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ABSTRACT

Cells possess functional diversity hierarchically.
However, most single-cell analyses neglect the
nested structures while detecting and visualizing
the functional diversity. Here, we incorporate cell
hierarchy to study functional diversity at subpopu-
lation, club (i.e., sub-subpopulation), and cell lay-
ers. Accordingly, we implement a package, SEAT,
to construct cell hierarchies utilizing structure en-
tropy by minimizing the global uncertainty in cell–
cell graphs. With cell hierarchies, SEAT deciphers
functional diversity in 36 datasets covering scRNA,
scDNA, scATAC, and scRNA-scATAC multiome. First,
SEAT finds optimal cell subpopulations with high
clustering accuracy. It identifies cell types or fates
from omics profiles and boosts accuracy from 0.34 to
1. Second, SEAT detects insightful functional diver-
sity among cell clubs. The hierarchy of breast can-
cer cells reveals that the specific tumor cell club
drives AREG-EGFT signaling. We identify a dense
co-accessibility network of cis-regulatory elements
specified by one cell club in GM12878. Third, the cell
order from the hierarchy infers periodic pseudo-time
of cells, improving accuracy from 0.79 to 0.89. More-
over, we incorporate cell hierarchy layers as prior
knowledge to refine nonlinear dimension reduction,
enabling us to visualize hierarchical cell layouts in
low-dimensional space.

INTRODUCTION

Cells in the biological system own hierarchical functional
diversity, which signifies cell types or states during devel-
opment, disease, and evolution, up to the biosystem (1,2).
The heterogeneity of the cell is observed with nested struc-
tures (3). In the tumor microenvironment, infiltrated lym-
phocytes include B cells and T cells. Furthermore, T cells
can be classified into helper T cells and cytotoxic T cells
(4). Specific expression of the marker genes CD4 and CD8

will strengthen intra-similarity within helper and cytotoxic
T cells, respectively, resulting in nested cell structures. The
cellular heterogeneity raised by tumor evolution presents
another instance (5,6). The copy number gain, neutral, and
loss classify tumor cells into aneuploid, diploid, and hy-
podiploid groups, respectively. Fluctuations of copy num-
bers in focal genome regions further categorize tumor cells
into amplification or deletion subtypes. The cell cycle is a
rudimentary biological process for cell replications (7). Hu-
man cells undergo a cycle G1–S–G2/M–G1 over a 24-h pe-
riod, thus the cycling cells have three flat phase labels (G1,
S, and G2/M). In addition, the cycling cells have an order
that records the pseudo time course in the G1, S, and G2/M
phases. The orders and phases reflect a hierarchical struc-
ture.

The recent maturation of single-cell sequencing technolo-
gies offers opportunities to profile large-scale single cells for
their transcriptomics (8), genomics (5), epigenomics (9), etc.
These technologies have blossomed revolutionary insights
into cellular functional diversity under the aegis of cluster-
ing cells with similar molecular characteristics to the same
groups (1,2). However, most existing clustering tools gener-
ate flat cell group (10–14). Moreover, the periodic pseudo-
time inference tools neglect the hierarchical structure of
cycling cells (15–18). Neglection of the underlying nested
structures of cells prevents full-scale detection of cellular
functional diversity.

To address the issue, we incorporate cell hierarchy to il-
lustrate the nested structure of cellular functional diversity.
Cell hierarchy is a tree-like structure with multiple layers
that capture cellular heterogeneity. From the root to the
tips, the cellular heterogeneity decays. This study focuses on
four main layers: global, subpopulation, club, and cell. The
global layer is the root that exemplifies the whole cell pop-
ulation, e.g., immune cells. In contrast, the cell groups in
the second and third main layers resemble cell subpopula-
tions and cell clubs, respectively. The cell subpopulation is
a broad category of cells, such as B cells and T cells (4).
Cell clubs within one cell subpopulation catalog the cellu-
lar heterogeneity in a finer resolution; that is, the cells share
high functional similarity within a single cell club. For ex-
ample, T cell subpopulation owns helper and cytotoxic T
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cell clubs (4). The tip layer holds individual cells carrying
cell orders, which signify the dynamic nuance of cell changes
within a cell club, e.g., cellular heterogeneity varies along
a periodic time course for cells undergoing a cycling pro-
cess (7).

The actual cell hierarchy is difficult to determine; here, we
develop SEAT, Structure Entropy hierArchy deTection, to
build a pseudo cell hierarchy utilizing structure entropy to
characterize the nested structures in cell–cell graphs. Struc-
ture entropy has been proposed in structural information
theory to measure the dynamic global uncertainty of com-
plex networks (19), and has benefited several biological
fields (20–24). SEAT constructs cell hierarchies from a full-
dimensional or dimensionally reduced single-cell molecu-
lar profile, and delivers the global-subpopulation-club-cell
layers from the hierarchies. We apply SEAT to 36 datasets
that cover single-cell RNA (scRNA), single-cell DNA
(scDNA), single-cell assay for transposase-accessible chro-
matin (scATAC), and scRNA-scATAC multiome. SEAT
detects the functional diversity of these single-cell omics
data with cell hierarchies from three perspectives: cell sub-
population detection, cell club investigation, and periodic
cell cycle pseudo-time inference.

Visualizing the functional diversity of single cells is es-
sential since visual inspection is the most direct approach
to studying the structure and pattern of cells. Nonlinear di-
mension reduction is a trending visualization method for
high-dimensional biological data (25). Nevertheless, state-
of-the-art single-cell visualization tools neglect the nested
structure of cells by merely capturing at most two levels
(global or local) of cell patterns (26–28). To tackle the is-
sue, SEAT provides a component to embed the cells into
a low-dimensional space by incorporating the multiple lay-
ers from the cell hierarchy as prior knowledge. Experiments
demonstrate that SEAT consistently visualizes the hierar-
chical layout of these cells in the two-dimensional space for
the above single-cell datasets.

MATERIALS AND METHODS

Problem formulation

Constructing cell–cell similarity graph. For a single-cell
molecular data tabulated in a matrix, columns and rows re-
fer to cells and their molecular features. For instance, the
feature can be a gene or genome region. An entry in the
matrix measures the value of the corresponding cell-feature
pair, e.g., gene expression, copy number variation, or chro-
matin accessibility.

We reduce the dimensionality of the single-cell molec-
ular matrix to a low-dimensional matrix X to mitigate
the curse of dimensionality. We construct a dense cell–cell
similarity graph G = (V, E) with Gaussian kernel euv =
exp(−||xu−xv ||2

2σ 2 ) with � as standard deviation of X. Edge
weight euv stands for the similarity between cells u and v
in graph G.

