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Abstract

Developing an accurate first-principle model is an important step in employing systems biol-

ogy approaches to analyze an intracellular signaling pathway. However, an accurate first-

principle model is difficult to be developed since it requires in-depth mechanistic understand-

ings of the signaling pathway. Since underlying mechanisms such as the reaction network

structure are not fully understood, significant discrepancy exists between predicted and

actual signaling dynamics. Motivated by these considerations, this work proposes a hybrid

modeling approach that combines a first-principle model and an artificial neural network

(ANN) model so that predictions of the hybrid model surpass those of the original model.

First, the proposed approach determines an optimal subset of model states whose dynam-

ics should be corrected by the ANN by examining the correlation between each state and

outputs through relative order. Second, an L2-regularized least-squares problem is solved

to infer values of the correction terms that are necessary to minimize the discrepancy

between the model predictions and available measurements. Third, an ANN is developed to

generalize relationships between the values of the correction terms and the system dynam-

ics. Lastly, the original first-principle model is coupled with the developed ANN to finalize the

hybrid model development so that the model will possess generalized prediction capabilities

while retaining the model interpretability. We have successfully validated the proposed

methodology with two case studies, simplified apoptosis and lipopolysaccharide-induced

NFκB signaling pathways, to develop hybrid models with in silico and in vitro measurements,

respectively.

Author summary

An intracellular signaling pathway is often represented by a set of nonlinear ordinary dif-

ferential equations, which translate our current knowledge about the signaling pathway
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into a testable mathematical model. However, predictions from such models are often

subject to high uncertainty since many signaling pathways are only partially known

beforehand. In this study, we propose a systematic approach to develop a hybrid model to

improve model accuracy by combining machine learning and the first-principle model-

ing. Specifically, model correction terms are learned from discrepancy between model

predictions and measurements, and these terms are added to the first-principle model to

enhance the prediction accuracy. Once these correction terms are learned from the data,

an artificial neural network (ANN) model is developed to find an empirical relation

between the model and the correction terms so that the developed ANN can be used to

posses improved predictive capabilities even in new operating conditions (i.e., generaliz-

ability). The final hybrid model is then constructed by coupling the first-principle model

with the developed ANN.

Introduction

An intracellular signaling pathway is a biochemical reaction network of cells to adjust their

metabolism, gene expression, and other necessary actions so that the cells can appropriately

respond to perturbations present in their environment [1, 2]. Since an intracellular signaling

pathway is complex involving interactions among a large number of biomolecules inside a cell,

it is common to implement a systems biology approach, which integrates experimental obser-

vations and mathematical modeling, to analyze the signaling pathway comprehensively [3, 4].

As a result, one of the key tasks in systems biology is to develop a predictive mathematical

model for analyzing underlying mechanisms and generating new hypotheses to be tested in

the future. To this end, a first-principle based mechanistic model has been a preferred choice

for modeling an intracellular signaling pathway. Specifically, a system of nonlinear ordinary

differential equations (ODEs) is constructed based on the current knowledge about a system,

where its differential equations are derived using kinetic laws such as mass-action and Michae-

lis-Menten kinetics [4–6]. Since a first-principle model represents the current understandings

of a system, its ODEs are physically meaningful, and its predictions are valid over a wide range

of conditions [7, 8]. However, since a signaling pathway of interest is often only partially

understood due to its inherent complexity, structural mismatches often exist between dynam-

ics of the true system and those predicted by the corresponding first-principle model [4, 8–12].

Instead of a first-principle model, a data-driven model can be developed from available

experimental measurements, which can describe the input-output dynamics adequately even

when mechanistic understanding of the system is limited [13–17]. However, a data-driven

model has narrow applicability as it is tailored to describe input-output relationships con-

tained in the training datasets [18, 19]. Also, available measurements of an intracellular signal-

ing pathway are often limited both in quantity and quality, which may further limit the direct

application of a data-driven approach [20, 21].

As an alternative, a hybrid modeling approach that combines first-principle and data-

driven modeling techniques has been proposed to describe a process that is only partially

known [19]. Here, a hybrid model refers to an improved version of a first-principle model that

compensates for model-system mismatches by introducing empirical parameters or terms,

which are inferred from available measurements. As a result, a hybrid model has better predic-

tion capabilities than a first-principle one while it preserves generalizability and interpretabil-

ity, which are difficult to be achieved through a data-driven model [18, 22, 23]. A classic

example of the hybrid modeling approach is to model a fedbatch bioreactor, where the biomass
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growth rate is estimated from process data and coupled with mass conversation laws [18, 22].

In these studies, the mass conservation laws represent our prior knowledge of the system (i.e.,

the first-principle model), whereas its growth rate is uncertain and inferred from the measure-

ments to improve the model’s prediction accuracy. Due to its merits, the hybrid modeling

approach has been implemented to model various biological and chemical processes such as

bioprocess development and optimization [24, 25], modeling propagation of fractures during

hydraulic fracturing process [7], transcription factor dynamics [8], thin film deposition [26],

metallurgic processes [27, 28], and flour beetles population dynamics [29, 30].

In this work, we propose a systematic hybrid modeling approach for an intracellular signal-

ing pathway by incorporating available mechanistic knowledge and experimental measure-

ments. Compared to previous implementation of hybrid models, unique challenges arise when

a hybrid model is developed for an intracellular signaling pathway. First, a first-principle

model of an intracellular signaling pathway is usually high-dimensional with a large number

of states while the amount of available measurements is usually limited. Hence, it is desirable

to minimize the number of components in a hybrid model that should be inferred from exper-

imental measurements to minimize the possibility of overfitting, which may compromise the

generalizability of the hybrid model. At the same time, it is usually unknown beforehand

which parts of a hybrid model should be represented by a data-driven model. In modeling a

bioreactor, it is known that the largest uncertainty resides in the cell growth rate, and it is

inferred from experimental measurements [18, 22]. However, such knowledge is usually not

available for an intracellular signaling pathway [4, 21].

Motivated by the above considerations, we propose a systematic approach to construct a

hybrid model to describe the dynamics of an intracellular signaling pathway, which is only par-

tially known. Among a few possible hybrid model structures, a hybrid model formulation pro-

posed by Engelhardt et al. [31, 32] is adopted, where differential equations of model states are

adjusted by correction terms inferred from experiments. Since an intracellular signaling path-

way is often high-dimensional and its origin of prediction inaccuracy is unknown beforehand,

a graphical approach is implemented to determine a subset of model states that have the high-

est correlations with the measurements. And only these states’ dynamics are modified by the

correction terms. Specifically, the values of the correction terms are estimated at the times

when the measurements are available so that the model with the estimated correction terms

can reproduce the measurements accurately. Then, an empirical map between the first-princi-

ple model and the correction terms is approximated by an artificial neural network (ANN).

Once an ANN is trained, the hybrid model now can be constructed by integrating the first-

principle model and the ANN. The effectiveness and feasibility of the proposed methodology

are demonstrated by developing hybrid models of intracellular signaling pathways for two case

studies.

Methods

System description

Dynamics of an intracellular signaling pathway are described by a system of nonlinear ODEs

as follows:

_x ¼ f ðx; θ; u; tÞ; xð0Þ ¼ x0

y ¼ gðx; u; tÞ
ð1Þ

where x 2 Rnx is the state vector, θ 2 Rny is the parameter vector, x0 is the initial value of the

state vector x, and y 2 Rny is the output vector.
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Such ODE models for an intracellular signaling pathway are formulated based on the cur-

rent understandings of the underlying signaling pathway. Hence, the accuracy of an ODE

model depends on the accuracy and completeness of the prior knowledge. Unfortunately, an

intracellular signaling pathway is quite complex, which involves interactions among a large

number of intracellular biomolecules. As a result, it is likely to have a model-system mismatch,

which prevents from utilizing the model for system analysis and prediction.

