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The classical class I antigens (HLA-A, -B, -C in man, H-2K, D in mouse) of the
MHC are glycoproteins integrally inserted in the limiting membrane of nearly all
cells in vertebrate species. The genes that encode these glycoproteins occupy the most
polymorphic loci known in vertebrates . Since their glycoprotein products act as strong
transplantation antigens, their polymorphism constitutes an intractable barrier to
cross-matching of tissues from unrelated donors for organ grafting . The full extent
ofpolymorphism is not completely defined, but best estimates put the likely number
of alleles at up to 100 at each of three genetic loci in man, the B locus being more
polymorphic than the A locus, which is much more polymorphic than the C locus
(1). Similar allele frequencies are estimated for mice (2) . In such outbreeding mammals
this level of polymorphism ensures that in each species there are >10' possible
unique class I antigenic phenotypes . The function of forced polymorphism on this
scale is not understood.
The location ofclassical class I molecules in cell membranes and the fact that they

are used by the Tlymphocytes ofthe immune system as associative recognition mol-
ecules (3, 4) has directed attention toward immunological explanations for polymor-
phism. The current explanation is that MHC polymorphism in a population en-
sures that lethal pathogens such as viruses cannot extinguish a species by epidemic
infection (5). In the absence of MHC polymorphism, mutation of the coat proteins
of a virus to mimic host self-structures or to a structure that does not associate with
the MHC molecules would ensure its freedom from immune attack. Thus infec-
tious agents would purge the population of common allelomorphs and, by frequency-
dependent selection, favor the rarest types. While this explanation is undoubtedly
valid and explains the occurrence of MHC polymorphism in a species it does not
predict the level ofpolymorphism required and certainly does not account for a system
that can render nearly every individual in a population antigenically unique .
We now show that classical, polymorphic class I molecules in normal rats are not

only secreted by hemopoietic cells into the body fluids but are constitutively excreted
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CLASS I TRANSPLANTATION ANTIGENS IN BODY FLUIDS

in the urine, and that untrained rats can distinguish the smell ofurine samples taken
from normal donors that differ only at the class I MHC locus and therefore excrete
different allelomorphs of class I molecules in their urine. Thus, the family of class
I glycoproteins that are markers of the uniqueness of individuals are not, as was
previously thought, sequestered within the body but are excreted into the environ-
ment where they could act as the recognition signals that regulate social interactions
between individuals within a species.

Materials and Methods
Animals.

	

Rats of the DA(RTI°°'), PVG(RTII), PVG.R1(RT1''), PVG-RTI", Wistar Al-
bino, F344(RTl"I ), and (PVG x DA)F1 hybrid strains were bred in conventional animal
houses or in a specific pathogen-free unit . AS2(RTlf), and BN(RTI") strains were obtained
from OLAC 1976 Ltd., (Bicester, United Kingdom). Some PVG-RTI° animals were obtained
from the Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K.

For behavioral experiments, 70 PVG-RTI" rats were housed in pairs in opaque plastic cages
(North Kent Plastics Ltd ., Dartford, U.K.) on a reversed 12 :12 L/D cycle with lights off at
6.00 hours at a temperature of 20 t 2'C. Food (CRM NUTS, Labsure irradiated diets)
and water were freely available . At the beginning ofthe experiment, the subjects had a mean
weight of 255 f 20 g .

Enzyme-linked Immunoabsorbent Assays (ELISA).

	

ELISAs were carried out in rigid, nonsterile,
flat-bottomed, 96-well polystyrene plates (Nunc Immunoplates II, Gibco Ltd ., Middlesex,
U.K.) . 200 gl of a 20-ug/ml solution of purified anti-class I mAb in PBS/0 .1 17b azide, pH
7.4, was used to coat individual wells . The plates were covered and kept at 4°C until use .
On the day of use excess antibody was removed and wells were post-coated up to the brim
with PBS/azide containing 100Io vol/vol FCS for 1 h at 4°C to block nonspecific protein ad-
sorption sites . After 1 h the plates were washed twice with PBS + 0.5% wt/vol Tween 20
(Sigma, Poole, England) (PBST). 200 wl of a solution containing the class I MHC antigen
(or a titration thereof) was then added to the appropriate wells and incubated overnight at
VC. After three washes with PBST and three washes with PBST + 2% vol/vol FCS, 200
pl of a second noncompetitive anti-class I mAb coupled to biotin was added at 8 ug/ml and
incubated for 1 h . The plate was again washed three times with PBST and three times with
PBST + 2 % vol/vol FCS before addition of 200 Al ofa 4-gg/ml concentration of Stepavidin-
coupled horseradish peroxidase (Miles Laboratories Ltd ., Slough, U.K.) . The plates were
then incubated for 20 min at 4°C . After washing twice with PBST + 2% vol/vol FCS and
twice under tap water for -15 s each time, 200 ul ofthe substrate 3,3',5,5'-tetramethyl benzi-
dine at 100 Itg/ml was added . The reaction was stopped after 5 min with 50 Al of2 M H2SO4
and the plates were read in a Titertek Multiscan ELISA plate reader (Flow Laboratories Ltd .,
Irvine, Scotland) .