Hierarchical coding tree. A coding tree T of a cell–cell
graph G = (V, E) is a hierarchical multi-nary partition-
ing of the cell set V, preserving the nested information
in G. For clarity, we use u and v to represent the cells,

and μ and ν to represent tree nodes. Each tree node μ ∈
T codes a cell subset U ⊂ V. Denote the cell set coded
by a node μ ∈ T as V(μ). The root node r codes V and
node μ codes U, i.e., V(r) = V and V(μ) = U. Denote
the children of μ as C(μ). The children nodes C(μ) of
the tree node μ ∈ T partition the cells represented by
μ; that is, V(μ) = ⋃|C(μ)|

i=1 V(ci (μ)), V(ci (μ)) ∩ V(c j (μ)) =
∅, 1 ≤ i, j ≤ |C(μ)|, i �= j , where ci(μ) signifies the i-th
child node of μ and | · | denotes cardinality. A leaf node
t codes one or multiple cells with a specific order π (t) ∈
N

|V(t)|. For each cell u ∈ V there is a unique leaf node t ∈
T such that {u}⊆V(t).

Coding tree represents the hierarchy of subpopulations, clubs,
and cells. Given a pool of cells V which own k cell sub-
populations, an ideal coding tree T holds k disjoint sub-
trees rooted at nodes � = {λ1, ..., λk} which encode k cell
sets P = {V(λ1), ..., V(λk)} that match the cell subpopula-
tions. Denote the subtree Tλ � T rooted at λ as subpopu-
lation tree. Suppose Tλ has �λ leaves {tλ,1, ..., tλ,�λ

}, they en-
code �λ cell sets {V(tλ,1), ..., V(tλ,�λ

)} that represent cell clubs
inside cell subpopulation V(λ) in a finer resolution; that is,
the cells share high similarity inside one cell subpopulation.
In coding tree T, the total � leaves signify the � cell clubs C =
{V(tλ1,1), ..., V(tλk,�λk

)}. Moreover, as cells in each cell club t
has a specific order π (t) ∈ N

|V(t)|, the ideal coding tree T also
presents an overall cell order π = [π (tλ1,1), ..., π (tλk,�λk

)] ∈
N

|V| according to the order of leaves from left to right.
Determining the hierarchy of subpopulations, clubs, and

cells is now a hierarchical coding tree construction problem
- partitioning the graph G hierarchically to optimize a met-
ric. In this work, the metric is the global dynamical com-
plexity of the graph measured by structure entropy (19–24).

Measuring coding tree with structure entropy. Recall euv
is the edge weight between cells u and v in G. Term the
volume of μ ∈ T as the sum of degrees of all cells in
V(μ), vol(μ) = ∑

u∈V(μ),v∈V euveuv . Define g(μ) as the total weights of
edges from cells in V(μ) to V − V(μ), g(μ) = ∑

u∈V(μ),v∈V−V(μ) euve.
If μ �= r, its structure entropy is

ST(G; μ) = − g(μ)
vol(G)

log2
vol(μ)

vol(p(μ))
, (1)

where p(μ) is the parent node of �, vol(G) =∑
u,v∈V euveuv is the sum of all the edges in the graph,

thus vol(G) = vol(r ) signifies the volume of the whole
graph or the root r. The root r has structure entropy 0; that
is, ST(G; r ) = 0.

Denote t(u) as the leaf node where cell u belongs to, the
structure entropy of cell u in T is

ST(G; u) = − g(u)
vol(G)

log2
vol(u)

vol(t(u))
. (2)

The structure entropy of graph G coded by tree T is the
sum of the structure entropy of all tree nodes and all cells,

ST(G) =
∑
μ∈T

ST(G; μ) +
∑
u∈V

ST(G; u). (3)
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An ideal coding tree T captures the optimal hierarchy of
subpopulations, clubs, and cells. Finding the optimal cod-
ing tree T for the graph G is to find the minimum structure
entropy ST(G) which diminishes the global variance at the
random walk of G to a minimum.

Algorithm of SEAT

In previous work, we have proven that for a graph G,
there exists a binary hierarchy of minimum structure en-
tropy (23). Thus, SEAT searches the ideal coding tree T
from the binary hierarchies (Figure 1A). We first construct
a sparse graph Gs from dense graph G, then form cell club
hierarchies with minimal structure entropy ST(Gs) from
sparse graph Gs with agglomerative and divisive heuris-
tics. Then, we search the cell subpopulations by optimiz-
ing the structure entropy of the dense graph G constrained
by the heuristic hierarchies. Finally, we embed the graph
G into a low-dimensional space by adding the global-
subpopulation-club layer constraints from cell hierarchy T.

Graph sparsification. We sparsify the dense graph G with
k-nearest neighbors (kNNs), resulting in a sparse graph Gs
= (V, Es) with a binary edge weight. If cell u is the k-nearest
neighbor of cell v or cell v is the k-nearest neighbor of cell
u in original graph G, euv = 1; otherwise euv = 0.

Building cell club hierarchy. With the sparse graph Gs, we
form cell club hierarchies with minimal structure entropy
ST(Gs) with agglomerative and divisive heuristics (Fig-
ure 1B).

Agglomerative hierarchy building. The agglomerative hier-
archy building consists of three steps: initialization, forming
clubs, and building club hierarchy.

We initialize the tree of height one, the root node r has |V|
immediate children, where each child node t is a leaf node
that covers a single cell of u, V(t) = {u}. The initialized tree
is multi-nary.

We merge the leaf nodes repeatedly to form cell clubs.
A leaf has one of the two possible statuses at each itera-
tion, individual or merged. Initially, all the leaves are labeled
as individual. Two tree nodes μ and ν are referred to con-
nected if there are inter-node edges between V(μ) and V(ν)
in sparse graph Gs. We merge an individual leaf μ with its
connected sister ν by extracting μ and ν from T and creating
a new node μ′ which codes all cells in V(μ) and V(ν). The
new node μ′ is a child of root and a leaf labeled as merged.
The pair (μ, ν) is chosen by the largest merging structure
entropy change �m

se(μ, ν) (Supplementary Methods). This
merging operation repeats until (i) there is no more individ-
ual leaf connected to other sister leaves; or (ii) there is no
pair (μ, ν) yields a non-negative structure entropy differ-
ence. Then, all leaves are labeled individual, triggering sub-
sequent iterations of the merging procedure until no non-
negative structure entropy shift is possible. The above will
lead to a multi-nary coding tree T of a height of one and �
leaves. We assume each leaf presents a cell club, and the cell
order is the merging order.

To form the binary hierarchy of clubs, we iteratively com-
bine sister node pair (μ, ν) of the root by inserting a new

node ω as a child of the root and parent of μ and ν. The
selection of (μ, ν) is guided by connectivity and the largest
combining structure entropy change �c

se(ω,μ, ν) (Supple-
mentary Methods). The combining operation repeats until
the hierarchy is a binary coding tree.