Under this circumstance, the following hybrid model can be used to minimize potential

model-system mismatches while preserving the available knowledge of the system [31, 32]:

_~x ¼ f ð~x; y; u; tÞ þ wðtÞ; ~xð0Þ ¼ x0

~y ¼ gð~x; u; tÞ
ð2Þ

where ~x 2 Rnx and ~y 2 Rny are the state and output vectors of the hybrid model, respectively,

u is the external input, and wðtÞ 2 Rnx is the vector of correction terms introduced to improve

the overall model prediction accuracy.

In order for Eq 2 to properly predict true dynamics of the system, the values of w need to be

explicitly known at any arbitrary time instants so that the hybrid model (Eq 2) can be numeri-

cally integrated. Therefore, w values are inferred from available experimental measurements.

On the other hand, even with experimentally inferred w(t), the hybrid model cannot be used

to predict the system dynamics under a new condition since the corresponding temporal pro-

file of w are not available. Hence, this study aims to develop a functional map H that can com-

pute the value of w at time t for given values of the model states x(t) and t; that is, we aim to

develop wðtÞ ¼ HðxðtÞ; tÞ for prediction generalizability of the hybrid model.

In summary, this study aims to develop a hybrid model by the following two subsequent

steps:

1. Infer w(t) from available experimental measurements.

2. Develop the function, H, that maps from x and t to w(t).

Estimation of w(t)
Suppose that measurements are obtained at Nt discrete time instants (i.e., ts ¼ ½0; . . . ; tNt �)
under Nu different u. Then, the estimation of w(t) can be formulated into the following mini-

mization problem:

min
w1ðtÞ;...;wNu ðtÞ

XNu

s¼1

XNt

l¼1

Xny

i¼1

~yiðus; tlÞ � ŷiðus; tlÞ
ŷiðus; tlÞ

� �2

ð3aÞ

s:t: _~x ¼ f ð~x; us; tÞ þ wsðtÞ ~xð0Þ ¼ x0
ð3bÞ

~yðtlÞ ¼ gð~xðtlÞ; us; tlÞ ð3cÞ

where ws(t) is the continuous temporal profile of w(t) from t = 0 to tNt under input us, and

ŷiðus; tÞ is the ith output measured under input us at time t.
However, Eq 3 is likely to be ill-conditioned because (1) it is an infinite dimensional prob-

lem in which the decision variables (i.e., w(t)) are continuous temporal profiles, and (2) the

available measurements are limited in quantity (i.e., small values of ny and Nt) [33–36]. Hence,

its solution is subject to high uncertainties, and the resulted hybrid model based on the esti-

mated w(t) will be difficult to be generalized for future predictions.
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Proposed methodology for estimating w from measurements. In order to address the

aforementioned ill-posedness, the following assumptions are made to reduce the dimension of

the estimation problem. First, a L2-regularized least-squares problem is solved to estimate w
by handling potential overfitting issues [37–39]. Second, this study aims to infer the values

of w at the time instants only when the measurements are available (i.e., ts). Third, instead

of adding correction terms to all the model states, correction terms are given to only a subset

of states, which will be denoted as xc 2 R
ns ns< nx, is selected a priori. Lastly, a linear interpo-

lation is used to compute values of the correction terms at time t, when the measurements are

not available (i.e., t =2 ts), as follows:

wc;iðtÞ ¼ wc;iðtlÞ þ ðt � tlÞ
wc;iðtlþ1Þ � wc;iðtlÞ

tlþ1 � tl
; tl < t < tlþ1; 8i ¼ 1; . . . ; nx ð4Þ

where wc,i is the ith correction term, tl is the latest time point of ts preceding t, and tl+1 is the

earliest time point in ts following t.
With these assumptions, the estimation of w(t) is reformulated as follows:

min
W

XNu

s¼1

XNt

l¼1

Xny

i¼1

~yiðus; tlÞ � ŷiðus; tlÞ
ŷiðus; tlÞ

� �2

þ RðWÞ ð5aÞ

s:t: _~x ¼ f ð~x; θ; us; tÞ þH

ws
c;1ðtÞ

..

.

ws
c;ns
ðtÞ

2

6
6
6
4

3

7
7
7
5
; ~xð0Þ ¼ x0 ð5bÞ

~yðtlÞ ¼ gð~xðtlÞ; us; tlÞ ð5cÞ

RðWÞ ¼
a

2

XNu

s¼1

XNt

l¼1

kws
cðtlÞk

2
ð5dÞ

W ¼ ½w1

c;1ðt1Þ � � � w
1

c;1ðtNt Þ w
2

c;1ðt1Þ � � � w
Nu
c;1ðt1Þ � � � w

Nu
c;ns
ðtNtÞ� ð5eÞ

Hij ¼
1 if xi ¼ xcj ; i ¼ 1; . . . ; nx; j ¼ 1; . . . ; ns
0 otherwise:

(

ð5fÞ

where H is a nx × ns matrix, xc ¼ ½xc;1; � � � ; xc;ns �
T
2 Rns is a subset of x whose dynamics are cor-

rected by wc ¼ ½wc;1; � � � ;wc;ns
�
T
2 Rns , Hij is the entry in H at the ith row and the jth column,

and α is the L2-regularization tuning parameter. It should be noted that the above assumptions

are introduced to estimate the dynamics of w(t) minimizing the likelihood of the overfitting by

interpolating the values of w(t) at the time instants when the measurements are not available.

Hence, the overall accuracy of the inferred w(t) is likely to improve if the outputs are measured

more frequently, which in turn increases the overall prediction power. Also, Eqs 5b and 5c

assume that each correction term is added to only one state’s differential equation. As men-

tioned before, values of wc are linearly interpolated to solve Eqs 5b and 5c at time instants

when measurements are not available.
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In Eq 5, the optimal value of α is unknown beforehand, so its value is optimized by five-fold

cross-validation. Specifically, the available measurements Y ¼ ŷ are divided into training and

validation datasets with a 8:2 ratio in five different ways, and the regularized least-square prob-

lem (Eq 5) is solved with one particular value of α with respect to each of the five training data-

sets. Then, the optimal value of α is chosen by examining average model errors with respect to

both the training and validation datasets.

Selection of xc. A key step before solving Eq 5 is to identify xc, whose trajectories are cor-

rected by wc. Specifically, two questions need to be addressed: first, what is the dimension of xc
(i.e., ns), and second, when the value of ns is known, which states in x should be selected to

form xc. In this study, we employ the idea of invertibility and a graph-theoretical approach to

determine xc.
Specifically, we choose xc from x so that the resulted system is close to be invertible [40]. If a

system is invertible, for a given value of x0, unique values of y will correspond to unique values

of inputs, so one could reconstruct the values of inputs from available output measurements

[41, 42]. If wc in the hybrid model (Eqs 5b and 5c) is viewed as an input to the system and the

hybrid model is invertible, the values of wc can be uniquely characterized from given measure-

ments [41, 43]. Hence, it is our best interest to select the dimension of wc as well as its place-

ment so that the resulted hybrid model is invertible, which will attenuate the ill-posedness of

the inverse problem (i.e., Eq 5). In this regard, Daoutidis and Kravaris [41] have shown that a

dynamic system is invertible when the following matrix is nonsingular:

CðxÞ ¼

Lh1
Lr1 � 1

f g1ðxÞ � � � Lhns
Lr1 � 1

f g1ðxÞ

..