In the assay for detection of the A` class I MHC antigens of the DA strain the capture
antibody on the plate was JY3/109 (haplotype specificity, avl +, c-, f-, h-, l-, n-, o+, u-,
b+ ), while the second biotin-labeled antibody was JYl/116 (6) (haplotype specificity, avl +,
c-, f-, h-, 1-, n-, o-, u-, b+ ) . For the detection of the A` antigens of the PVG strain, the
capture antibody was YR5/310 (haplotype specificity, avl-, c+, f-, h+, 1-, n-, o-, u- ), and
YR5/12 (7) (haplotype specificity, avl-, c+, f-, k-, 1-, n+, o-, u-) was the biotin-labeled
second stage . All are rat IgG alloantibodies.

Affinity Chromatography.

	

Class I molecules were extracted from liver cell membranes or lymph
by affinity chromatography with specific anti-class I mAbs covalently coupled to cyanogen
bromide-activated Sepharose 4B (Pharmacia, Uppsala, Sweden) . To prepare the membrane-
bound form, DA strain rat livers were homogenized in a buffer that consisted of 0.05 M Tris-
HCl, pH 7.2, 0.25 M Sucrose, 25 mM KCI, 5 MM MgC12, and 1 mM PMSF (Sigma) to
inhibit proteolysis . Crude membranes were obtained by centrifugation at 103 g for 20 min
to remove nuclei and large debris and at 1 .05 x 105 g for 1 h over a 40% wt/wt sucrose
cushion to sediment the membrane fraction . This was then made up to 10 mg/ml with 0.02
M Tris/HCI, pH 7.8, containing 0.5% wt/vol n-octylglucopyranoside (Sigma) .
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The solubilization was carried out for 1 h at VC, stirring gently throughout . The material
was then centrifuged at 1.05 x 105 g to remove debris . The RT1.A-'-containing superna-
tant underwent affinity chromatography according to Parham (8), on aJYl/116 anti-RT1.A-'
affinity column which was eluted with 0.015M carbonate buffer, pH 11.0, containing 0.5%
wt/vol n-octylglucopyranoside . The eluted fractions were concentrated using a CX30 concen-
trator (Millipore Corp. Bedford, MA) before running on SDS-PAGE .
To purify the soluble RT1.A8"' molecules, lymph was spun at 1 .05 x 10 5 g for 1 h so that

all the lipid and lipoproteins floated and could be removed . The opalescent lymph was loaded
onto the JYl/116 affinity column and washed as above, except there was no detergent in the
buffers . RT1.A` was eluted with 0.5% wt/vol n-octylglucopyranoside in 0.015 M carbonate
buffer, pH 11 .0, concentrated and run on SDS-PAGE as for the solubilized membrane material.

To purify soluble RTIA-' molecules from urine, 500 ml ofurine collected from eight DA
animals was spun at 105,000 g to remove any material that may block the columns and then
was treated as in the case of lymph.

(SDS-PAGE).

	

SDS-PAGE analysis of proteins purified by affinity chromatography was
undertaken according to Laemmli (9) and bands stained with Coomassie blue.

Inhibition Binding Assay.

	

Since noncompetitive pairs of anti-class I mAb are not available
for all strains of rats, the presence of soluble class I MHC antigens in five strains (AS2, BN,
PVG, F344, and DA) was shown by an inhibition binding assay. Use was made ofthe mouse
anti-rat RTLA mAb F16.4.4 (10), which recognizes a nonpolymorphic determinant on rat
class I MHC antigens . The assay consisted of inhibiting the binding of 25 Al of a predeter-
mined dilution of F16 .4 .4 to 25 p1 I% vol/vol suspension of DA RBC by 25 gl of the serum
from the various strains . The cells were washed, harvested, and the radioactive antibody bound
to them was counted using a Packard model 5210 gamma counter (Packard Instrument Co.,
Downers Grove, IL) . The inhibition of binding of F16 .4.4 to the target RBC by the various
rat sera was corrected by subtraction of the mouse serum control .

Radiation Chimeras.

	

3-5-mo-old SPF rats received 10 Gy (1,000 rad) whole body radiation
from a "'Cs source (Gammacell 40; Atomic Energy of Canada Ltd ., Kanata, Ontario) at
N1 Gy/min . On the same day they were given 108 donor bone marrow cells intravenously.
In the parent into F, chimeras, graft-vs.-host disease was avoided by using bone marrow cells
from DA rats neonatally tolerant to (PVG x DA)F, . Serum from all chimeras was assayed
for the unshared soluble class I molecules by ELISA . Staining ofperipheral blood leukocytes
forclass I molecules by fluorescence using mAbs and FAGS 420 analysis showed the hemopoietic
system of these chimeras to be >98°Jo donor type at 9 mo after reconstitution .

Scatchard Analysis.

