, especially in tropical and subtropical areas of
the world. Over the past several decades, there has been an
increase in dengue cases due to many factors, including in-
creased air travel and climate change. It has been estimated
that there are 390 million infections per year, of which
96 million cases show clinical manifestations [1]. Dengue
virus (DENV) is a member of the Flavivirus genus of the
Flaviviridae family and its genome is a single-stranded,
positive-sense RNA, which encodes three structural pro-
teins: envelope (E), premembrane/membrane (prM/M) and
capsid (C) proteins, and seven nonstructural (NS) proteins
[2]. There are at least four serotypes of DENYV, all of which
can cause disease. Most dengue patients present with den-
gue fever (DF) including fever, headache, bone pain and
skin rash, but some may progress to life-threatening dengue
hemorrhagic fever (DHF) or dengue shock syndrome (DSS)
with major features of high levels of proinflammatory
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cytokines, vascular leakage, thrombocytopenia, hemorrhage,
and hypotensive shock [3, 4]. There is still a demand for
satisfactory vaccines and antiviral drugs. Although there is a
licensed vaccine and several ongoing vaccine candidates in
clinical trials, they confer only partial protection against
DENV infection by some serotypes and may carry the risk
of antibody-dependent enhancement (ADE) [5, 6]. The diffi-
culty of eliciting balanced efficacy of neutralizing antibodies
against all four DENV serotypes remains a major concern.
Both innate and adaptive immune responses to DENV
play significant roles in protection against DENYV, but
can also elicit pathological responses which may worsen
disease [2, 7]. Understanding the mechanisms that regu-
late immune-mediated protection versus pathogenesis is
critical for the development of safe and effective dengue
vaccines and therapeutic agents [4, 7]. DENV can perturb
vascular endothelium by multiple mechanisms, including
vasoactive factors from intravascular cells such as mono-
cytes and lymphocytes, and from extravascular cells such as
mast cells and tissue macrophages. Various factors pro-
duced by T cells, monocytes, macrophages, and mast cells
have been proposed to increase vascular permeability, in-
cluding tumor necrosis factor (TNF), IL-1p, IL-6, CXCL8
(IL-8), macrophage migration inhibitory factor (MIF),
CCL2 (also known as monocyte chemoattractant protein-1,
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MCP-1), high mobility group box-1 (HMGB-1) and matrix
metalloproteinases [4, 8].

Although DENV infects several cell types, monocytes,
macrophages and mast cells are major responders to
DENV infection by producing potent immunological me-
diators, including cytokines, chemokines, lipid-derived
mediators and more. By virtue of cell surface expressed Fc
receptors they can also function as major amplifiers of
DENYV infection in the presence of subneutralizing levels
of antibody by the mechanism of ADE. In this review, we
will focus on cells and cellular networks encompassing
monocytes, macrophages, and mast cells that can uniquely
amplify DENV infection by ADE and modulate pathogen-
esis by release of cytokines, chemokines, proteases and
other factors.

The monocyte-macrophage-mast cell axis

Monocytes (and monocyte-derived cells including macro-
phages) as well as mast cells originate from bone marrow
common myeloid progenitors (CMPs) by two distinct
pathways. Monocytes differentiate from CMP-derived
granulocyte/monocyte progenitors (GMPs) while mast
cells develop from CMP- or GMP-derived mast cell
progenitors (MCPs) which home to peripheral tissues
where they progress to mature mast cells [9]. Mature
mast cells, like their precursor MCPs, express the
stem cell factor receptor CD117 (c-kit) and the high
affinity FceR but differ from MCPs most notably by their
high content of granules [10]. While monocytes remain
largely in the circulation, monocyte-derived cells (includ-
ing macrophages) as well as mast cells are resident in the
tissues. All three cell types are potent producers of cyto-
kines, chemokines and other factors some of which affect
vascular integrity. Their locations either within or in close
proximity to blood vessels as well as their potent innate
immune responses to DENV infection allows them to
function as an “axis” in regulating the fine balance be-
tween virus replication/suppression and disease.