. . .
. ..

.

Lh1
L

rny � 1

f gnyðxÞ � � � Lhns
L

rny � 1

f gnyðxÞ

2

6
6
6
6
4

3

7
7
7
7
5
¼

c11 � � � c1ns

..

. . .
. ..

.

cny1 � � � cnyns

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð6Þ

where C(x) is the characteristic matrix of the system [44], L represents Lie derivative defined

as Lf giðxÞ ¼
Pnx

j¼1
ð@gi=@xjÞfjðxÞ, hk is the kth column vector of the matrix H in Eqs 5b and 5c,

where k = 1, . . ., ns, and ri is the relative order of output yi with respect to wc, which is defined

as the smallest integer for which

Lh1
Lri � 1

f giðxÞ � � � Lhns
Lri� 1

f giðxÞ
h i

6¼ ½ 0 � � � 0 � ð7Þ

or ri =1, if such integer does not exist [43]. Additionally, the following relation holds true for

ri:

ri ¼ minðri1; ri2; � � � ; rinsÞ ð8Þ

where rij is the relative order of yi with respect to wc,j, which is the smallest integer for which

Lhj
L

rij � 1

f giðxÞ 6¼ 0 or rij =1 if such integer does not exist. Based on the definition of the rela-

tive order, the relative order matrix of Eqs 5b and 5c can be defined as follows:

R ¼

r11 r12 � � � r1ns

r21 r22 � � � r2ns

..

.
� � � . .

. ..
.

rny1 rny2 � � � rnyns

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð9Þ
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In this study, xc is chosen so that C(x) of Eqs 5b and 5c is nonsingular, which will minimize

the ill-posedness of the inverse problem (Eq 5). First, we let the size of xc equal to the size of

outputs (i.e., ns = ny) so that C(x) is square. Second, an optimal choice of xc is identified sys-

tematically from x. In this regard, this study will assess the optimality of xc through the follow-

ing criteria that are based on the relative order:

1. The value of
Pns

i¼1
ri is minimum.

2. The value of
Pns

i

P
j6¼iri=rij is minimum.

Previous studies have demonstrated that the relative order measures ‘physical closeness’

between a correction term and an output [43, 45]: a smaller value of ri represents a stronger

connection between wc and yi. So, the first criterion renders wc to have the maximum correla-

tions with the outputs. On the other hand, the second criterion is to render each wc,j will have

the strongest correlation with only one output while having the weakest correlation with the

remaining outputs [45, 46]. Consequently, by meeting the above two criteria, each correction

term in wc will have the strongest correlation with only one correction term, which will mini-

mize the likelihood of the ill-posedness of Eq 5 [47].

In the perspective of the invertibility, selecting xc based on the above two criteria, particu-

larly the second one, maximizes the likelihood of C(x) to be nonsingular. To understand this

point more clearly, the outputs and xc are re-ordered so that the smallest element in each row

is diagonally located in the relative order matrix, and C(x) is also rearranged correspondingly.

By minimizing the second criterion, the possibility that values of all rij, 8j 6¼ i, are larger than ri
is maximized; therefore, the non-diagonal entries in the rearranged C(x) are likely to be zero.

As a result, C(x) will be close to be a square diagonal matrix. Thus, achieving the aforemen-

tioned two criteria would guarantee the hybrid model (Eqs 5b and 5c) to be invertible as well

as the reliability of the solution to Eq 5.

In order to select a combination based on the above criteria, the following steps are taken:

1. Enumerate all ny permutations of x.

2. For each candidate, construct the corresponding relative order matrix, and compute its
Pny

i¼1 ri.

3. Compute their ∑i ∑j6¼i ri/rij values.

4. Find the candidate that satisfies the condition.

For implementing the above procedure, a relative order matrix has to be constructed for

each candidate to calculate the two criteria. However, performing Lie differentiation can be

computationally expensive; hence, a graphical approach is implemented to evaluate relative

orders of a system [43], which will be discussed in the next section.

A graphical approach to evaluate relative orders. A state-space model of a process (Eqs

5b and 5c) can be represented by a directed graph, which is defined by a set of vertices and a

set of edges by the following rules [43, 48]:

• States (x 2 Rnx ), outputs (y 2 Rny), and manipulated inputs (wc 2 R
ns) are represented by a

set of vertices in a graph.

• If @fi(x)/@xj 6¼ 0, i, j = 1, . . ., nx, there is a unidirectional edge pointing from the vertex of xj
to that of xi.

• If @fi(x)/@wc,k 6¼ 0, k = 1, . . ., ns, there is a unidirectional edge pointing from the vertex of

wc,k to that of xi.
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• If @yl/@xj 6¼ 0, l = 1, . . ., ny, there is a unidirectional edge pointing from the vertex of xj to

that of yl.

• A path from one vertex to another is a sequence of edges without repeating vertices, and the

path length is the number of edges included in one particular path.

Previously, Daoutidis and Kravaris [43] demonstrated that rij can be calculated by comput-

ing the shortest path length from an input wc,j to an output yi as follows:

rij ¼ lij � 1 ð10Þ

where lij is the shortest path length from an input wc,j to an output yi. Therefore, the relative

order matrix can be easily computed once a graph of a state-space model is constructed. As an

example, Fig 1 provides an example on how a state-space model is translated into its corre-

sponding directional graph; specifically, Fig 1 is a representation of the following dynamic sys-

tem:

dx1

dt
¼ f1ðx2Þ þ u

dx2

dt
¼ f2ðx3Þ

dx3

dt
¼ f3ðx1Þ

y ¼ gðx3Þ

ð11Þ

The relative order of this system is two, which can be easily computed from its graph.

In summary, the procedures for selecting xc, whose dynamics will be corrected by wc, are as

follows:

1. Set ns, the size of xc, to be equal to the dimension of outputs (i.e., ny).

2. Enumerate all ns permutations of x as candidates for xc.

3. Construct a directional graph by adding correction terms to each xc candidate enumerated

in the previous step.

4. Construct the corresponding relative order matrix based on Eq 10.

5. Find a configuration that has the lowest
Pny

i¼1 ri and ∑i ∑j6¼i ri/rij values.

Once the optimal xc is chosen, Eq 5 is solved to infer W.

It should be noted that the identification of xc by the relative order and graph theory can

also guide the future model refinement. Specifically, since the identified xc has the highest cor-

relations with the output, further literature survey and experimentation on these states can be

implemented to improve the differential equations for these states and thus increase the overall

prediction accuracy of the first-principle model.

Development of artificial neural network models

Once W is estimated by solving Eq 5, the available (imperfect) first-principle model coupled

with the estimated W is now able to predict the system dynamics under the experimental mea-

surements more accurately. However, it cannot predict system dynamics under a new operat-

ing condition since its corresponding wc(t) is not available. Hence, the next step is to infer H,

which maps x and current time t, to wc(t), to generalize the model prediction so that the
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resulted hybrid model can predict the system dynamics under new conditions. In this regard,

multiple wc(t) should be obtained under a few different operating conditions (i.e., Nu> 1) so

that the empirical function H mapping x and t to wc(t) is accurate.