Divisive hierarchy building. The second approach is to
build the club hierarchy divisively. We initialize the tree with
the root node r that codes all cells. The initialized tree has
a zero height, with one node as both root and leaf. To form
the hierarchy, we repeatedly split the leaf node t ∈ T into
two children guided by maximizing the bipartition struc-
ture entropy change �s

se(t). The solution of leaf split is the
Fielder vector of the normalized graph Laplacian if the
sparse graph Gs is regular (Supplementary Methods). Thus,
we heuristically obtain the bipartition according to the val-
ues in Fielder vector (29), the cells with smaller Fielder vec-
tors are placed on the left. The split stops if leaf node con-
tains only two cells or �s

se < δ, we set cutoff δ = 0.05. We
assume that each leaf presents a cell club, and the value of
Fielder vector reflects the cell order. Finally, we end up with
a binary hierarchy T with � clubs.

Finding cell subpopulations. Recall that an ideal cod-
ing tree T holds k disjoint subpopulation trees rooted
at nodes � = {λ1, ..., λk} which encode k cell sets P =
{V(λ1), ..., V(λk)} that match the cell subpopulations. To
find the k subpopulations, we contract the heuristic club hi-
erarchy T into a multi-nary tree T with a height of one (Fig-
ure 1C). The contracted tree T has a root node r holding k
leaf children. Each leaf node tλ ∈ T maps to a subpopula-
tion tree Tλ � T rooted at λ, thus tλ codes the cells from
Tλ, p(tλ) = r, V(tλ) = V(λ).

Given the heuristic club hierarchy T, contracting is op-
timized by minimizing the structure entropy ST (G) from
dense graph G. The structure entropy associated with con-
tracted tree T with k leaves focuses on measuring the global
variance at the random walk of a dense graph G among k
subpopulations, other than the variance in a finer cell-club
resolution,

ST (G) =
∑
λ∈�

⎡
⎣ST (G; tλ) +

∑
u∈V(tλ)

ST (G; u)

⎤
⎦ . (4)

To minimize ST (G), we adopt a recursive objective
J (G; ω, k) alongside the club agglomerative or divisive hi-
erarchy T. Assume tree node ω in T has left and right chil-
dren μ and ν, respectively. Finding k optimal subpopula-
tion trees inside subtree Tω � T rooted at � with minimum
J (G; ω, k) is equivalent to finding k′ and k − k′ subpopu-
lation trees inside subtrees Tμ � T and Tν � T rooted at �
and � such that sum of structure entropy in the contracted
tree T is minimal,

J (G; ω, k) =
{
ST (G; ω) + ∑

u∈V(ω) ST (G; u), k = 1,

min1≤k′ < k{J (G; μ, k′) + J (G; ν, k − k′)},
(5)

where k = 1 means ω is the root node of one subpopulation
tree, which maps to one leaf node of the contracted tree T .
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Figure 1. The schematic overview of SEAT. (A) The workflow of SEAT. (B) The algorithm of agglomerative and divisive hierarchy building. (C) The
algorithm of finding the final cell hierarchy carrying optimal subpopulations. (D) The summary of experimental settings.



PAGE 5 OF 17 Nucleic Acids Research, 2023, Vol. 51, No. 2 e9

We solve the contracting objective using dynamic pro-
gramming. We record the minimal structure entropy
J (G; ω, k) for finding k optimal subpopulations in a
bottom-up way; that is, calculating from leaves to root. We
trace back recursively to obtain the optimal cut-off k′ for
each node starting from the root. If k̂′

μ = 1 for one left child
or k̂′

ν = k − 1 for a certain right child at that state, one sub-
population V(μ) or V(ν) is found (Supplementary Meth-
ods). In this way, we obtain the contracted tree T with k
leaves representing k cell subpopulations.

Finding final cell hierarchy carrying optimal subpopulations.
For 1 ≤ k ≤ K where K is constant number, the optimal k̂
associated with the minimal structure entropy is the optimal
cut-off k

′
for root node, k̂ = arg min1 < k≤K{J (G; r, k)}.

The agglomerative and divisive hierarchies might have
different hierarchical structures. The optimal subpopula-
tions are subpopulations with less structure entropy (Fig-
ure 1C and Supplementary Methods). We choose the cell
hierarchy carrying optimal subpopulations as the final cell
hierarchy.

Obtaining and visualizing cell order. We find the cell hier-
archy T by minimizing the structure entropy of the sparse
cell–cell graph. Given the cell hierarchy T, we obtain the cell
order π ∈ R

|V| with an in-order traversal and visualize the
cell order periodically with an oval shape (Supplementary
Methods).

Hierarchical visualization. To convert the cell–cell similar-
ity graph G into d-dimensional latent space Y ∈ R

n×d for vi-
sualization, state-of-the-art tool UMAP (26) adopts a cross-
entropy (CE) objective,

CE(G) =
∑

u,v∈G

puv log
puv

quv

+ (1 − puv) log
1 − puv

1 − quv

. (6)

Here, puv and quv signifies the similarity of cells u and v in
original graph G and the latent space, respectively. quv is
smoothly approximated by quv = (1 + a(||yu − yv||22)b)−1,
where a and b are constrained by a hyper-parameter min-
dist, the effective minimum distance between cells in latent
space.

In this study, we adjust the above embedding strategy by
incorporating the final cell hierarchy. Recall that the cell
partition P and C corresponds to the k and � cell sub-
populations and clubs, respectively. Assume cell partition
I = {V} contains the one global cell population. Based on
the cell partitionH ∈ {I,P, C}, we set the inter-connections
between different cell groups to zero, resulting in a graph
GH that focuses on the cell–cell similarity inside one cell
group.

We minimize the disparity of cell–cell similarity between
the embedding space and GH with the objective

J (G) =
∑

H∈{I,P,C}
CE(GH) × θH, (7)

where hyper-parameters θH are the training weights of dif-
ferent cell partition resolutions obtained from cell hierarchy.

We initialize the low-dimensional embedding Y with
graph Laplacian (30) of GP , make min-dist equals 0.1, set

θI = 1, θP = 1, θC = 1, and minimize J (G) to convergence
with Adam gradient descent.

Outlier detection. Cellular abnormalities may distort the
entire cell hierarchy, thus affecting the efficacy of cell sub-
population and club detection, cell cycle pseudo-time infer-
ence, and hierarchical visualization. Thus, we have imple-
mented the average kNN outlier detection. We calculate the
mean distance d ∈ R

n given the single-cell molecular repre-
sentation of n cells. di is the mean distance of i-th cell to its
k-nearest neighbors. By default, we consider the cell with
an average kNN distance d exceeding a distance cutoff 0.5
as the outlier. We also provide a distance percentile cutoff
strategy, we regard the cell with an average kNN distance d
surpassing a distance percentile cutoff (e.g., 95th percentile)
as an outlier. The detected outliers will be assigned to label
–1 and excluded from the cell hierarchy building.

Time complexity of SEAT. Under the graph G with n cells,
the time complexity of SEAT is O(nlog n) (Supplementary
Methods).