	

The anti-Aa"1 antibody JYl/116 (6) and the anti-A` antibody YR5/12
(7) were iodinated using the lactoperoxidase method (11) at a ratio of 1 uCi to 1 Wg ofpurified
IgG . These antibodies were then used to measure the number of antigenic sites on the rele-
vant rat erythrocytes. Titrated amounts ofantibody were incubated with 25 ul of a 10% vol/vol
RBC suspension for 1 hr at 4°C and the cells were separated from unbound antibody by
centrifugation on a 200 p1 mixture ofDi-n-butylphthalate (eight parts) and Di-nonyl phtha-
late (two parts) (BDH Chemicals Ltd ., Poole, U.K.) . The tubes were frozen with solid COz
and then cut at the midpoint of the frozen oil column . The RBC pellet and the floating super-
natant were counted separately in a gamma counter (model 5210; Packard Instrument Co.)
to give a precise measure ofbound and unbound antibody. The antibody affinity and number
of antigenic sites were then calculated by the method of Scatchard (12) .

Saturation Analysis .

	

One-tenth of the amount used in Scatchard analysis, i .e., 25 ul of a
1% vol/vol RBC suspension was then used in an antibody-binding inhibition assay using
25 pl of neat serum of the relevant type in 12 replicates . The three reactants, 1251-labeled
antibody, serum-containing antigen, and RBC were incubated for 1 h on a shaker at 40C
to reach equilibrium . The cells were washed three times with PBS/azide + 2% vol/vol FCS,
harvested onto glass fiber paper, washed again using a Skatron harvester (Flow Laboratories),
and counted in a Packard gamma counter. Results were processed according to the formulas
described by Ekins (13) . Serum in which the amount of class I molecule was known from
saturation analysis was aliquoted and stored at -20°C . This was always run in ELISA as
a positive calibration control . The amount ofantigen in unknown samples run in these assays
could then be estimated accurately by measurement of the horizontal displacement ofregres-
sion lines drawn through the linear portions of the ELISA titration curves .
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Tissue CultureMethods .

	

Cells were handled in Dulbeccds PBS with 2 % FCS. PBS/2 % FCS
containing 0.1% sodium azide, was used for cellular RIAs and antibody-binding inhibition
assays .

In experiments involving tissue culture, 106 cells were cultured in 1 ml of tissue culture
medium in 24-well tissue culture plates (Nunc ; Gibco Ltd .), in RPMI-1640 containing 25
mM Hepes, 5 x 10-5 M 2-ME, 2 mM glutamine, 0.06 mg/ml benzylpenicillin, 0 .1 mg/ml
streptomycin sulphate, and 5% vol/vol FCS (batch no. 001703 ; Sera-Lab, Crawley Down,
England) .

Half-Life Measurement.

	

Four DA rats rendered neonatally tolerant of PVG antigens were
bled of 3 ml of blood from the tail vein . They were then immediately injected intravenously
with 5 ml of PVG serum . After 10 min the first blood sample was taken . A blood sample
was then taken from one pair of rats 2 h later and from the other pair after another 2 h .
The pairs were then bled alternately at 4-h intervals .

Neonatally Tolerant Rats.

	

Rats were tolerized according to a previously published protocol
(14) . Briefly, DA or PVG neonates were injected intravascularly with 75 Al of a 50% vol/vol
suspension of (PVG x DA)F1 hybrid bone marrow cells within 24 h of birth. As adults, these
rats failed to reject skin grafts from donors homozygous for the unshared antigens of the F1
for >50 d . Their lymph node cells were shown to be unreactive against donor antigens in
popliteal lymph node graft-vs .-host assays (15) before they were used in experiments .
HPLC-Gel Filtration .

	

Under nondissociating conditions, 200 wl of PVG serum and 200
wl of purified RT1.A° molecules from DA urine were fractionated on a TSK G3000SW
column (LKB Produckter, Bromma, Sweden) running at 0.5 ml/min in PBS/azide .

Bilateral Nephrectomy.

	

Both kidneys were exposed through a midline incision and the vas-
cular pedicle and ureters were exposed by blunt dissection . The pedicle and ureters were
ligated en bloc with a single silk ligature and the kidneys were removed distal to the tie . The
abdominal wound was closed with two layers of continuous silk suture.

Habituation-Dishabituation Tests .

	

PVG-RTI° subjects were given a 15-min habituation to
the test arena (an opaque plastic cage measuring 29.6 x 23.6 x 14.6 cm with a one-half-inch
square wire mesh top that rose another 5.6 cm above the cage rim) and were then tested
once per week in a habituation-dishabituation test (16) in which nine sequential 2-min odor
presentations were given . For these presentations, 0 .1 ml of liquid was placed on a 7-cm di-
ameter disk of Whatman No . 1 filter paper, which was taped to the mesh top of the cage,
with the center ofthe disk 13 .5 cm from the floor of the arena. The odorized disk was replaced
every 2 min, by removing the top of the cage and replacing it with another top carrying a
new odorized disk . Tops and arenas were washed in 70% ethanol after each test and filter
papers were used only once.
On the first three 2-min tests, water was placed on the filter paper so the subject had a

6-min habituation to the test procedure before the first urine sample was presented for the
next three 2-min trials . On trial seven, the second urine sample was presented for three trials .
Donor urine was collected from 10 individual PVG and 10 individual PVG.RI males the same
age as the subjects in Urimax, metabolic cages for 6 h during the day and was frozen in ali-
quots until used . Each subject was given two urine samples from known individuals .