However, the functional form of H is usually unknown a priori. Although there are some

methods proposed in the literature to identify functional forms from the data, inferring func-

tional forms usually requires a large amount of data and can be computationally expensive [49–

54]. Instead, we assume H to be an ANN model. Here, an ANN is chosen here due to its proven

ability to represent any arbitrary input-output relations with sufficient accuracy [55, 56].

An ANN consists of an input layer, multiple hidden layers, and an output layer. Specifically,

each layer contains multiple neurons, and each neuron in each layer is fully connected to all

Fig 1. Schematic illustration of the directional graph of a state-space model.

https://doi.org/10.1371/journal.pcbi.1008472.g001
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the neurons in the next layer (Fig 2). In each hidden layer, the following hyperbolic tangent

sigmoid transfer function is used:

oðkÞi ¼
2

1þ e� 2ûðkÞi
� 1; ûðkÞi ¼

XN
ðk� 1Þ
n

j¼1

a
ðkÞ
ij � o

ðk� 1Þ

j þ bðkÞj
� �

; 8i ¼ 1; . . . ;NðkÞn ; k ¼ 1; . . . ;Nh ð12Þ

where oðkÞi is the output from the ith neuron in the kth hidden layer, ûðkÞi is the weighted sum of

inputs given to the ith neuron, NðkÞn is the number of neurons in the kth hidden layer, a
ðkÞ
ij is the

weightage for the input zðkÞj to the ith neuron, bðkÞj is the bias term given to the ith neuron, and

Nh is the number of hidden layers in an ANN. It should be noted that o(k−1) for the first hidden

layer is the inputs to an ANN.

On the other hand, the ANN outputs are computed as follows:

ŵc;l ¼
XNn
ðNhÞ

i¼1

blio
ðNhÞ
i þ cl; l ¼ 1; . . . ; nx ð13Þ

where ŵc;l is the lth element of ŵc, ŵc is the predicted wc from the ANN, βli is the weighthage

given to oðNhÞi for wl, and cl is the bias term of wl.

Model selection and training. The goal of the ANN training is to estimate hyperpara-

meters of an ANN model, which include α, b, β, and c in Eqs 12 and 13 from available datasets.

Here, the datasets include ANN input and output datasets, where the ANN inputs refer to t
and x(t) from simulating the original first-principle model (Eq 1) while the ANN outputs refer

to w estimated from solving Eq 5. All the ANN training sessions in this study are performed in

the MATLAB Neural Network Toolbox with the Levenberg-Marquardt algorithm.

Fig 2. Schematic illustration of an ANN model.

https://doi.org/10.1371/journal.pcbi.1008472.g002
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Since the structure of an ANN (i.e., the numbers of hidden layers and neurons in each hid-

den layer) is unknown beforehand, a number of ANN models with different structures are

trained and compared to find the best one through evaluating their average corrected Akaike

information criterion (AICc) [57, 58]. For a model with p number of parameters, AICc can be

calculated as follows:

AICc ¼ n lnðSSE=nÞ þ n
nþ p

n � p � 2
ð14Þ

where n is the number of data points in the dataset, SSE is the sum of squared errors between

the observations and ANN predictions, and p is the number of the ANN hyperparameters.

To find an optimal structure, datasets are randomly partitioned into the training, testing,

and validation sets with a 70:15:15 ratio 100 times, and ANN models with different structures

are trained 100 times to compute their average AICc [59, 60]. Then, the ANN structure with

the minimum AICc is selected as the optimal one.

Once an ANN is developed, the final mathematical form of a hybrid model can be described

as follows:

_~xðtÞ ¼ f ð~x; θ; us; tÞ þHŵcðtÞ

~yðtÞ ¼ gð~x; us; tÞ

ŵcðtÞ ¼ Hðxðus; tÞ; t; hÞ

ð15Þ

where ŵc is the predicted value of wc from the developed ANN, H is the ANN developed as

above, and h is a vector containing the ANN’s hyperparameters. It should be noted that the

ANN inputs are t and x, which are the model states simulated from the original first-principle

model (Eq 1).

Results

In this section, two case studies are presented to demonstrate how the proposed methodology

can be implemented to develop a hybrid model of an intracellular signaling pathway.

Case study 1: TNFα signaling pathway

In this case study, the proposed scheme is first used to construct a hybrid model to describe a

tumor necrosis factor-α (TNFα) signaling pathway, which is illustrated in Fig 3a. Specifically,

this system describes how TNFα, which is an important inflammatory cytokine, can initiate

apoptotic and nuclear factor-κB (NFκB) signaling pathways as well as crosstalks between these

two pathways. In this system, the apoptotic signaling pathway is described by dynamics of cas-

pase 3 (C3a) and caspase 8 (C8a), where C3a is a protein, whose high activity leads to apopto-

sis, and TNFα-activated C8a increases the C3a activity. On the other hand, TNFα activates

NFκB protein by suppressing inhibitor of NFκB (IκB), which inhibits the NFκB activity. Since

the NFκB activation in turn increases the IκB activity, the NFκB activity will naturally decay

over time. Furthermore, the NFκB activation suppresses the C3a and C8a activities and thus

promotes cellular survival, while the increase in the apoptotic signaling pathway lowers the

NFκB activity. More details on this system can be found in [61, 62].
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In silico measurements. The TNFα signaling pathway represented in Fig 3a can be

described by the following mathematical model [61, 62]:

_x1 ¼ � x1 þ
1

2
inh4ðx3Þ � act1ðuÞ þ act3ðx2Þð Þ

_x2 ¼ � x2 þ act2ðx1Þ � inh3ðx3Þ

_x3 ¼ � x3 þ inh2ðx2Þ � inh5ðx4Þ

_x4 ¼ � x4 þ
1

2
inh1ðuÞ þ act4ðx3Þð Þ

ð16Þ

where xi, i = 1, . . ., 4, represents the relative activities of C8a, C3a, NFκB, and IκB, respectively,

and u represents the TNFα. Also, the functions, inhi and acti, in the model are rational func-

tions given by:

inhiðxjÞ ¼
x2
j

a2
i þ x2

j

actiðxjÞ ¼
b2
i

b2
i þ x2

j

ð17Þ

where ai, i = 1, . . ., 5, and bi, i = 1, . . ., 4, are the model parameters whose values are shown in

Table 1. The initial concentrations are [x1(0) x2(0) x3(0) x4(0)] = [0, 0, 0.29, 0.63].

Fig 3. Schematic diagrams of the simplified NFκB signaling pathway models. (a) The correct model that is used for generating in silico experimental measurements

(adopted from Chaves et al. [61]). (b) The incorrect model that is used as the first-principle model for constructing a hybrid model. (c) A graph representation of the

available (incorrect) first-principle model (Eq 19).

https://doi.org/10.1371/journal.pcbi.1008472.g003
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In this case study, the model (Eq 16) is considered as the true system, and it is used to gen-

erate in silico experimental measurements. Specifically, the NFκB activity (i.e., x3) is measured

every hour from 0 to 14 hours under three different input conditions (i.e., u = 0.5, 1, 2). It

should be noted that the value of u is fixed while generating the in silico measurements. Also,

experimental noise is introduced as follows:

yðtÞ ¼ m�x3ðtÞ þ mþ ð18Þ

where y(t) is the measurement at time t, and μ× is the multiplicative experimental noise term

that is randomly sampled from a log-normal distributions (i.e., lnm� � N ð0; 0:01Þ), and μ+ is

the additive noise term that is randomly sampled from a normal distribution N ð0; 0:01Þ. This

particular formulation is used since it is a realistic representation for the noise in measure-

ments. Particularly, multiplicative noise (i.e., μ×) is often observed for non-negative data, and

it is suggested to be one of main sources of variability in the biological data [63–66].