Experiment Setting

scRNA data. We collect nineteen scRNA datasets with
gold standard cell type labels (31–43), the description of the
datasets and the download links are in Supplementary Table
S1 and Supplementary Method. For these scRNA datasets,
the dimension reduction transformer is UMAP (26). We
adopt Seurat ‘FindAllMarkers’ function (44) for differen-
tial expression analysis. The log2 fold change, log2(FC), of
the average expression between two groups is measured.
The fold change significance P-value is evaluated by the
Wilcoxon Rank Sum test, and the adjusted P-value is calcu-
lated with Bonferroni correction. The filtering criteria are
log2(FC) ≥ 0.25, P-value < 0.05, and adjusted P-value <
0.05. Cell–cell communication analysis is conducted with
CellChat (45) with default database and parameters. Any
ligand-receptor interaction with less than ten supporting
cells is filtered.

We also collect six scRNA datasets with gold stan-
dard cell cycle labels (Supplementary Table S2). Dataset
H1-hESC has 247 human embryonic stem cells (hESCs)
in G0/G1, S, or G2/M phases identified by fluorescent
ubiquitination-based cell cycle indicators (46). The count
expression profile and cell cycle labels are obtained with
accession code GSE64016. Datasets mESC-Quartz and
mESC-SMARTer have 23 and 288 mouse embryonic stem
cells (mESCs) sequenced by Quartz-seq and SMARTer, re-
spectively (47,48). Their G0/G1, S, and G2/M phases are
labeled by Hoechst staining. The count expression pro-
files and cell cycle labels are obtained with accession codes
GSE42268 and E-MTAB-2805. Datasets 3Line-qPCR H9,
3Line-qPCR MB, and 3Line-qPCR PC3 own 227 H9 cells,
342 MB cells, and 361 PC3 cells, respectively. The cell cy-
cle stages G0/G1, S, and G2/M are marked by Hoechst
staining (32). The raw log2 count expression profiles and
cell labels are from the paper’s dataset S2. The imputation
and dimension reduction are conducted by SMURF (49)
and UMAP (26). We adopt Seurat (44) for differential ex-
pression analysis as described above. Cell-cell communica-
tion analysis is conducted with CellChat (45) with default
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database and parameters. Any ligand-receptor interaction
with less than ten supporting cells is filtered. Gene Ontol-
ogy (GO) is performed with ShinyGO 0.76 (50).

scDNA data. We collect seven scDNA datasets (Supple-
mentary Table S1). Navin T10 contains 100 cells from a ge-
netically heterogeneous (polygenetic) triple-negative breast
cancer primary lesion T10, including five cell subpopu-
lations: diploid (D), hypodiploid (H), aneuploid 1 (A1),
aneuploid 2 (A2), and pseudo-diploid (P) (51). Navin T16
holds 52 cells from genetically homogeneous (monogenetic)
breast cancer primary lesion T16P and 48 cells from its
liver metastasis T16M, including four cell subpopulations:
diploid (D), primary aneuploid (PA), metastasis aneuploid
(MA), and pseudo-diploid (P) (51). The Ginkgo copy num-
ber variation (CNV) profiles of Navin T10 and Navin T16
are downloaded from http://qb.cshl.edu/ginkgo (52). The
silver standard array comparative genomic hybridization
(aCGH) data of Navin T10 and Navin T16 are downloaded
with GEO accession code GSE16607 (53).

Dataset 10x breast S0 is a large-scale 10x scDNA-seq set
without known cell population labels, where 10,202 cells
from five adjacent tumor dissections (A, B, C, D, and E)
of triple-negative breast cancer are sequenced. The Bam
files are downloaded from 10x official site https://www.
10xgenomics.com/resources/datasets. We inferred the total
CNV profile utilizing Chisel (54).

Ni CTC owns 29 circulating tumor cells (CTCs) across
seven lung cancer patients (55). McConnel neuron profiles
110 cells from human frontal cortex neurons, with an exten-
sive level of mosaic CNV gains and losses (56). Lu sperm
has 99 sperm cells with chrX-bearing, chrY-bearing, and
aneuploid groups (57). Wang sperm contains single-cell se-
quencing data on 31 sperm cells with CNV gains and losses
(58). The Ginkgo CNV profiles of these datasets are down-
loaded from http://qb.cshl.edu/ginkgo (52).

scATAC and scRNA-scATAC multiome data. We collect
three public scATAC-seq data as benchmarking sets with
gold standard cell type labels (Supplementary Table S1).
scatac 6cl is a mixture of six cell lines (BJ, GM12878,
H1-ESC, HL60, K562, and TF1) with 1,224 cells (59).
Hematopoiesis owns 2,210 single-cell chromatin accessibil-
ity profiles from eight human hematopoiesis cell subpopu-
lations (CLP, CMP, GMP, HSC, LMPP, MEP, MPP, and
pDC) (60). T-cell composes of four T-cell subtypes (Ju-
rkat T cell, Naive T cell, Memory T cell, and Th17 T cell)
with a total of 765 cells (61).

We collect a multiome of scRNA and scATAC dataset
PBMC (human peripheral blood mononuclear cells) with
10,032 cells across fourteen cell types.

We downloaded the scOpen (62) processed accessibility
profiles and cell labels from https://github.com/CostaLab/
scopen-reproducibility. UMAP (26) embedded data are
used to construct the kNN graphs. We adopt Cicero (63)
to explore the dynamically accessible element status in dif-
ferent scatac 6cl GM12878 cell clubs.

Evaluating cell subpopulation detection. To detect cell sub-
populations, some clustering methods require the number
of clusters prespecified, while others can determine the

number of clusters automatically. The SEAT package sup-
ports both. Our package requires no prespecified number
of clusters by default, that is, SEAT(sub). If the number of
clusters required is k, we denote the method as SEAT(k).
When the context is clear, we refer to them as predefined-k
and auto-k modes, respectively.

In the predefined-k mode, we access the clustering accu-
racy of SEAT agglomerative hierarchy and divisive hierar-
chy with predefined cluster number k given by the actual
number of ground truth cell types, namely Agglo(k) and Di-
visive(k). We regard the clustering result with a lower struc-
ture entropy from agglomerative and divisive hierarchies as
SEAT(k). Baselines are hierarchical clustering (HC) with
four linkage strategies (ward, complete, average, and sin-
gle) (12), K-means (11), and spectral clustering (10). We run
them with default parameters. As the leading tool for single-
cell clustering, Louvain (13) and Leiden (14) automatically
detect how many communities are inside the cell–cell sim-
ilarity graph. They obtain different numbers of communi-
ties at various resolutions. To benchmark Leiden and Lou-
vain in the predefined-k setting, namely Leiden(k) and Lou-
vain(k), we heuristically adjusted the resolution 20 times to
see if the number of communities was the same as the pre-
defined cluster number k.