Monocytes and DENV

Peripheral blood mononuclear cells, particularly monocytes
have long been recognized as major targets of DENV infec-
tion and amplification [11-14], especially in the presence of
low levels of dengue-specific antibody. The dramatic
enhancement by dengue antibody of DENV replication
in monocytes and certain other cells is known as ADE
[15, 16]. DENV comprises four serotypes (designated
1-4) against each of which the respective homotypic
antiserum is much more effective than heterotypic anti-
serum in virus neutralization. ADE is hypothesized to
contribute to heightened dengue disease severity and is
believed to arise upon sequential infection of an indi-
vidual with two different DENV serotypes in which
antibody produced against the first serotype enhances
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infection of the second. The formation of virus-antibody
complexes in such individuals gives rise to increased virus
replication in cells bearing Fc receptors (eg. monocytes
and a select number of other cells), triggering amplified
virus- and immune-mediated pathogenic effects. In con-
cordance with the ADE hypothesis is a study showing
higher numbers of FcyRII bearing DENV-infected mono-
cytes in DHF compared to DF patients [14]. Single nucleo-
tide polymorphisms in the FcyRII gene are also associated
with altered susceptibility to severe dengue disease [17].

ADE of DENV infection has been differentiated into
intrinsic and extrinsic components, denoting intra- and
extracellular events respectively [18, 19]. Extrinsic ADE
is believed to result from increased virus binding and
internalization via virus-antibody complex ligation of
Fc receptors. Intrinsic ADE, which results from signal-
ing through ligated FcRs, is postulated to suppress anti-
viral responses, selectively enhance cytokine production
(particularly IL-10) and enhance virus replication [19].
Additional or alternative mechanisms may also be in-
volved [20].

Infection of monocytes by DENV is dependent on
monocyte phenotype, as defined by relative expression
levels of certain protein markers which are associated
with differentiation or activation status [14, 21, 22]. Human
monocytes are in fact a heterogeneous population which
can be grouped into at least three subsets [23, 24]. One
study found DENV infection predominantly in one subset
of monocytes expressing CD14, CD32, CD86 and CDl11c
[14]. Another study reported upregulation of CD14 and
CD16 in DENV-infected blood monocytes which mediate
B cell to plasmablast differentiation and production of IgM
and IgG [22]. However, another study reported no increase
in blood CD14" CD16" monocytes [25]. A correlation be-
tween DENV-induced monocyte activation and severity of
disease has been reported [14].

DENV infection of monocytes triggers the release of
numerous immunological factors, some of which modulate
the function of other cells, particularly vascular endothelial
cells. Endothelial cells are activated by TNF released by
antibody-enhanced DENV-infected monocytes [26]. Circu-
lating TNF levels are altered in severely afflicted dengue pa-
tients [27-29] and TNF is a crucial factor in DENV-induced
hemorrhage in a mouse model [30]. Moreover, human gen-
etic studies of cytokine gene polymorphisms highlight a
strong role for TNF in the severity of dengue disease [17].

In addition to TNEF, other monocyte-secreted factors
can prime or trigger endothelial cell permeability leading
to vascular leakage, a major hallmark of severe dengue
disease. Other cells including lymphocytes and endothe-
lial cells themselves can further contribute to vascular
leakage via the secretion of similar or other vasoactive
factors. Which of these factors predominate in triggering
dengue-associated endothelial permeability is widely
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debated, but likely candidates include vascular endo-
thelial growth factor (VEGF), platelet activating fac-
tor (PAF), leukotrienes, matrix metalloproteinase-9
(MMP-9), sphingosine-1-phosphate (S1P), DENV NSI1
protein (reviewed in [8]) as well as MIF [31] and glycos-
aminoglycans such as hyaluronic acid and heparan sulfate
[32]. The dominant source(s) of these factors awaits de-
finitive identification, but likely includes monocytes, lym-
phocytes, endothelial cells and platelets. Platelets, which
have been shown to undergo marked changes in protein
expression during dengue infection [33], may also enhance
cyto/chemokine production by DENV-infected monocytes
through a contact-dependent mechanism [34].

A picture of complex cellular interplay during dengue
infection is beginning to emerge. For example, dengue-
infected monocyte-derived dendritic cells are able to
activate natural killer (NK) cells which in turn may sup-
press DENV infection of monocytes by a mechanism
involving interferon (IEN)-y [35]. DENV replication in
monocytes may also be suppressed by NK cell activation
through a TRAIL-dependent mechanism augmented by
type I IENs [36]. On the other hand, monocyte-derived
dermal macrophages bind and internalize DENV into
early phagosomes but do not permit virus replication
and may therefore have a role in sequestration and early
control of the virus. Such DENV-exposed dermal macro-
phages apparently do not produce IFN-a [37] and there-
fore likely restrict virus replication in themselves without
conferring antiviral resistance on other cells.