The time spent rearing on the hind legs and sniffing, with the nose within 1 cm of the
disk throughout each 2-min period, was recorded by an observer using a stopwatch . Each
of the rats was tested in three habituation-dishabituation tests . The observer was blind to
the order oftesting odor-ant samples that were prepared by an assistant according to a random
list .

Statistical Methods.

	

Analysis ofthe behavioural data was done using separate randomised
block (repeated measures) analyses of variance for each experiment. Post-hoc analyses were
done using Newman-Keuls tests (17) .

Results

Classical, Polymorphic Class I Antigens in Solution in the Body Fluids.

	

Soluble class
I antigens were first detected in the blood of normal rats by their ability to inhibit
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FIGURE 1 .

	

PVGurine, serum,
and plasma, prepared by col-
lecting aortic blood into chilled
heparinized saline and im-
mediate centrifugation at 4°C,
was assayed for the presence of
soluble RTIAI class I antigens
using the ELISA. Urine (" )
contains from ahalfto an eighth
the concentration of class I
molecules found in serum (/)
or plasma (A). Control DA
serum (") gives a small back-
ground in this assay.

target cell lysis by a cytotoxic antiserum (18) . To show that they were not trace con-
taminants in the serum released either from damaged liver tissue or from formed
elements ofthe blood during clotting, soluble class I molecules were detected in fresh
serum, plasma, urine (Fig . 1), and lymph (19) by ELISA. Analysis of the MHC
molecules, recovered from lymph by affinity chromatography, in SDS-PAGE revealed
a heterodimeric molecule with a heavy chain M, of 39 x 10 3 and a light chain Mr
of 13 x 103 typical of R2-microglobulin (Fig. 2) . Body fluids of the rat therefore con-
tain authentic classical polymorphic class I antigens in solution, and fractionation
of serumby gel-filtration HPLC under nondissociating conditions (Fig. 3 a) shows
these molecules to be true monomers and not molecular aggregates .

Sera of five rat strains of different MHC types were examined for the presence

FIGURE 2.

	

SDS-PAGE analysis of membrane-bound class I molecules
and soluble class I molecules from lymph and urine . Membrane-bound
Aav1 molecules from DA liver have a heavy chain Mr of 47 x 10 3 and
a 02 -microglobulin light chain of 13 x 103. The lymph molecule has a
smaller heavy chain (M, 39 x 103). The M, of the class I heavy chain
in urine is 39 x 10 3 as it is in the serum. The 13 x 103 M, light chain
of 02 .microglobulin is also seen indicating that the molecules detected
by ELISA are typical class I molecules. In addition, there is a major band
at 30 x 103 M, found in the preparation derived from urine that is not
seen in either the lymph or membrane form of this molecule . Mr x 10 -3

are shown.
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HPLC gel filtration
of DA serum and urine. DA
serum (200 wl) was fractionated
on an LKB TSK G3000SW
column (LKB Produkter) run-
ning at 0.5 ml/min in PBS-
azide. The serum RT1.AaO
molecules, eluted as a sharp
peak (shadedarea) at the trailing
edge ofthe serum protein peaks
with an apparent Mr between
that of BSA ~68 x 103) and
OVA(43 x 10 ), showing that
the molecules exist as soluble
monomers in the circulation.
Class I molecules purified from
the urine showed that antigenic
material elutes from this col-
umn with a wide range of ap-
parent Mr from 50 x 10 3 down
to '15 x 103.

of soluble class I molecules by an inhibition of the binding to DA red cell targets,
of I211-labeled mouse anti-RT1A mAb F16.4.4 . This assay showed that soluble mol-
ecules were present in the sera of all the strains tested (Fig. 4) .

Quantitation and Turnover ofSerum Class IMolecules.

	

As both erythrocytes and leu-



kocytes in the blood of normal rats also express membrane-bound class I molecules,
the concentration of molecules in the cellular and liquid phases of the blood was
measured . The number of molecules on theRBC surface was measured by Scatchard
analysis (12) at 4,500 sites perPVGRBC, and 10,800 sites per DA RBC. These erythro-
cytes were then used as a calibrated source of antigen to measure the concentration
of molecules in the serum by saturation analysis (13) . The results (19) showed that
the concentration of class I molecules is 379 ng/ml in PVG serum, and 347 ng/ml
in DA serum. This is N4% of the concentration of membrane-bound class I mole-
cules on the erythrocytes in the same volume of blood (10 gg/ml) and is -25 times
the concentration on the leukocyte membranes in this volume (16 ng/ml) . The con,
centration in efferent lymph draining from lymphoid tissue is about twice this level (19) .
The half-life of the serum molecule wasmeasured by capitalizing on the facts that

neonatally tolerant rats contain only trace amounts of donor antigen in their circula-
tion (19) and exhibit no reactivity against donor MHC molecules (14) . Tolerant rats
were injected with donor serum and the level of donor antigens in their blood was
measured by calibrated ELISA at intervals . These experiments showed that the decay
of donor molecule was exponential, with a half-life of 2 .7 h (Fig. 5) .