As the predefined k is undetermined in most real-world
scenarios, we evaluate the auto-k clustering efficacy of
SEAT cell hierarchy, agglomerative hierarchy, and divi-
sive hierarchy, namely SEAT(sub), Agglo(sub), and Divi-
sive(sub). The baselines are Leiden and Louvain with de-
fault parameters. We also assess the clustering obtained
from agglomerative and divisive hierarchy clubs, namely
Agglo(club) and Divisive(club).

Adjusted Rand index (ARI) (64) and adjusted mutual in-
formation (AMI) (65) are adopted as clustering accuracy.
They measure the concordance between clustering results
and ground truth cell types. Perfect clustering has a value of
1, while random clustering has a value less than or near 0.

Evaluating cell cycle pseudo-time inference. SEAT cell hier-
archy, agglomerative hierarchy, and divisive hierarchy gen-
erate cell orders representing the cell cycle pseudo-time for
scRNA data, namely, SEAT(order), Agglo(order), and Di-
visive(order). We access the pseudo-time inference accuracy
of SEAT given by the actual order of ground truth cell cy-
cle phases. Benchmark methods are hierarchical clustering
(HC) with four linkage strategies (ward, complete, average,
and single) (12), since an in-order traversal of HC hierar-
chies also generates cell orders. Furthermore, we bench-
mark our method with four state-of-the-art tools predict-
ing the cell cycle pseudo-time, CYCLOPS (15), Cyclum (16),
reCAT (17), and CCPE (18). We run them with default pa-
rameters. CCPE fails the tasks when we follow its GitHub
instruction, so we exclude CCPE for final comparison.

The change index (CI) is used to quantitatively assess the
accuracy of cell pseudo-time order against known cell cy-
cle phase labels (17). An ideal cell order changes label k −
1 times, where k = 3 is the ground truth cell cycle phase
number. The change index is defined as 1 − c−(k−1)

n−k , where
c counts the frequency of label alters between two adjacent
cells, and n is the number of cells. A value of 0 suggests the

http://qb.cshl.edu/ginkgo
https://www.10xgenomics.com/resources/datasets
http://qb.cshl.edu/ginkgo
https://github.com/CostaLab/scopen-reproducibility
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cell order is utterly wrong with c = n − 1, while 1 indicates
a complete match between cell order and ground truth cell
cycle phase with c = k − 1.

Evaluating hierarchical visualization. We evaluate the ef-
ficacy of SEAT hierarchical visualization, SEAT(viz),
with state-of-the-art visualization tools UMAP (26),
TSNE (27), and PHATE (28). The dense cell–cell similar-
ity graph G is used as input. UMAP, TSNE, and PHATE
are run with default parameters.

Evaluating cell outlier detection. We simulate the gene ex-
pression profiles of 500 cells with five subpopulations us-
ing Splatter (66). We randomly produce 20 cell outliers with
gene expression disparting from all five subpopulations. We
evaluate SEAT cell subpopulation detection (i) with and
without the average kNN outlier detection; (ii) with differ-
ent combinations of parameters (nearest neighbor number,
distance cutoff, and distance percentile cutoff). The outliers
are considered as a distinct group, thus the ARI and AMI
are used to measure the clustering accuracy.

RESULTS

Overview of SEAT

SEAT builds a cell hierarchy annotated with global-
subpopulation-club-cell layers computationally from
single-cell data (Figure 1). First, SEAT constructs a pair
of dense and sparse cell–cell similarity graphs from a
full-dimensional or dimensionally reduced single-cell
molecular profile (Figure 1A). Second, we detect cell clubs,
determine the order of cells within each cell club, and build
the pseudo club hierarchies by minimizing the structure
entropy of the sparse graph with agglomerative (Agglo)
and divisive (Divisive) heuristics (Figure 1B, Materials
and Methods). We term the cell clubs and orders derived
from agglomerative and divisive hierarchies as Agglo(club),
Agglo(order), Divisive(club), and Divisive(order). Next,
we use dynamic programming to find optimal subpopula-
tions from agglomerative and divisive hierarchies, namely,
Agglo(sub) and Divisive(sub). We choose the hierarchy
carrying the lower subpopulation structure entropy as the
final cell hierarchy (Figure 1C, Materials and Methods).
Hence, SEAT outputs the final cell hierarchy carrying with
subpopulations, clubs, and orders, namely, SEAT(sub),
SEAT(club), and SEAT(order) (Figure 1A). Furthermore,
by incorporating hierarchical cell partition layers, SEAT
provides a component, SEAT(viz), to embed cells into
a low-dimensional space while preserving their nested
structures for improved visualization and interpretation
(Figure 1A).

Cell hierarchy catalogs functional diversity at the subpopula-
tion and club levels from scRNA data

We have applied SEAT to nineteen scRNA datasets carry-
ing gold standard cell type labels. The first nine sets are cell
line mixtures, including p3cl (31), 3Line-qPCR (32), sc 10x,
sc celseq2, sc dropseq, sc 10x 5cl, sc celseq2 5cl p1,
sc celseq2 5cl p2, and sc celseq2 5cl p3 (33). We have four
datasets Yan (34), Deng (35), Baise (36), and Goolam (37)

which sequence single cells from human or mouse embryos
at different stages of development (zygote, 2-cell, early
2-cell, mid 2-cell, late 2-cell, 4-cell, 8-cell, 16-cell, 32-cell,
early blast, mid blast, and late blast). The last six datasets
are Koh (38), Kumar (39), Trapnell (40), Blakeley (41),
Kolodziejczyk (42), and Xin (43), which profile different
cell types in single-cell resolution. To access the efficacy
of SEAT in cell subpopulations detection, we utilize the
adjusted rand index (ARI) (64) and adjusted mutual
information (AMI) (65) as clustering accuracy, and bench-
mark SEAT with state-of-the-art clustering tools (spectral
clustering (10), K-means (11), hierarchical clustering (12),
Louvain (13), and Leiden (14)) with predefined-k and
auto-k modes (Materials and Methods, Supplementary
Figures S1–S3). In predefined-k mode, SEAT(k) demon-
strates comparable or higher clustering accuracy compared
to other clustering baselines on most datasets (Figure 2A).
Notably, Louvain(k) and Leiden(k) are unable to generate a
clustering that exactly matches the number of ground truth
labels after 20 different resolution trials for the Goolam and
Kolodziejczyk (Figure 2A and Supplementary Figure S2).
Under the auto-k mode, SEAT(sub) outperforms Louvain
and Leiden on all nineteen sets. The clustering accuracies
of SEAT(sub) are comparable to or better than the best
clustering results with predefined-k clustering tools with the
ground truth cluster number provided. This is attributed
to the fact that SEAT(sub) finds a cluster number close to
the ground truth (Figure 2B). Louvain and Leiden have
the lowest clustering accuracy because they prefer more
clusters. The two-dimensional data embedded by UMAP
from full-dimensional single-cell expression profiles are
inputs of all clustering tools; and the visualizations of
them show that the ground truth labels are mixed for the
majority of datasets (Supplementary Figures S4 and S5),
explaining the low clustering accuracy of both predefined-k
and auto-k clustering tools.