Monocyte-derived cells do not always have a protect-
ive role in DENV infection. In the mouse model, mono-
cytes which migrate to the virus inoculation site in the
dermis and differentiate into dendritic cells may become
fresh targets for virus replication in the skin [38, 39].

It is important to note that DENV-induced cellular
(including monocytic) infiltration into the skin is not
generalized, but rather is restricted to the site of virus
inoculation as indicated by studies on mice [38, 39] as
well as cynomolgus macaques [25]. Although limited,
studies on humans also indicate a lack of widespread
cellular infiltration into skin even in patients showing
severe dengue disease, i.e. DSS [25].

Monocytes and monocyte-derived cells therefore play
seemingly synergistic as well as opposing roles in dengue
disease. In addition to their important beneficial role in
virus clearance by activating T cells in the draining lymph
node [40], they may also contribute either negatively or
positively to virus replication in the skin.

Role of apoptosis in DENV-monocyte interactions

Apoptosis of peripheral blood mononuclear cells (PBMCs),
including lymphocytes and monocytes as well as phagocytic
engulfment of apoptotic cells were noted in children with
acute DENV infection [41]. Such apoptosis was proposed
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to represent a modulating mechanism for both virus repli-
cation as well as cell-mediated immune responses [41].
Apoptosis has also been observed in DENV-infected mono-
cyte and/or macrophage cultures [42—46]. Multiple mecha-
nisms of apoptosis induction have been proposed including
components of both the intrinsic and extrinsic pathways.
Caspase-8 activation and concomitant TNF production has
been reported in DENV-infected monocyte-like U937 cells
[43]. Caspase-1 has been implicated in both IL-1 produc-
tion and pyroptosis in DENV-infected monocytes [47].
IL-1pB is a known activator of endothelial cells and, along
with monocyte-produced TNF [26], could contribute to
vascular permeability in dengue disease.

Macrophages and DENV

Jessie et al. [48] identified DENV antigen and RNA in
macrophages, multinucleated and reactive lymphoid cells
in the spleen, Kupffer cells and sinusoid endothelial cells
of liver, and macrophages and endothelial cells in the
lungs of human autopsied and biopsied samples. Balsitis
et al. [49] identified DENV NS3 protein in phagocytes of
spleen and lymph nodes, in alveolar macrophages in the
lungs, and in perivascular cells in the brains from dengue
autopsy cases. An in vitro study also showed that primary
human peripheral monocytes and splenic macrophages
are permissive for DENV [50]. The mannose receptor on
primary human macrophages that binds to the envelope
protein of DENV through its carbohydrate-recognition
domain may be responsible for recognition and uptake of
the virus [51]. The observation that IL-4 treatment ren-
ders human dermal macrophages and dendritic cells iso-
lated from healthy human abdominal skin permissive to
DENV infection [52] could be the result of upregulation
of the mannose receptor on macrophages by IL-4 [53].

In Statl”” mice infected with DENV, Chen et al.
identified CLEC5A as a receptor for DENV [54]. Block-
ing CLEC5A protected mice from DENV-induced path-
ology and death [54]. CLEC5A has also been identified
as the receptor that mediates DENV-induced IL-1 on
GM-CSF-stimulated human monocyte-derived macro-
phages [55].

In AG129 mice infected subcutaneously with DENV2
(PLO46 or mouse-adapted D2S10), viral E and NS1 pro-
teins are detected in F4/80"CD11b" macrophages and
CD11c" dendritic cells in the spleen and other lymphoid
tissues during the early phase of infection [56]. By inocu-
lation of labeled DENV intravenously to AG129 mice,
Prestwood et al. [57] found that macrophages, initially in
lymphoid tissues, especially in the spleen, are the main
virus targets. In the later phase of infection, however,
macrophages in non-lymphoid tissues also become tar-
gets of DENV replication. In wild-type mice infected by
DENV2 through the intradermal route, both macro-
phages and endothelial cells are targets of the virus [30].
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Macrophages are recruited to the vicinity of endothelium
during hemorrhage development [58]. Their recruitment
and response to the virus has a profound impact on the
pathogenesis of hemorrhage [30].