Available first-principle model. On the other hand, we assume that the system is only

partially understood, and Fig 3b represents the current understanding of the system, which is

described by the following ODE model:

_�x 1 ¼ � �x1 þ
1

2
inh4ð�x3Þ � act1ðuÞ þ act3ð�x2Þð Þ

_�x 2 ¼ � �x2 þ act2ð�x1Þ � inh3ð�x3Þ

_�x 3 ¼ � �x3 þ inh5ð�x4Þ

_�x 4 ¼ � �x4 þ
1

2
inh1ðuÞ

ð19Þ

Compared with the accurate system dynamics described by Eq 16, the imperfect first-principle

model (Eq 19) misses two mechanisms in the true system: the C3a-induced suppression of

NFκB activity and NFκB-induced IκB activation. Due to such system-model mismatches,

there is a considerable degree of discrepancy between measured and predicted dynamics as

shown in Fig 4. Therefore, the proposed methodology is implemented to construct a hybrid

model that can compensate for the model-system mismatches.

Hybrid model development. The first step of the proposed methodology is to determine

a set of states whose trajectories need to be corrected by the addition of wc. Since there is only

one output (i.e., x3), the number of states to be corrected by correction terms is one as

described earlier. Then, a graphical approach is implemented to determine which state should

be corrected by wc. Fig 3c is a graphical representation of the first-principle model (Eq 19) to

visualize the interconnections among the states. Since the number of the correction term to be

added is determined to be one, the correction term can be added to one of x1, x2, and x4 as

shown in S1 Fig. In Fig 3, it is clear that there is only one directed edge pointing to the output

Table 1. Nominal parameter values of the correct TNFα signaling model shown in Fig 3a.

Parameter Value Parameter Value

a1 0.6 b1 0.4

a2 0.2 b2 0.7

a3 0.2 b3 0.3

a4 0.5 b4 0.5

b5 0.4

https://doi.org/10.1371/journal.pcbi.1008472.t001
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(x3), which stems from x4. Consequently, the only feasible configuration for the correction

term in this system is the first one in S1 Fig, where the correction term is placed to adjust the

dynamics of x4 and eventually the system output. It should be noted that the correction term is

added to the differential equation of x4 only.

Next, the regularized least-squares problem is solved to estimate the values of wc at the time

instants when the measurements are taken under three different input conditions. As the α
value in Eq 5 for this system is unknown, its optimal value is found by the five-fold cross-vali-

dation. Table 2 shows the average normalized mean squared errors (MSE) between model

predictions and the measurements for five different α values, and the optimal α value is deter-

mined to be one. Hence, the wc estimation results corresponding to α = 1 are used for the sub-

sequent analysis and ANN development. Before constructing an ANN, the accuracy of the

estimated values of wc is assessed by comparing the experimental measurements and the

dynamics predicted by the available (incorrect) first-principle model (Eq 19) coupled with the

estimated wc. Fig 5 shows that the discrepancy between the predicted dynamics and the experi-

mental measurements is diminished and thus validates the wc estimation results.

Fig 4. System-model mismatches in the TNFα signaling pathway model. Comparison between experimental measurements (empty circles) and

model predictions (solid lines) with 0.5 (blue), 1 (red), and 2 (black) of TNFα. The measurements are generated by simulating Eq 16 while the

model predictions are obtained from Eq 19.

https://doi.org/10.1371/journal.pcbi.1008472.g004
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As the last step of the hybrid model construction, an ANN is developed to compute the wc

value. Here, inputs to the ANN are selected to be the values of states and input as well as the

current time (i.e., [x1 x2 x3 x4 u t]), and the ANN output is the value of wc.

The optimal number of hidden layers as well as the number of neurons in each hidden layer

is to be optimized. As outlined earlier in the methodology, the AICc criterion is used to deter-

mine the ANN structure. To reduce the combinatorial complexity, the number of neurons in

each hidden layer and the number of hidden layers are limited to ten and two, respectively.

Then, each ANN is trained 100 times to compute the average AICc value with 100 different ini-

tial conditions for its hyperparameters, and the optimal ANN structure is determined by find-

ing an ANN structure which results in the minimum average AICc value. Fig 6 plots the

average AICc values for all possible ANN structures, and the AICc value reaches its minimum

with eight and four neurons in the first and second hidden layers, respectively; hence, this par-

ticular structure is used for the subsequent analysis.

Among the 100 different ANNs with the optimal structure that have been trained in the

previous step, the best ANN is chosen based on its R2 statistic value. Specifically, an ANN with

the highest R2 value is chosen. As shown in Table 3, the R2 statistics of the best ANN are suffi-

ciently high to ensure its accuracy. Then, this ANN is coupled with the available (incorrect)

first-principle model (Eq 19) to finalize the hybrid model development. In order to validate

the prediction accuracy of this hybrid model, it is simulated under three input conditions and

compared with the experimental measurements. As shown in Fig 7, the developed hybrid

model can describe the true system dynamics fairly accurately under all the conditions, and

the MSE of the model prediction is reduced to 0.00027 from 0.12 which is the MSE value of

the original first-principle model (Eq 19). This result shows that the hybrid model constructed

Table 2. Comparison of the normalized MSE at different α values for the first case study.

α normalized MSE

0.001 0.777

0.01 0.150

0.1 0.072

1 5.75 × 10−3

10 9.77 × 10−3

https://doi.org/10.1371/journal.pcbi.1008472.t002

Fig 5. Validation of the accuracy of inferred wc. Comparison between predicted (red solid line) and measured (blue empty circle) NFκB dynamics when the activity

of TNFα equals to (a) 0.5, (b) 1, and (c) 2. Blue dash lines represent the model predictions without the correction terms (wc).

https://doi.org/10.1371/journal.pcbi.1008472.g005
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by the proposed methodology can accurately describe the system dynamics even when there is

limited knowledge on the underlying system (i.e., only a model with model-system mis-

matches is available from the literature).

Prediction capability of the hybrid model. The hybrid model is analyzed further in this

subsection to assess whether the developed hybrid model possess the desired features of a

hybrid model: intrepretability and generalized prediction capability.

First, the intrepretability of the developed hybrid model is tested by simulating and examining

the temporal profiles of unmeasured states. Specifically, the dynamics of x1, x2, and x4 predicted

by the developed hybrid model are compared with those of the true system (Eq 16) to assess

Fig 6. The average AICc values for different ANN structures for the first case study. The filled circle represents the minimum average AICc value.

https://doi.org/10.1371/journal.pcbi.1008472.g006

Table 3. The R2 statistic values of the best ANN.

Training dataset Validation dataset Test dataset Overall dataset

0.997 0.994 0.987 0.994

https://doi.org/10.1371/journal.pcbi.1008472.t003
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whether the hybrid model can be used in predicting unmeasured states. As shown in Fig 8, the

predictions from the developed hybrid model agree well with the true system dynamics (Eq 16)

and show significant improvement in the prediction accuracy compared with the available

(incorrect) first principle model (Eq 19). Particularly, it is remarkable to note that the hybrid

model can predict the dynamics of x1 and x2 quite well even though wc is added only to x4 for

correcting its dynamics. Such improvement is possible since the hybrid model has incorporated

the existing (known) interactions among the model states via the first-principle model (Eq 19).