SEAT offers hierarchical structures of cells to study cel-
lular functional diversity. We use differential gene expres-
sions to investigate the biological interpretations of these
hierarchies. In Supplementary Figures S6 and S7, differ-
entially expressed genes (P < 0.05) between cell hierar-
chy clubs reveal distinct patterns that match ground truth
cell subpopulations. Furthermore, visible marker gene pat-
terns reveal the functional diversity among cell clubs within
one cell subpopulation. We focus on the top five differen-
tially expressed genes for each dataset (Supplementary Fig-
ures S8–S11). As the subpopulation detection accuracy
of agglomerative hierarchy is 1 for p3cl dataset, we inves-
tigate the functional diversity revealed from the agglomer-
ative hierarchy other than the divisive hierarchy. The ag-
glomerative hierarchy revealed three cell subpopulations for
p3cl, which correspond to the three ground truth cell types,
basal (KRT81), luminal (TFF1), and fibroblast (COL1A2
and VIM) (Figure 2C). We observe that each of the basal,
luminal, and fibroblast has two major subclasses, controlled
by the expression of cell cycle genes (HIST1H4C, CDC20,
CCNB1, and PTTG1). Cell-cell communication analysis
finds a total of 109 significant (P < 0.05) ligand-receptor
(LR) pair interactions among seven agglomerative hierar-
chy clubs for breast cancer basal-like epithelial cell line in
p3cl. The LR interactions belong to nine signaling path-
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Figure 2. Applying SEAT on nineteen scRNA datasets. (A) The adjusted rand index (ARI) and adjusted mutual information (AMI) of predefined-k and
auto-k clustering tools. The best score is colored red for each dataset in predefined and auto clustering benchmarking separately. If SEAT gets second
place, we color the score orange. Spectral: spectral clustering. HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single,
average, complete, and ward linkage. Louvain(k) and Leiden(k): Louvain and Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopula-
tions from divisive and agglomerative hierarchy in predefined-k mode. SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode.
Divisive(club) and Agglo(club): the cell clubs from the divisive and agglomerative hierarchy. Divisive(sub) and Agglo(sub): the cell subpopulations from
divisive and agglomerative hierarchy in auto-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in auto-k mode. (B) The number
of subpopulations detected for auto-k clustering tools. (C) The top five differentially expressed genes in agglomerative hierarchy clubs for p3cl. (D) The
cell–cell communications among seven agglomerative hierarchy clubs for breast cancer basal-like epithelial cell line in p3cl. LR: ligand-receptor. (E, F)
SEAT(viz), UMAP, TSNE, and PHATE plots for p3cl and sc 10x 5cl. The cells are colored with subpopulations, clubs, and ground truth. The gray and
black circles in the SEAT(viz) plot indicate the subpopulation and club boundaries, respectively. In UMAP, TSNE, and PHATE plots, the red circles mark
the unclearly segregated cell clubs. SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.
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ways AGRN, CD99, CDH, EGF, JAM, LAMININ, MK,
NECTIN, and NOTCH (Figure 2D and Supplementary
Figure S12). In particular, there is a distinct breast cancer
cell club (basal-club0) that drives AREG -EGFR, an onco-
genic signaling (67) in breast cancer, to all basal cells, re-
sulting in a high level of AREG activated EGFR expression
(Figures 2C and 2D). The two cell clubs from the lumi-
nal subpopulation have six significant (P < 0.05) LR inter-
actions involving MK, SEMA3, and CDH signaling path-
ways (Supplementary Figure S13). The fibroblast has three
significant (P < 0.05) LR interactions, including two sig-
naling pathways FN1 and ncWNT (Supplementary Fig-
ure S13). The cell club fibro-club10 releases WNT5B and
then binds FZD7 from fibro-club9, consistent with the ob-
servation that ncWNT is the predominant signaling path-
way in skin fibroblasts (45).

Visualizations of two-dimensional data by UMAP from
full-dimensional single-cell expression profiles reveal a
dense layout (Supplementary Figures S4 and S5). The
ground truth cell subpopulations are indistinctly separated
in some high clustering accuracy datasets, and the cell clubs
are densely arranged in each subpopulation clump. Here, we
check whether SEAT hierarchical visualization eliminates
the dense layout of clubs. We use the cell–cell graph con-
structed by SEAT as input and execute SEAT(viz), UMAP,
TSNE, and PHATE, independently. In Figures 2E, 2F,
and Supplementary Figures S14–S18, SEAT(viz), UMAP,
TSNE, and PHATE separate the ground truth cell type for
most datasets. It should be noted that the patterns from
SEAT(viz), UMAP, TSNE, and PHATE also correspond to
the subpopulation layer annotations, validating SEAT sub-
population finding efficacy. At the cell club level, SEAT(viz)
shows a clear layout of cell clumps that correspond to the
cell hierarchy; each cell club owns a distinct clump, and
the distance between clubs belonging to the same subpop-
ulation is within proximity. Although UMAP, TSNE, and
PHATE capture the local structures of the clubs, the cell
clubs marked with red circles are unclearly segregated.

Cell hierarchy deciphers periodic cell cycle pseudo-time from
single-cell data

We collect six scRNA cell cycle datasets, H1-hESC (46),
mESC-Quartz (47), mESC-SMARTer (48), 3Line-
qPCR H9, 3Line-qPCR MB, and 3Line-qPCR PC3 (32)
with gold standard G0/G1, S, or G2/M stages, and then
build the cell hierarchies (Supplementary Figure S19).
In predefined-k and auto-k clustering benchmarking
(Supplementary Figure S20), SEAT illustrates higher or
comparable clustering accuracy in the six datasets. SEAT
predicts the optimal number of clusters closest to ground
truth three, while Leiden and Louvain generally predict
more clusters than SEAT. Further investigation shows
that ground truth labels are mixed or not distinctly sepa-
rated in two-dimensional data derived by UMAP for all
datasets (Supplementary Figure S21), explaining the poor
performance of 3Line-qPCR data. Likewise, hierarchical
visualization plots depict nested layouts corresponding to
the cell hierarchies in visualization refinement experiments
(Supplementary Figure S22).