Cellular Origin ofSoluble Class I Molecules .

	

The origin of these soluble molecules
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FIGURE 4 .

	

Soluble class I antigens de-
tected inthe sera of five rat strains. The
mouse anti-rat F16.4.4 mAb binds to
a monomorphic determinant present
on the RTLA class I molecules of all
rat strains. The binding of this antibody
to DA RBC was competitively in-
hibited by serial twofold dilutions ofrat
serum . All five serawere inhibitory in-
dicating the presence of class I mole-
cules in solution in the sera.

FIGURE 5 .

	

Half-life of serum class I mole-
cules. Soluble class I molecules disappear from
the recipients' blood exponentially (A) with
a gradient (%) on a semilogarithmic plot (O)
of -0.2608 . From classical pharmacokinetics:
T1/2 hose 2/- a,]

	

= 2.66 h.
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was studied in radiation chimeras . In the FI into parent chimeras, levels of serum
class I molecules derived from the FI unshared partner reached maximal values at
17 d after reconstitution and remained high (Fig. 6 a) showing that cells of the
hemopoietic series were the source of at least half of the serum molecules. The ki-
netics ofappearance ofsoluble molecules in these chimeras suggests that the secreting
cell of hemopoietic origin emerges from the bone marrow in significant numbers
within 2-3 wk .

In the parent into Ft chimeras the loss of soluble molecules of unshared parental
type from the circulation was slow but inexorable (Fig. 6 b) suggesting that they were
produced by cells with a long tissue-residence time which were slowly lost from the
body after irradiation and replaced by donor-derived cells . The fact that levels of
these moleculesdo not fall to zero leaves open the question of whether other somatic
cells also secrete soluble class I molecules into the blood.

Since the level of host-type molecules remains high for >40 d after irradiation,
we can exclude radiosensitive cells such as lymphocytes as the source of these mole-
cules. A requirement for Tlymphocytes in soluble antigen production was also for-
mally excluded by showing that the levels of A` molecules in the circulation of mu-
tant, athymic, nude rats of the PVG-rnu/rnu strain, which lack peripheral T cells,
were similar to the levels in normal, euthymic PVG animals, i.e ., 380 ng/ml(Fig . 7) .

In vitro cultures of lymph node lymphocytes, spleen cells, and peritoneal cells
were set up to ascertain whether release of soluble class I molecules could be de-
tected in vitro. Peritoneal cells produced ti 100 ng of class I molecules per 106 cells



per 24 h for the first 3 d of culture. Spleen cells produced about half this amount
and lymph node cells produced much smaller amounts (Fig. 8) . No antigen was
released by erythrocytes (data not shown). Themost likely source ofamajorportion
of soluble class I molecules in vivo therefore appears to be a cell of the macrophage
or dendritic cell lineage. This is consistent with the observation that lymph drain-
ing from lymphoid tissues rich in cells of this type contains high levels of soluble
antigen (19) .

Urinary Excretion ofSoluble Class IMolecules.

	

The presence of soluble class I mole-
cules in the urine suggested that the rapid half-life couldbe due to excretion. Soluble
class I molecules were readily detectable in the urine (Fig . 1) and calibration of the
ELISA with the serum molecule showed that the concentration of class I molecules
in thdarine was quite variable and ranged between 40 and 190 ng/ml. Proof that
the urine molecules were derived from the blood was obtained by infusing known
amounts of PVG donor antigen into the blood of DA rats tolerant of PVG and de-
tecting its excretion in the urine. We could account for only 6.5% of the injected
antigen in the urine collected over the subsequent 48 h (1.9 wg injected, 124 ng re-
covered) .
A normal 300 g PVG rat loses from the blood -18 leg of class I molecules each
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FIGURE 7.

	

The concentrations of RT1.A°
antigen in the PVG mu/mu athymic nude
rat. A comparison of the titration ofnormal
PVG serum (" ) from a euthymic animal
with that from acongenitally athymicnude
rat (a) shows that the concentration of
RT1.Ac molecules in the sera ofthese two
rat strains is equivalent . Since the nude rat
has no mature, peripheral T cells, these
cells cannot be the source of soluble class
I molecules .

FIGURE 8 .

	

Secretion of RTLAa'l class I
antigen in vitro. Cultures of equivalent
numbers (106/ml) or lymph node lympho-
cytes, (" ) spleen cells (0) and peritoneal
cells (/) in vitro and assay of their super-
natants after 2 d of culture showed that
only peritoneal cells and spleen cells pro-
duced significant concentrations ofantigen
compared with control normal serum (--).
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RTI.A111 class I antigens
in the urine of (PVG x DA)F1 into
PVG radiation chimeras. Unsharedpa-
rental class I molecules are found in
the urine of F1 into parent radiation
chimeras ( " ) in concentrations that
vary from a quarter of that found in
serum (M) to levels that are barely de-
tectable by the ELISA .