Cytokine production by macrophages in response to
DENV

Human monocyte-derived macrophages infected with
DENV in vitro produce TNF, IFN-a, IL-1B, CXCLS
(IL-8), IL-12, CCL3 (MIP-1a) and CCL5 (Regulated on
Activation Normal T cell Expressed and Secreted, RANTES)
[12]. Autopsy tissues from dengue patients showed elevated
levels of IEN-y and TNF expressing cells in livers, lungs and
kidneys [59] and DENV RNA was detected in Kupffer
cells producing these two cytokines [59]. The relation-
ship between TNF and hemorrhage is worth noting. An
early study in Thai children showed that plasma level
of soluble TNF receptor (sTNFR) detected at <72 h of
fever is higher in children who developed DHF than
those who had DF and TNF was detectable more often
in children with DHF than with DF and children with
fever from non-dengue-related illness [60]. TNF, which
activates endothelial cells, is also produced by DENV-
infected monocytes [26] and mast cells [61]. In a den-
gue hemorrhagic mouse model, skins obtained from
hemorrhagic sites express higher levels of TNF transcripts
and protein than that from non-hemorrhagic sites and TNF
deficiency impedes DENV-induced hemorrhage develop-
ment [30]. Immunofluorescence staining of hemorrhage
tissues revealed that TNF co-localizes with macrophages
and DENV infection of macrophages in vitro also induces
TNF production [30]. These data demonstrate that
TNF is important in severe dengue in humans as well
as hemorrhage development in the mouse.

Role of apoptosis in DENV-macrophage interactions
Human liver Kupffer cells respond to DENV infection
with cytokine production and apoptosis [62]. Although
DENV replication is low or absent in cultured Kupffer
cells [62], DENV antigen is detectable in Kupffer cells
and hepatocytes in human autopsy studies [63]. Phago-
cytic Kupffer cells may also play a role in clearance of
virus-induced apoptotic bodies in infected tissues [64].
Apoptosis is also observed in endothelial cells which
are important targets of monocyte/macrophage action.
Importantly, TNF and DENV-induced endothelial cell
death resulted in alteration of endothelial permeability
and pan-caspase treatment reversed its effect [58]. These
results demonstrate that infection of endothelial cells by
DENV in the presence of TNF changes endothelial per-
meability through caspase-dependent cell death. In the
hemorrhage mouse model, hemorrhage development is
accompanied by macrophage recruitment and endothelial
cell death [58]. Macrophage production of TNF in the
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vicinity of endothelium that is infected with DENV may
enhance endothelial cell death which contributes to
hemorrhage development.

It is of interest to note that DENV NS2B/3 protease
enzymatic activity is critical to DENV-induced endothe-
lial cell death [65]. DENV NS2B/3 protease cleaves host
cell IkBa and IkBp. By inducing IxBa and IkBf cleavage
and IkB kinase activation, enabling p50 and p65 transloca-
tion to the nucleus, DENV NS2B/3 protease activates
NF-kB which results in endothelial cell death. Injecting
DENV NS2B/3 protease packaged in adenovirus-associated
virus-9 intradermally to mice induces macrophage infiltra-
tion, endothelial cell death and hemorrhage development
[65]. Thus, the presence of TNF-producing macrophages
near blood vessels contributes to DENV protease-induced
endothelial cell death and hemorrhage development. A de-
piction of the possible events triggered by DENV infection
that lead to hemorrhage development is shown in Fig. 1.

Mast cells and DENV

Mast cells are well known for their involvement in in-
flammation and allergy but recent studies indicate a
broader role in immunological responses [66—69]. The
abundance of mast cells at mucosal sites and skin con-
fers on them a sentinel function for the early detection
and disposition of invading pathogens. Upon appropriate
stimulation, mast cells selectively produce and secrete a
variety of mediators including chemokines, cytokines,
lipid mediators and granule associated products. Mast
cells reside mainly in the tissues and have been shown
to associate closely with blood vessels [70] and nerves
[71]. Human mast cells can express both FceRI [72, 73]
and some Fcy receptors including FcyRI [74, 75] and
FcyRII [76, 77] and contain FcyRIII mRNA [76].