If we order the cells in cycling progress, cells from the
same phase should be lined up adjacently as they share
higher similarity. Thus, the cell order obtained from an ideal
hierarchy could present a periodic pseudo-time order for
cell cycle data. We visualize the cell order periodically with
an oval plot, the placements of the cells in the oval rep-
resent their pseudo-time in the cell cycle (Figure 3A and
Supplementary Figure S23). We access the cell ordering ac-
curacy with the change index (CI) (17), which computes
how frequently the gold standard cell cycle phase labels
switch along the cell order. The benchmark methods are
four conventional HC strategies (12) that offer a cell order.
We also recruit state-of-the-art tools dedicating to predict
the cell cycle pseudo-time, CYCLOPS (15), Cyclum (16), re-
CAT (17), and CCPE (18). SEAT demonstrates the high-
est ordering accuracy for all datasets, except for 3Line-
qPCR PC3, where SEAT wins the top two (Figure 3B). We
exclude CCPE as it fails the tasks. In all, this suggests that
cell hierarchy obtained from SEAT facilitates the cell cycle
pseudo-time order inference.

SEAT orders cells in H1-hESC, mESC-Quartz, and
mESC-SMARTer alongside the oval that closely matches
the G0/G1-S-G2/M cycle (Figure 3A). Differential ex-
pression analysis among ground truth phases reveals dis-
tinct cell cycle phase markers (Supplementary Figure S24).
These visible cell cycle marker patterns remain consistent
when rearranging with SEAT cell order (Supplementary
Figure S25). The top 20 differential expression genes (P
< 0.05) for hESC and mESC cells include well-known
cell cycle markers UBE2C, TOP2A, CDK1, and CCNB1
(Supplementary Figure S26). Their expressions rise pro-
gressively with SEAT recovered pseudo-time order and
are peaked with significant fold changes at the M phase
(Figure 3C).

In H9, MB, and PC3 cell lines, the cell orders in the S
and G2/M phases are partially arranged compared to the
exact time course (Figure 3A). The differential expression
makers of ground truth phases show that there are sub-
patterns within the S and G2/M phases. Moreover, there
are similar patterns shared between the S and G2/M phases
(Supplementary Figure S24), suggesting the cause of poor
performance in pseudo-time ordering. Interestingly, after
rearranging the marker expression heatmap with SEAT
cell hierarchy, we observe distinct marker gene patterns
among SEAT discovered cell subpopulations (Supplemen-
tary Figure S25). For the H9 cell line, SEAT detects four cell
subpopulations (Figure 3D), G0/G1 phase corresponds to
sub2. Cell cycle S and G2/M phases together have three cell
subpopulations, sub0, sub1, and sub3. The top 20 differen-
tial expression genes (P < 0.05) exhibits two groups (Fig-
ure 3D). The genes from the first group are enriched in GO
cell cycle signaling pathways. The genes from the second
group are enriched in GO chemokine-mediated signaling
and immune response pathways with CXC and IL gene fam-
ilies, respectively (Supplementary Figure S27). We demon-
strate the top 20 differential expression genes for MB and
PC3 cell lines in Supplementary Figures S26 and S27. Fi-
nally, we verify the cellular interactions among cell subpop-
ulations with cell–cell communication analysis. We find a to-
tal of 124, 87, and 77 significant (P < 0.05) LR pair interac-
tions among cell subpopulations for H9, MB, and PC3 cell
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Figure 3. Applying SEAT on six scRNA cell cycle datasets. (A) The oval visualization of cell pseudo-time. From left to right are H1-hESC, mESC-Quartz,
mESC-SMARTer, 3Line-qPCR H9, 3Line-qPCR MB, and 3Line-qPCR PC3. From top to bottom are cell orders obtained from agglomerative hierar-
chy, divisive hierarchy, and SEAT cell hierarchy; namely, Agglo(order), Divisive(order), and SEAT(order). (B) The accuracy of cell pseudo-time order is
measured by change index (CI) for baseline tools. The best score is colored red for each dataset. If SEAT gets second place, we color the score orange.
HC(single)(order), HC(average)(order), HC(complete)(order), and HC(ward)(order): the cell orders from hierarchical clustering with single, average, com-
plete, and ward linkage. (C) The normalized expression of M phase marker genes alongside the SEAT cell order. (D) The top 20 differentially expressed
genes in G0/G1, S and G2/M ground truth phases for p3cl, arranged with SEAT cell hierarchy. SEAT(club): the cell clubs from SEAT cell hierarchy.
SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in
auto-k mode. (E) The cell–cell communications among SEAT cell subpopulations for H9, MB, and PC3 cell lines.

lines, respectively. All datasets exhibit CXCL, CCL, COM-
PLEMENT, and CD40 signaling interactions among cell
subpopulations (Figure 3E).

Cell hierarchy detects rare subclones on scDNA data

SEAT catalogs the clonal subpopulations of solid tumors
and circulating tumor cells in four scDNA datasets. SEAT
also identifies the CNV substructures of neuron and gamete
cells in three scDNA datasets. Owning to the unique charac-
teristics of CNV profiles, we only adopt SEAT agglomera-
tive hierarchy to investigate the functional diversity of CNV
substructures.

Navin et al. have profiled 100 cells from a genetically
heterogeneous (polygenetic) triple-negative breast cancer

primary lesion Navin T10 (51). Fluorescence-activated cell
sorting (FACS) analysis has confirmed that Navin T10
carried four main cell subpopulations: diploid (D), hy-
podiploid (H), aneuploid A (A1), and aneuploid B (A2).
Furthermore, Navin et al. have reported pseudo-diploid
cells (P) with varying degrees of chromosome gains and
losses from diploids. They are unrelated to the three tu-
mor cell subgroups (H, A1, and A2) (51). Therefore, given
whole-genome single-cell CNV profiles, we verify whether
SEAT and the state-of-the-art clustering tools identify the
four major cell groups and the rare pseudo-diploid cell
group (Figure 4A). In predefined-k mode, SEAT agglom-
erative hierarchy successfully recognizes five cell subpopu-
lations consistent with the patterns of CNV profiles. From
top to bottom, the ranks are cancer normal cell group
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Figure 4. Applying SEAT on scDNA datasets. (A) The analysis result of Navin T10. From left to right is the SEAT agglomerative hierarchy, subpopulation
detecting results for predefined-k (k = 5) and auto-k clustering tools, the whole genome single-cell CNV heatmap of Navin T10, the Spearman correlation,
and Euclidean distance (L2-Norm) between scaled copy number profiled by scDNA and copy number density profiled by aCGH. Spectral: spectral clus-
tering. HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward linkage. Louvain(k) and
Leiden(k): Louvain and Leiden in predefined-k mode. Agglo(k): the cell subpopulations from agglomerative hierarchy in predefined-k mode. Agglo(club):
the cell clubs from the agglomerative hierarchy. Agglo(sub): the cell subpopulations from agglomerative hierarchy in auto-k mode. aCGH: array compar-
ative genomic hybridization. (B) The stacked area plot illustrates the SEAT subpopulations across 10x breast S0 tumor sections. Cluster c6 (blue) signifies
the diploid cells. (C) The mean ploidy of SEAT subpopulations across 10x breast S0 tumor sections. (D) The whole-genome single-cell CNV heatmap of
SEAT subpopulations across 10x breast S0 tumor sections. The black boxes highlight the mutually exclusive amplification events on chr3 and ch4 across
subclones. CNV: copy number variation.