Additionally, it is of great interest to know whether the developed hybrid model has a gen-

eralized prediction capability. To this end, the hybrid model is used to predict the dynamics

under three different input conditions (i.e., u = 0.7, 1.3, 1.7), and the model predictions are

compared with the true system dynamics obtained from Eq 16. Here, these three particular

input conditions are chosen since they lie within the input range used for training the ANN,

but they are not identical to the inputs. As shown in Fig 9, the first-principle model as expected

fails to capture the NFκB dynamics accurately. However, the hybrid model is capable of pre-

dicting the dynamics of x4 fairly accurately. These results show that the hybrid model possesses

Fig 7. Validation of the developed hybrid model for the first case study. Comparison between experimental measurements (empty circles) and hybrid

model predictions (solid lines) with 0.5 (blue), 1 (red), and 2 (black) of TNFα.

https://doi.org/10.1371/journal.pcbi.1008472.g007
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the generalized prediction capability due to the incorporation of an ANN. In summary, this

case study highlights advantages of using a hybrid model over a purely data-driven model or

first-principle one since a hybrid model can essentially improve the overall model prediction

accuracy while maintaining the model interpretability.

Robustness of hybrid model. Additionally, since it is imperative to understand how the

presence of measurement noise might impact the performance of the proposed methodology,

different levels of noise are introduced by varying the distributions for μ× and μ+ in Eq 18 to

examine the impact of the measurement noise. Specifically, a noiseless dataset (i.e., μ× = 1 and

μ+ = 0) and that with a higher noise level ( lnm� � N ð0; 0:05Þ and mþ � N ð0; 0:05Þ) are gen-

erated, and their corresponding hybrid models are constructed. The additional datasets as well

as the original dataset are plotted in S2 Fig to illustrate their difference in the noise level. With

these additional datasets, the proposed methodology is implemented to develop the corre-

sponding hybrid models, and S3 Fig illustrates the model accuracy of the hybrid models devel-

oped based on the noiseless and more noisy datasets, respectively. MSE of the developed

hybrid models based on the noiseless and more noisy measurements is 0.00015 and 0.0048,

Fig 8. Validation of the interpretability of the hybrid model. The developed hybrid model is used to infer the dynamics of unmeasured states (i.e., (a) x1, (b) x2, and

(c) x4) under two input conditions: u = 0.5 (red lines) and u = 2 (black lines). The hybrid model predictions are compared with the true system dynamics (Eq 16) and

the available (incorrect) first-principle model (Eq 19).

https://doi.org/10.1371/journal.pcbi.1008472.g008

Fig 9. Generalized prediction capability of the developed hybrid model for the first case study. The prediction accuracy of the hybrid model is assessed by

comparing with true system dynamics when the activity of TNFα equals to (a) 0.7 and (b) 1.7. The dynamics predicted by the original first-principle model (Eq 19)

are also plotted for the comparison.

https://doi.org/10.1371/journal.pcbi.1008472.g009
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respectively, while that of the hybrid model in Fig 7 is 0.00027. Overall, regardless of the noise

level in the measurements, the developed hybrid models had significantly improved prediction

capability as their predicted dynamics show reasonable agreements with the measurements.

To further assess the impacts of the measurement noise, the interpretability of the hybrid mod-

els is assessed by using them to predict the dynamics of unobserved states as shown in S4 and

S5 Figs. Overall, all the hybrid models were able to predict the dynamics of the unobserved

states with reasonable accuracy.

However, it should be noted that both in the MSE and intrepretability analysis, the oscilla-

tions in the predicted dynamics become more noticeable with a higher level of noise. Since the

oscillations are not present in the true dynamics, this comparison shows that the noise level

may negatively influence the accuracy of a hybrid model as well as its interpretability. Also,

even the hybrid model developed from the noiseless measurements produces the dynamics

with nontrivial oscillations, which indicates that the ANN might have been overfitted. In order

to mitigate such a problem, the future work in this direction could incorporate the following

ideas to improve the hybrid model performance. First, a de-noise technique can be imple-

mented prior to the hybrid model development so that the noise in the measurements will

become less influential. In the literature, various methods such as finite difference with polyno-

mial spline [67], spectral transformation [68], sparse Bayesian regression [69], and neural

networks [70] have been proposed. Second, alternative ANN training mechanisms can be

implemented to improve the performance of an ANN. So far, an ANN is trained with the

Levenberg-Marquardt algorithm through Matlab Neural Network Toolbox. Since the presence

of the oscillations suggests the potential overfitting issues in the ANN training, Bayesian regu-

larization training method [71] may be implemented to mitigate this issue.

In a systems biology study, the parameter estimation is usually performed to quantitatively

calibrate an uncertain model based on available measurements. In the literature, numerous

studies have proposed a wide variety of methods to efficiently estimate parameter values, and

these methods have been implemented to successfully model various biological systems [2, 72,

73]. However, if there is significant model-system mismatch, the parameter estimation alone

may not be enough for calibrating a model. In such a circumstance, the proposed hybrid

modeling approach can be implemented. As an example, the parameter estimation is per-

formed for this system to see whether it is enough to train the model (Eq 19). Here, the param-

eter estimation is preceded by global sensitivity analysis to determine a subset of parameters

that are identifiable from available measurements (see [74, 75] for details). The result of the

sensitivity analysis is shown in Table 4, where ϕD represents the sensitivity index of a parame-

ter set. Based on the magnitude of the sensitivity index, it is determined that b1 and b5 are iden-

tifiable. Then, a least-squares problem is solved to estimate their values by minimizing the

difference between the model predictions and the measurements (i.e., in silico measurements

simulated from Eq 16). The estimated values of b1 and b5 are 1 and 0.30, respectively, and the

accuracy of the calibrated model is assessed by comparing the model predictions with the mea-

surements as show in S6 Fig. It is clear that the parameter estimation alone is not enough to

overcome the underlying structural mismatch between the model and the true system for this

Table 4. The sensitivity analysis results.

Parameter subsets ϕD
b1 17.25

b5 15.18

b1, b5 137.4

https://doi.org/10.1371/journal.pcbi.1008472.t004
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signaling pathway. In summary, the parameter estimation alone may not be enough for quan-

titatively calibrating the model if there is a significant degree of model-system mismatch. And,

the proposed hybrid modeling approach will be a valuable option to construct an accurate and

physically meaningful model.

Case study 2: NFκB signaling pathway dynamics induced by LPS and BFA

While the previous case study demonstrates how the proposed methodology can be applicable

to a relatively simple system and the in silico measurements, the second case study will examine

how the proposed scheme can be used to develop a hybrid model for a much more complex

system with real in vitro measurements. Specifically, a hybrid model is developed to describe

the lipopolysaccharide (LPS)-induced NFκB signaling pathway in the presence of brefeldin A

(BFA).