Mast cells have aroused speculation for many years as
to their possible involvement in dengue pathogenesis.
Mast cells are located in the skin and mucosa which are
the first line of defense against pathogens. In addition to
dendritic cells (including Langerhans cells) and macro-
phages [78], mast cells also encounter DENV early in in-
fection [79]. DHF patients exhibit increased levels of
urinary and plasma histamine which is a major granule-
associated mediator from mast cells [80, 81]. Levels of mast
cell-derived VEGF and proteases are also increased in DSS
patients [82]. Furthermore, mast cell-derived chymase
also promotes vascular leakage in a DENV-infected
mouse model [83]. In vitro studies indicated that
antibody-enhanced DENV infection of mast cells se-
lectively induces production of chemokines including
CCL3, CCL4 and CCL5 [84, 85], as well as cytokines
including IL-6, IL-1 and TNF [61, 86]. TNF produced
from antibody-enhanced DENV infection of mast cells
as well as of monocytes can trigger endothelial cell ac-
tivation [26, 61]. These findings suggest that mast cells
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Fig. 1 Dengue virus interactions with macrophages and endothelial cells that lead to hemorrhage development. a Inoculation by mosquito bite
of DENV (DV) into the skin. b The virus infects several cell types including endothelial cells (ECs). ¢ DENV induces production of chemokines that
attract macrophages. d DENV stimulates macrophages to produce TNF. e DENV NS2B/3 protease interacts with and cleaves cellular IkBa/IkB3.
DENV NS2B/3 protease also activates IKK, which phosphorylates IkBa and IkBf. IkBa/IkB cleavage enables p50 and p65 translocation into the
nucleus, thereby activating NF-kB which results in endothelial cell death. f The presence of TNF in the microenvironment enhances DENV-primed
EC apoptosis. Endothelium damage/increased vascular permeability results in hemorrhage development. Solid arrows represent events that
enhance endothelium damage. Dotted arrow indicates an event that is speculated to occur [30, 58, 65]
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likely play a role in vascular function as well as
leukocyte recruitment during DENV infection.

Most significantly, mast cells are susceptible to antibody-
enhanced DENV infection via the mast cell FcyRII [87].
Mast cell responses to antibody-enhanced DENV infection
have revealed potent immunoregulatory activities of these
cells, including secretion of TNF [61] and the chemokines
CCL3, CCL4 and CCL5 [84]. Together with other pub-
lished reports [67, 68, 88, 89], these studies reinforce the
role of mast cells as innate immune effectors in response to
a variety of virus infections. Chemokines such as CCL3,
CCL4 and CCL5 are important for the trafficking of leuko-
cytes such as monocytes, T cells, and NK cells, all of which
are suggested to play important roles in dengue infection.
Serum levels of CCL3, CCL4 and CCL5 are altered [90-93]
and tissue levels of chemokine-producing cells are elevated
[59, 93] in dengue patients. In particular, serum levels of
CCL4 are increased in mild dengue and may be of good
prognostic value [93].

Induction of innate immune factors in DENV-infected
mast cells

The cellular molecules by which DENV is detected by
the innate immune system have been partly characterized.
RIG-I or MDAS5 have been implicated in the production of

CCL5 and CXCLS8 by a number of viruses, including DENV
as well as viral RNA homologs [85, 94, 95]. Upregulation of
RIG-I and MDA5 mRNA has been demonstrated after
DENYV infection in a rodent mast cell line [79] as well as
antibody-enhanced DENV infection of human mast cells
[85]. Protein kinase dsRNA dependent (PKR) recognizes
dsRNA and can mediate the inhibition of protein transla-
tion in response to type I IFNs and DENV dsRNA [96].
Together, all three RNA sensors provide a mechanism by
which the innate immune system induces the antiviral re-
sponse when the host is exposed to DENV.

In addition to the above-noted RNA sensors RIG-I,
MDAS5 and PKR, mast cells possess a battery of pattern
recognition receptors the individual expression of which
varies according to the host source and associated tissue
or organ [97-100]. Human mast cells express the RNA
sensor, Toll-like receptor (TLR)3 [89]. Recognition of
viral dsRNA by mast cell TLR3 leads to signaling via
TRIF to TBK1/IKKe to activate both IRF-3 and nuclear
factor-kB (NF-xB) promoting the production of IFN
stimulated genes, cytokines and chemokines. In the case
of human mast cell lines HMC-1 and LAD-2 as well as
primary peripheral CD34" mast cells, responses to extra-
cellular polyinosinic-polycytidylic (polyl:C) were shown
to involve upregulation of type I IFNs by RT-PCR [89].
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Mast cells activated by polyl:C have also been reported
to influence CD8" T cell recruitment [88]. Furthermore,
polyl:C-exposed or reovirus-infected mast cells recruit
NK cells in a CXCL8-dependent manner [101]. Along
with other RNA sensors, TLR3 is also upregulated in
antibody-enhanced DENV infection of mast cells [85].