24 h (whole blood concentration 190 ng/ml, blood volume 7% of body weight =
21 ml, half-life 2 .7 h) . With an average 24-h urine volume of 14 ml this gives an
estimated detectable urine concentration of 83 ng/ml, a figure in reasonable agree-
ment with the measured urine concentrations of between 40 and 190 ng/ml. Thus,
only afraction of the class I molecules normally secreted into the blood are detected
by ELISA in the urine. The class I molecules purified from the urine by affinity
chromatography on mAb columns not only have the typical 39-kD heavy chain and
13-kD light chain associated with soluble class I molecules, but also show a major
protein band at 30 kD (Fig . 2), suggesting that there is fragmentation of the class
I molecules occurring in the urine.
The actual degree to which these molecules are degraded is not revealed by SDS-

PAGE analysis, as very small fragments would run off the bottom ofthe gel. In addi-
tion, the cleavage products might be present in a variety ofsizes and would not show
as localized bands on the gel. We therefore fractionated class I antigen, which had
been extracted from the urine, by gel-filtration HPLC and assayed the fractions by
ELISA (Fig . 3 b). This showed that antigenic material emerges from the HPLC column
as a broad band of antigenic activity from -50 down to 15 x 103 Mr. This is in
sharp contrast to the behavior of the class I molecules in serum, which emerge from
the HPLC column as a well-defined narrow peak between 68 and 43 x 10 3Mr (Fig.
3 a) . Since only those fragments carrying two spatially separate epitopes are detected
by ELISA, it is probable that a major population of smaller degraded fragments
is also present and escapes detection. This could explain the low yield of foreign
class I molecules detected in the urine after intravenous injection.
An alternative explanation would be that most of the class I molecules lost from

the blood are removed by some other mechanism and only a minority are excreted
in the urine. If excretion via the kidneys is a major pathway, interruption of renal
excretion should cause an increase in blood levels of class I molecules in proportion
to the fraction of molecules which are removed from the blood by the kidneys.
6 h after bilateral nephrectomy of four PVG rats, the mean serum level of class I
A` molecules was measured to be 866 ng/ml by calibrated ELISA. The calculated
serum level, assuming that all of the serum molecules are normally excreted in the
urine, is 806 ng/ml. Renal excretion is therefore the major if not the only fate of
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FIGURE 10 .

	

Mean time (t SEM) in seconds
spent rearing and sniffing at urine ofPVG or
PVG.R1 donors on each 2 min presentation
by PVG-RT11 subjects . Water was presented
to the subjects on trials one to three for all
three experiments. Urine 1 (trials four to six)
corresponds to the urine donorthat precedes
the arrow in each panel and urine 2 (trials
seven to nine) the urine donor that follows it .

the class I molecules in solution in the blood. Once in the urine the majority ofthese
molecules undergo rapid degradation to small fragments.

In radiation chimeras of the FI into parent type, soluble class I molecules derived
from the unshared haplotype of the FI, which were present in high concentrations
in the blood (Fig . 6 a) of the donor, were also readily detectable in the urine (Fig . 9).
The excretion of class I antigens in the urine has also been reported in man, al-

though this has apparently only been studied in patients with renal pathology (20),
including renal transplant recipients . In these patients the class I molecules were
shown to be of recipient type and did not carry the allelic specificities of the kidney
donor (21) .

Olfactory Detection ofMHC Class I Associated Urinary Odors.

	

The presence of clas-
sical class I transplantation antigens of the Aavl and Ac type and their degradation
products in the urine of normal rats prompted us to see whether rats could also de-
tect urinary odors associated with these molecules. In these experiments we used
the habituation-dishabituation method (16) in which untrained detector animals were
habituated to the odor of urine samples from donors of one strain and then tested
for dishabituation when exposed to urine from donors ofthe other strain . To exclude
a role for any variable other than the MHC class I molecules in these experiments,
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throughout we used male rats from the PVG congenic series (22) . Fig. 10 a shows
that the PVG-RTlu rats could readily discriminate between the odor of PVG urine
containing the A` molecule and PVG.R1 urine containing the Aav, molecule . 20
males were tested, 10 in the order PVG then PVG.R1 and 10 in the reverse order
(PVGR1 then PVG). There were significant differences in time spent rearing and
investigating odors over the nine tests for both groups (PVG then PVG.Rl, F =
14.89; df = 8, 72 ; p < 0.001 . PVGRI then PVG, F = 16 .24, df = 8, 72 ; p < 0.001).
Post-hoc Newman-Keuls tests indicated that for both groups of subjects, more time
was spent investigating odors on trials 4 and 7 than on any other odor presentation
(p < 0.01) .