As briefly described in the previous case study, the NFκB signaling pathway is involved in

the apoptotic signaling pathway, but it is also involved in a number of different cellular pro-

cesses such as inflammation and differentiation [76, 77]. Our previous study [75] aimed to

model how the NFκB signaling pathway can be activated by LPS, an endotoxin derived from

gram-negative bacteria [78], in the presence of BFA. One of the major products of the signaling

pathway is TNFα protein, which is a pro-inflammatory cytokine and propagates inflammatory

signals to adjacent cells [79, 80]. While the LPS-induced NFκB signaling pathway is relatively

well studied and has been previously modeled in the literature [81, 82], the impact of BFA on

the overall signaling pathway is less known. It is suggested that BFA activates the NF-κB signal-

ing pathway by activating another signaling pathway called the endoplasmic reticulum (ER)-

stress pathway, which will subsequently initiate the NF-κB [75, 83]. Since the ER-stress path-

way itself and how it activates the NFκB signaling pathway have not been fully elucidated yet

[84, 85], it is very difficult to formulate an accurate mechanistic model to describe the overall

signaling dynamics. In our previous study, we introduced time-varying functions to represent

the effects of the BFA addition on the NFκB signaling pathway. By the introduction of new

mechanisms and subsequent parameter estimation, the model accuracy was improved signifi-

cantly, but there was still noticeable discrepancy between the model prediction and the mea-

surements. Also, developing the time-varying components was also a nontrivial task, which

involved further literature review and experimentation. In this study, the proposed hybrid

modeling approach is to develop a hybrid model to infer the effects of the BFA addition on the

dynamics of the LPS-induced NFκB signaling pathway from the measurements.

The first-principle model that will serve as the basis of the hybrid model to be developed is

adopted from our previous study [75]. This model describes how LPS can induce the NFκB

activation and TNFα synthesis (Fig 10) by a system of nonlinear ODEs. This model consists of

49 states and 149 parameters, and a detailed description on the model can be found in [75].

In our previous study [75], RAW 264.7 murine macrophages were stimulated by LPS in the

presence of BFA, and the dynamics of the NFκB signaling pathway were measured by flow

cytometry. Specifically, we measured fold changes of TNFα and IκBα, which are two impor-

tant proteins in the overall NFκB signaling pathway, under three different LPS concentrations

in the presence of BFA. As a result, the model outputs are defined as the fold change of the two

proteins with respect to their initial conditions:

y1ðtÞ ¼
TNFaðtÞ
TNFaðt0Þ

y2ðtÞ ¼
IkBaðtÞ
IkBaðt0Þ

ð20Þ
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where y1(t) and y2(t) are the fold changes of TNFα and IκBα concentrations, respectively, at

time t. It should be noted that the measurements were taken at eight time instants, that is, ts =

[0, 10, 20, 30, 60, 120, 240, 360] minutes after addition of LPS.

wc estimation. As outlined in the previous section, the first step in developing a hybrid

model is to determine the number of correction terms needed as well as to which states these

correction terms should be added. As the number of outputs for the system of interest is two

(i.e., TNFα and IκBα), the dimension of xc is also two.

Second, all possible permutations of choosing two from 49 model states are enumerated,

and their corresponding digraphs are constructed to compute their corresponding relative

order matrices. Based on the constructed relative order matrices, the minimum value of
Pny

i¼1 ri is found to be two, and Table 5 lists all the configurations whose
Pny

i¼1 ri values are

equal to two. It should be note that r1j and r2j compute the relative order with respect to IκBα and

TNFαmeasurements, respectively, in Table 5. Based on the result presented in Table 5, x5 and x37

are chosen as the best candidates to add wc since this pair has the lowest ∑i ∑j6¼i ri/rij value. Here,

x5 and x37 represent concentrations of IκBα and TNFα transcripts, respectively. Therefore, adding

correction terms to these states is a reasonable choice since the predicted dynamics of a protein

will become more accurate with more understanding of its transcript dynamics.

With xc = [x1 x37], the regularized least-squares problem (Eq 5) is solved to estimate W that

contains the values of wc at eight time points for each LPS concentration. Since the value of the

regularization parameter α in Eq 5 is unknown beforehand, its optimal value is determined by

the five-fold cross-validation. Table 6 shows the values of normalized MSE with respect to

Fig 10. A schematic illustration of the LPS-induced NFκB signaling pathway.

https://doi.org/10.1371/journal.pcbi.1008472.g010
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different values of α. From this result, the optimal value of α is determined to be 0.001, and the

estimated values of W obtained with α = 0.001 are considered to develop a hybrid model.

Before constructing an ANN model, the accuracy of the inferred W is assessed by compar-

ing the experimental measurements and predictions from the imperfect model coupled with

the inferred W. It should be noted that wc is linearly interpolated to obtain its values at the

time instants when the measurements are not taken. Fig 11 compares the predicted and mea-

sured TNFα and IκBα dynamics under three different LPS concentrations. Additionally, the

predictions of the model coupled with the inferred W are compared with those of the imper-

fect model without W. Fig 11 shows that the addition of W significantly improves the model

accuracy across all three LPS concentrations. Specifically, the addition of W renders the model

prediction to match with trends observed in the experiments, which show the sustained low

concentration of IκBα. At the same time, the addition of W helps the model predictions agree

much better with the measured TNFα dynamics. Overall, these comparisons have demon-

strated that the integration of W greatly improves the predictive capability of the available

(imperfect) first-principle model.

Additionally, in order to demonstrate the necessity of choosing an optimal xc, a different xc
is chosen, and their corresponding values of W are estimated. Specifically, xc = {2, 17} is

selected, and their selection criterion values are
Pns

i¼1
¼ 4 and

Pns
i

P
j6¼iri=rij ¼ 1:25, which

are much higher than those of the optimal choice of xc. Then, the first-principle model is cou-

pled with the estimated wc, and its predictions are compared with the available measurements.

Fig 12 illustrates that addition of wc does not significantly improve the accuracy of the model

Table 6. Comparison of the normalized MSE at different α values for the second case study.

α normalized MSE

1 × 10−5 0.0275

0.0001 0.0283

0.001 0.0181

0.01 0.0187

0.1 0.0235

1 0.0310

10 0.0390

https://doi.org/10.1371/journal.pcbi.1008472.t006

Table 5. Selection of optimal wc locations by minimizing relative-order based criteria.

xs1 xs2 r11 r12 r21 r22

Pny
i¼1 ri ∑i ∑j6¼i ri/rij

5 37 1 6 6 1 2 0.33

1 37 1 6 5 1 2 0.37

3 37 1 6 5 1 2 0.37

34 37 1 6 5 1 2 0.37

2 37 1 6 4 1 2 0.417

4 37 1 6 4 1 2 0.417

5 28 1 4 6 1 2 0.417

1 28 1 4 5 1 2 0.45

3 28 1 4 5 1 2 0.45

34 28 1 4 5 1 2 0.45

2 28 1 4 4 1 2 0.50

4 28 1 4 4 1 2 0.5

https://doi.org/10.1371/journal.pcbi.1008472.t005
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Fig 11. The model prediction accuracy is improved by coupling the available (imperfect) first-principle model

with the estimated wc. Red solid lines and blue empty circles represent simulated and measured TNFα dynamics and

IκBα, respectively, in the presence of BFA under three different LPS concentrations. Blue dash lines represent the

model predictions without the correction terms (wc).

https://doi.org/10.1371/journal.pcbi.1008472.g011

Fig 12. Importance of selecting an optimal xc. wc are added to xc = {2, 17} as explained in the test. Red solid lines and blue empty circles represent simulated and

measured TNFα dynamics and IκBα, respectively, in the presence of BFA under three LPS concentrations. Blue dash lines represent the model predictions without

the correction terms (wc).

https://doi.org/10.1371/journal.pcbi.1008472.g012
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prediction, which highlights the validity of determining the optimal set of xc from Table 5

based on the relative-order criteria.

ANN development. With the inferred W, an ANN is developed to generalize the relation-

ship between the first-principle model and wc values. Specifically, inputs and output of the

ANN are [x(t), t] and wc(t), respectively.