Antibody-enhanced DENV-infected mast cells can
produce sufficient amounts of type I IFNs to protect
neighboring cells from infection [85]. The upregulation
of RNA sensors such as RIG-I and MDAS5 appears to be
key for the suppression of DENV replication via establish-
ment of the antiviral state [102—104]. The upregulation of
PKR in mast cells upon antibody-enhanced DENV infec-
tion [85], is also consistent with induction of the antiviral
state since protein translation inhibition during DENV in-
fection is dependent on the PKR substrate, elF2a [96].
The possibility that tissue-resident mast cells can initiate
this vital response would therefore allow them to confer
type I IFN-mediated protection upon neighboring cells at
the tissue site early after virus inoculation.

Roles of mast cells in DENV clearance and vascular
leakage

After DENV infection, mast cell-deficient mice showed in-
creased viral burden within draining lymph nodes, com-
pared with wild-type mice. In addition, the recruitment of
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NK and NKT cells into the DENV-infected skin was
dependent on mast cell activation [79]. Such mast cell-
dependent immune responses facilitate DENV clearance.
Compared to wild-type mice, mast cell-deficient mice
showed enhanced DENV infection, CCL2 production
and macrophage infiltration at the skin inoculation site,
suggesting other mechanisms for the interplay between
mast cells and tissue macrophages to modulate DENV
replication [105]. Therefore, during the initial stage,
mast cells may play crucial roles in immune surveillance
for DENV by promoting viral clearance and restricting
viral replication (Fig. 2).

Several mast cell-derived mediators, such as tryptase,
chymase and VEGF contribute to dengue disease severity
[82]. Serum chymase levels could be a predictive bio-
marker of DHF in pediatric and adult patients [106].
DENV-infected mice show activated degranulated tissue
mast cells. as well as elevated systemic levels of various
vasoactive products, including chymase, histamine, and
serotonin [83]. After DENV infection, mast cell-deficient
mice showed significantly reduced vascular permeability
compared to mast cell-sufficient controls [83]. Hence, at
later stages of systemic infection, mast cells might play
other important roles in DENV-induced vascular leakage
(Fig. 2). Sub-neutralizing dengue-specific antibodies not
only promote DENV infection but also enhance mast cell
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activation in an FcyR-dependent manner [87, 107]. During
secondary DENV infection, antibody-mediated mast cell
activation may therefore also contribute to the enhanced
vascular pathology in severe dengue (Fig. 3).

The involvement of mast cells in dengue pathogenesis
suggests they may be potential therapeutic targets. The
mast cell-stabilizing drug, ketotifen, not only improves
DENV-induced vasculopathy [83] but also reverses the
DENV-induced host response without suppressing memory
T cell formation [108]. Furthermore, antibodies against
DENV NS1 provide protection in mice against DENV chal-
lenge and reduce mast cell degranulation and macrophage
infiltration as well as the production of chemokines includ-
ing CCL2, CCL5, and CXCL10 (IP-10) at local skin DENV
infection sites [109].

Role of apoptosis in DENV-mast cell interactions

Antibody-enhanced DENV-infected mast cell-like KU812
cells show dramatic apoptosis [110]. Interestingly, apoptosis
is observed mainly in DENV antigen-negative cells suggest-
ing the involvement of apoptotic mediators produced by
DENV-infected cells. Alternatively, apoptosis may be trig-
gered very early in some DENV-infected cells so that cell
death occurs prior to appreciable virus replication. Thus, as
with monocytes and macrophages, apoptosis of mast cells

in DENV infection likely plays a role in regulating mast cell
numbers and responses.

Conclusions

While differing in cellular developmental pathways,
monocytes/macrophages and mast cells share intriguing
features which come into play in vascular disease trig-
gered by DENV infection. Their potent production of
cytokines, chemokines and various vasoactive mediators
in response to DENV makes them key orchestrators of
some of the pathological vascular changes which occur
in severe dengue disease. In particular, their expression
of Fc receptors makes them powerful amplifiers of
DENV replication as well as of virus-induced innate im-
mune factors some of which act directly on vascular
endothelium and others of which regulate the extent of
virus replication.
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