Fig. 10 b shows the time spent investigating urine from two individuals of the same
strain . The 14 subjects tested with urine from two male PVG rats (PVG1 then PVG2)
showed significant differences in investigation time over the nine odor presentations
(F = 11 .03 ; df = 8, 104; p < 0.001) and more time was spent investigating the odor
on trial four than on any other trial (p < 0.01) . The time investigating the odor on
trial seven did not differ from that on trial five or six, indicating that the odors from
two different PVG males were not discriminated.
The 20 subjects tested with urine from two PVGR1 males (PVGR11 then

PVGR12) also showed significant differences in investigation time over the nine odor
presentations (F = 37 .42; df = 8, 152; p < 0.001), and more time was spent inves-
tigating odors on trials four and seven than on any other trials (p < 0.01) . The in-
crease in odor investigation on trial seven indicates that the subjects could discriminate
between two individual PVG.R1 males by their urine odor.

Fig. 10 c shows the responses of subjects to two urine samples from the same in-
dividual . The eight subjects tested with separate urine samples from PVG males
(PVG, then PVG,) showed a significant difference in investigation times over the
nine trials (F = 15.30; df = 8, 56 ; p < 0.001) and investigated the odor on trial four
more than on any other trial. Similar results were obtained for the eight males tested
with separate urine samples from individual PVGR1 males (PVG.R1 1 then
PVG.Rl,) (F = 7 .02 ; df = 8, 56 ; p < 0.001), with more investigation during trial
four than any other trial (p < 0.01) .

Discussion
Classical class I transplantation antigens have mostly been studied as membrane

boundmolecules that participate in graft rejection and antigen presentation (1) . There
are, however previous reports of soluble forms of these molecules in true solution
in the body fluids of mouse (23, 24), man (20, 25) and rat (18, 26).
The present study confirms that such molecules exist in the rat, and that -50%

of them are secreted into the blood by cells of the hemopoietic system (Fig . 6, a
and b) . The mechanism ofsecretion is unknown. Conversion of a typical membrane-
anchored molecule into a secreted form could occur at the DNA, RNA, or protein
level . At the DNA level, class I genes comprise eight exons, which correlate well
with the structural and functional domains of the molecule (27) . Deletion or
modification of exon 5 (which encodes the transmembrane region) could lead to a
secreted product. Such a mechanism has been postulated for the secretion of a non-
polymorphic class I polypeptide, which is detectable in mouse serum (28, 29). This
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molecule is secreted because exon 5 contains numerous substitutions, a frameshift,
and a termination codon, resulting in a truncated polypeptide lacking a true hydro-
phobic region .
At the RNA level, alternate splicing of RNA to delete the hydrophobic coding

region is well known as the mechanism of switching between membrane-bound and
secreted Ig. A similar process has recently been shown to result in switching from
membrane insertion to secretion of the classical class I HLA-A2 antigens in vitro
(30, 31).
Thetruncated heavy chain ofthe soluble class I molecules is consistent with either

ofthe above two mechanisms, but is also consistent with proteolytic cleavage of class
I molecules from cell membranes at or near thejuxta-membranous papain cleavage site.
Quantitation of the serum molecule (19) has shown it to be in the range of 350

to 380 nglml in sera of normal animals.
From previous experiments, the rate of secretion of soluble class I molecules into

the circulation was anticipated as being high because liver-grafted rats showed near-
maximal levels of donor antigen in their circulation within 24 h of operation, (32,
33). Accordingly, the half-life was measured and found to be 2.7 h. Assay of the
urine showed that the serum molecule was constitutively excreted via the kidneys
in the urine where>90% ofthe molecules underwent degradation (Figs. 2 and 3 b) .
The excretion of classical class I molecules in the urine seemed to us important

since olfactory discrimination in both mice and rats has been shown to include the
ability to identify urine samples from congenic animals that differ only at the MHC
(34, 35). Also, up to 90% of pregnant female mice will abort their preimplantation
embryos when exposed to the odor of urine from a foreign male (36) even when
the male is from an inbred strain congenic with that of the original stud and differs
only at the MHC (37) or is a mutant (bml) at one class I MHC locus (38) . The
only known difference between bml and the C5BL16 wild type are point mutations
in the class I gene resulting in MHC molecules that differ by three amino acids.
This implies that the olfactory cues in the urine are derived not from the products
of loci closely linked to class I, but either directly or indirectly from the product
of the class I genes themselves.
The results obtained from the behavioral experiments described in this paper in-

dicate that the urine odors of male rats of the PVG and PVG.R1 strains are equally
attractive, as they are both investigated to the same degree on trial four. PVG and
PVGRl individuals are readily discriminated as evidenced by the dishabituation
on trial seven (Fig . 10 a) . Individual PVG males are not discriminable by their urine
odors, but PVG.R1 males appear to be. This latter result was unexpected since this
is a congenic recombinant inbred strain where each rat is thought to be genetically
identical. However, since PVG.R1 is at the 12th generation of backcross there is a
possibility that residual heterozygosity at some background loci may contribute to
variation in the odors of individuals within this particular strain .