Next, the ANN structure is optimized by minimizing the average AICc values. Similar to

the previous case study, we will limit the numbers of hidden layers and neurons in each hidden

layer to two and ten, respectively, and each ANN structure is trained 100 times. Fig 13 plots

the average AICc value for all possible ANN structures, and the one with three and six neurons

in the first and second hidden layers, respectively, is shown to be optimal since it provides the

minimal average AICc value. Then, among 100 different trained ANNs with this particular

structure, the best ANN is selected by its R2 statistics. Table 7 shows the R2 values of the chosen

ANN, which are all above 0.98 and thus demonstrate its prediction accuracy.

Fig 13. The average AICc values for different ANN structures. The filled circle represents the minimum average AICc value.

https://doi.org/10.1371/journal.pcbi.1008472.g013
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The developed ANN is then coupled with the available (imperfect) first principle-model to

finalize the hybrid model. Fig 14 compare the predicted dynamics from the resulted hybrid

model with the experimental measurements. The normalized MSE values of the hybrid model

are 1.95 and 6.3 × 10−4 with respect to the TNFα and IκB measurements, respectively, while

those of the original first-principle model are 12.5 and 7.0 × 10−3, respectively.

This shows that the hybrid model with the developed ANN has generalized the prediction

capability of the first-principle model coupled with the experimentally inferred wc; as a result,

the developed hybrid model now can be utilized to predict the dynamics of the NFκB signaling

pathway in new conditions.

Although the developed hybrid model greatly improves the prediction accuracy, the model-

system mismatch still remains. Specifically, under LPS = 10 ng/mL, the predicted dynamics of

both TNFα and IκBα do not perfectly agree with the measurements. Specifically, the hybrid

model predicts a monotonic increase in the IκBα dynamics and thus attenuation of TNFα syn-

thesis, which indicates that the NFκB activity gradually decays during this time period. On the

other hand, the measurements show that the TNFα synthesis slows down beyond 240 minutes

while the IκBα level decreases after 240 minutes, which is not consistent with the model pre-

dictions. There is an additional mismatch in the IκBα dynamics under LPS = 50 ng/mL. Spe-

cifically, the hybrid model predicts an oscillatory behavior with two troughs at 60 and 240

Table 7. The R2 statistic valued of the best ANN for the second case study.

Training dataset Validation dataset Test dataset Overall dataset

0.998 0.999 0.986 0.997

https://doi.org/10.1371/journal.pcbi.1008472.t007

Fig 14. Validation of the developed hybrid model. The IκBα dynamics predicted from the hybrid model with the

developed ANN (red solid line) are compared with the measurements (blue empty circle) in the presence of BFA under

the LPS concentrations of (a) 10ng/mL, (b) 50ng/mL, and (c) 250ng/mL. The TNFα dynamics predicted from the

hybrid model with the developed ANN (red solid line) are compared with the measurements (blue empty circle) under

the LPS concentrations of (d) 10ng/mL, (e) 50ng/mL, and (f) 250ng/mL. Blue dash lines represent the model

predictions without the ANN.

https://doi.org/10.1371/journal.pcbi.1008472.g014
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minutes and a peak at 120 minutes while the experimental measurements indicate a mono-

tonic increase from 60 to 240 minutes without an intermediate peak. Overall, such remaining

model-system mismatches demonstrate that the BFA addition has more pronounced effects

on the overall signaling dynamics after 200 minutes. This has been documented in our previ-

ous work [75], where the dynamics of IκBα in the presence of BFA deviate from those of IκBα
without BFA after 200 minutes. Increasing the dimension of wc may further improve the pre-

diction accuracy due the increase in the degree of freedom. Alternatively, the first-principle

model can be modified further by incorporating known mechanisms of the BFA-induced sig-

naling pathways to improve the first-principle model before estimating the values of wc. Specif-

ically, it was suggested that the addition of BFA will elicit another signaling pathway called ER

stress signaling pathway [75], which will suppress the translation of IκBα. In the future, this

mechanism can be incorporated into the first-principle model to improve the accuracy of the

hybrid model.

Discussion

In this work, we have presented a systematic way to construct a hybrid model that can accu-

rately describe the dynamics of an intracellular signaling pathway even when we have partial

understanding of the system. In order to simulate the dynamics of a signaling pathway of inter-

est, prior understandings of the system are formulated into a system of nonlinear ODEs as its

first-principle model. Since the first-principle model incorporates underlying mechanisms of

the system, the model can be used to predict the system dynamics under new conditions and

infer unmeasured model states’ dynamics once the model is properly calibrated by experi-

ments [2–4, 86]. However, the development of such a first-principle model is nontrivial, and

one of the largest bottlenecks in the model development process is lack of fundamental knowl-

edge that may lead to the inaccurate formulation of a first-principle model.

Under such circumstances, data-driven modeling approaches such as proper orthogonal

decomposition [15], subspace identification [17] and partial least squares regression [25] are

commonly implemented to derive a dynamic model of a system whose corresponding first-

principle model is too difficult to be formulated or is computationally too costly. Such models

are advantageous to accurately derive empirical relationships between inputs and outputs.

However, these models are difficult to be generalized and usually require a large amount of

observations. To this end, this study proposes to use a hybrid model to improve prediction

accuracy by combining the characteristics of both first-principle and data-driven modeling

approaches. The available, albeit incomplete, knowledge of the system is used in a hybrid

model, and the model-system mismatches are incorporated by inferring unknown compo-

nents’ dynamics (i.e., W) from experimental measurements [87]. In order to construct a hybrid

model systematically, the presented work proposes a sequential two-step approach. First, xc
and its dynamics are identified and estimated through the graphical approaches and solving an

L2-regularized least-squares problem. Second, an ANN model is developed to correlate the

available (imperfect) first-principle model with the values of wc.

Through the proposed hybrid modeling approach, the developed hybrid model is able to

posses prediction generalizability as a first-principle model does through the incorporation

of the first-principle model coupled with an ANN. That is, a hybrid model can accurately

predict the unmeasured states’ dynamics, and it can also be used to predict the system

dynamics under a new operating condition as shown in two cases studies. At the same time,

the hybrid model is likely to have more accurate predictions by inferring and incorporating

the dynamics of components (i.e., wc), which are missing in the first-principle model [29].

Such representations of the hidden components with an empirical function such as an ANN
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is particularly attractive when mechanistic understandings are completely lacking or only

partially known, which may result in highly uncertain mechanistic equations with unreliable

model predictions.

Supporting information

S1 Fig. Three possible locations of w for the first case study.

(TIF)

S2 Fig. Three different levels of noise introduced in in silico measurements in the first case

study.

(TIF)

S3 Fig. Prediction accuracy of two additional hybrid models in the first case study. These

hybrid models are developed based on (a) the noiseless measurements and (b) the measure-

ments with ln m� � N ð0; 0:05Þ and mþ � N ð0; 0:05Þ, respectively.

(TIF)

S4 Fig. Further assessment of the hybrid model developed from the noiseless measure-

ments. The developed hybrid model is used to predict the dynamics of unobserved states.

(TIF)

S5 Fig. Further assessment of the hybrid model developed based on the measurements

with more noise in the measurements (i.e., lnm� � N ð0; 0:05Þ and mþ � N ð0; 0:05Þ). The

developed hybrid model is used to predict the dynamics of unobserved states.

(TIF)

S6 Fig. Results of the parameter estimation for the first case study without developing a

hybrid model.

(TIF)
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