Behavioral studies of this type, which revealed such intimate linkage betweenMHC
class I genotype and urinary odor, have previously been interpreted as reflecting
the action of immune response gene effects ofthe class I genetic locus (39), possibly
controlling the host immune responses against commensal bacterial flora of the skin,
urinary tract, or the gut. Individual MHC haplotypes would then be associated with
unique flora . The volatile odor-ants in the excretions were thought to be secondary
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metabolites derived from these organisms. However, it was recently found that in
radiation chimeras of the Fl into parent type, urinary odors are of Fl type (40) .
Since it has been shown that class I-restricted immune responsiveness is heavily
biased towards the parental MHC (3, 4), it would be expected that class I-associated
immune response phenotype would remain parental in these animals. Urinary odors
therefore do not show correlation with putative class I immune response gene effects
but do show close correlation with the soluble class I molecules themselves described
in this study (Fig . 9) . In addition, Yamazaki et al . (41) have shown that urine col-
lected from mice that are congenic with respect to the nonclassical Qa, Tla class
I loci can be distinguished by odor alone. These molecules have no known Ir gene
function . They are, however, found in the circulation (42, 43).

Class I molecules themselves would seem to be unlikely candidates as the odoriferous
component in the urine (44) . There are two possible ways in which the excretion
of these molecules might confer the class I-associated odor. First, the odoriferous
components of the urine could be volatile fragments of the MHC molecules. This
mixture of small fragments, which would ofcourse be unique to the particular poly-
morphic class I molecules excreted, may be the specific odorants . Interestingly, rats
that are able to discriminate the PVG and PVG.Rl strains by smelling their urine
that contains the A` and Aavi molecules in both degraded and intact forms (Figs.
2 and 3 b), fail to distinguish between these strains by the smell of their serum (44)
that contains the molecules only in the intact form (Figs. 2 and 3 a) .

Second, MHC glycoproteins are well known as associative molecules. It is pos-
sible that the ability of MHC class I molecules to associate in a selective way with
other small molecules could also be the mechanism by which a unique mixture of
endogenous volatile metabolites is transported by class I MHC glycoproteins from
the blood into the urine. This mixture, although derived from a similar metabolic
pool in each individual (as shown by the attractive butnonunique odor of sera from
different strains) (44), would be special to the particular class I molecules involved
in its transport and would therefore impart a unique odor to the urine. The volatile
molecules we postulate have not yet been identified, but strong candidates may be
the small volatile components identified by Schwende et al . (45) as being present
in mixture patterns specific to particular MHC haplotypes in the urine of congenic
mice . The notion of a carrier that binds smaller volatile molecules is not new and
has been shown for two primer pheromone effects (46, 47). There are several sug-
gested advantages of such a scheme : the slow, steady release of small volatiles from
the carrier; control of excretion of the volatile molecules; and the protection ofthese
volatiles from decomposition.

Olfactory cues, provided by MHC-specific molecules in the urine, may be used
in mate selection. The trend is to choose mates that are different at the MHC (35) .
This trend could force the observed high levels ofMHC heterozygosity in breeding
demes (48) and is so powerful, at least in the mouse, that an established pregnancy
is aborted if the opportunity for more extensive outbreeding is provided (36, 37,
49). Since recombination due to crossing over within the MHC is common, repeated
cycles of mate selection for foreign MHC alleles plus genetic recombination and
mutation ensure extensive polymorphism of alleles and haplotypes within species.
Thus the MHC class I molecules could act as individuality markers, used by breeding
animals in the wild to provide the information on which their strategy for outbreeding
is based.



SINGH ET AL.

	

209

Summary
Classical class I transplantation antigens present in solution in the body fluids

have been studied . These antigens have been found in a monomeric, soluble form
in blood, lymph, and urine, and a major source is the hemopoetic system which
gives rise to cells that secrete these molecules into the blood. The cell types most
probably involved in their secretion are of the macrophage/dendritic cell lineage .
The serum molecule is a heterodimer with a heavy chain of 39,000 mol wt associated
noncovalently with 02-microglobulin and is present in serum at a concentration be-
tween 350 and 390 ng/ml . These molecules have a short half-life of 2.7 h and are
excreted into the environment via the kidneys in the urine. In the urine, >90% of
the molecules are degraded into smaller fragments.

This finding that normal metabolic processes lead to the excretion of classical highly
polymorphic class I molecules in the urine provides a direct explanation in molec-
ular terms of the ability of animals to identify individuals on the basis of urinary
odor. Since intact class I molecules are unlikely to be the odoriferous component
in the urine, two hypotheses have been suggested . Either small fragments of class
I molecules are detected or the molecule acts as a carrier that transports volatiles
from the serum into the urine where they are released, giving rise to the class I-as-
sociated odor.

We are grateful to E . A. Boyse, G . W. Butcher andJ . C . Howard for comments on the manu-
script, to E . C . Bate-Smith and R. van Aarde for useful discussions and particularly to A .
Diamond,J . C . Howard and G. W Butcher for generous gifts ofmAbs and advice on their use .
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