(D), pseudo-diploid cell subgroup (P), hypodiploid cell sub-
group (H), and two tumor aneuploid groups, A1 and A2
(Figure 4A). Leiden(k) and Louvain(k) fail at this task af-
ter 20 different resolution trials. Four HC strategies and K-
means fail to distinguish the four pseudo-diploid cells as
in the Navin et al.’s HC trial (51). Spectral clustering per-
forms poorly by mixing tumor and normal cells. Regard-
ing auto-k clustering algorithms, agglomerative hierarchy
identifies five concordant subpopulations as predefined-k
mode. Leiden and Louvain fail with the same sparse cell–
cell similarity graph as input. Then, we leverage CNV den-
sity signals detected by aCGH from FACS identified D, H,
A1, and A2 dissections of Navin T10 (53) as silver standard
to validate the clustering result. We calculate the pairwise
Spearman correlation and Euclidean distance (L2-norm)
between scaled single-cell CNV profiles and aCGH CNV

signals. As a proof of concept, the single-cell CNV pro-
files of three bottom clusters separately own higher corre-
lation and lower distance to aCGH profiles of H, A1, and
A2 sections. The cells in the uppermost subpopulation de-
tected by SEAT have almost zero correlation and the low-
est distance with aCGH D section, suggesting that they are
diploid cells. Pseudo-diploid cells illustrate a low correla-
tion with all aCGH sections, validating their unique CNV
profiles. Navin et al. have sequenced 100 cells from a mono-
genic triple-negative breast cancer tumor and its seeded liver
metastasis (Navin T16) (51). SEAT clusters the 100 sam-
ples into four distinct subpopulations (Supplementary Fig-
ure S28). Two are primary and metastasis aneuploid cells,
corresponding to the published population structure. No-
tably, SEAT catalogs diploid cells and pseudo-diploid cells
while baseline tools failed.
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We collect a large-scale 10x scDNA-seq dataset
(10x breast S0) without known subclone labels, where
10,202 cells from five adjacent tumor dissections (A, B, C,
D, and E) of triple-negative breast cancer are sequenced.
We check whether SEAT seizes the substantial intra-tumor
heterogeneity. In Figure 4B–D, SEAT automatically de-
tects seven subpopulations, and the proportions of the
cell subpopulations vary across the five lesions. The blue
subpopulation c6 gathers normal cells, with the mean cel-
lular ploidy being diploid across all sections. The number
of normal cells gradually decreases from sections A to E.
SEAT identifies six clonal subpopulations (c0–c5), where
c3 manifests the highest average ploidy. The mutually
exclusive amplification events (marked with black boxes in
Figure 4D) on chr3 and chr4 of subclones c0, c1, c2, and c4,
indicate an early branching evolution which is consistent
with the findings of Wang et al. (68); that is, originated
from normal cell group c6, the earliest subclone could be
c5, with CN=3 on ch3 and ch4. Subclone c5 derived to
subclone c0 with amplification on chr3 (CN=4). Moreover,
subclone c5 derived to an intermediate subclone with
amplification on chr4 (CN=4). Then, the intermediate
subclone derived to subclone c1, c2, and c4 with CN gains
on other chromosomes.

Furthermore, SEAT distinguishes cells with CNV gains
and losses in circulating tumor cells of seven lung cancer
patients (55) and in human cortical neurons (56) (Supple-
mentary Figure S28). SEAT also detects the loss of hetero-
geneity event, it successfully classifies chrX-bearing, chrY-
bearing, and aneuploid sperm cells (57,58) (Supplementary
Figure S28).

Cell hierarchy dissects chromatin accessibility heterogeneity
of single-cell data

SEAT dissects chromatin accessibility heterogeneity of sin-
gle cells. We utilize three public scATAC-seq data as bench-
marking sets with gold standard cell type labels. scatac 6cl
is a mixture of six cell lines (BJ, GM12878, H1-ESC, HL60,
K562, and TF1) (59). Hematopoiesis consists of eight types
of human hematopoiesis cells (CLP, CMP, GMP, HSC,
LMPP, MEP, MPP, and pDC) (60). T-cell composes of
four T-cell subtypes (Jurkat T cell, Naive T cell, Mem-
ory T cell, and Th17 T cell) (61). We collect a multiome of
scRNA and scATAC dataset, PBMC, for peripheral blood
mononuclear cells (PBMCs) with 14 cell types.

The orders of the cells in the agglomerative and divisive
hierarchies are consistent with their ground truth cell types
(Supplementary Figure S29). The clustering accuracies of
SEAT against its baselines are in Figure 5A. In predefined-
k mode, SEAT(k) demonstrates the highest clustering ac-
curacies on scatac 6cl and T-cell sets. For auto-k cluster-
ing, SEAT(sub) beats Louvain and Leiden on all four sets.
For scatac 6cl and T-cell, the optimal number of clusters
obtained by SEAT matches the ground truth, thus yielding
the comparable ARI against predefined-k clustering algo-
rithms. Leiden and Louvain have lower performance due to
predicting more clusters than ground truth (Supplementary
Figure S29).

We check whether SEAT reveals the functional diver-
sity of single-cell chromatin accessibility. We select cells

from scatac 6cl GM12878 cell line, then conduct cis-
regulatory DNA interaction analysis on chr22 for SEAT
cell club1 and club2. Figures 5B and 5C depict the cis-
regulatory map on chr22 of club1 and club2 cells, respec-
tively. The co-accessibility correlations among peaks of
club2 cells are significantly higher (P < 0.05) than club1
cells (Figure 5D). Meanwhile, we identify 29 and 179 cis-co-
accessibility networks (CCANs) from GM12878-club1 and
GM12878-club2, respectively (Figure 5E). The CCANs de-
tected in GM12878-club1 and GM12878-club2 are hetero-
geneous. Figure 5F illustrates a GM128780-club1 specified
CCAN at chr22:20,827,398–21,441,482. The cis-regulatory
elements surrounding gene SNAP29 are co-accessible
only in GM128780-club1. Moreover, we found dense
pairwise connections among peaks at chr22:39,778,355–
40,451,820 in GM12878-club2 (Figure 5G), harboring
genes TAB1, MGAT3, MIEF1, CACNA1I, ENTHD1,
GRAP2, FAM83F, TNRC6B, etc.

Similar to the scRNA visualization refinement experi-
ments, the SEAT(viz) reveals a clear pattern of cells cor-
responding to ground truth; and the nested layouts of
subpopulations and clubs are clearly illustrated with gray
and black circles (Figures 5H, 5I, and Supplementary Fig-
ure S30). However, UMAP visualizations derived from
high-dimensional data mix ground truth cell subpopula-
tions in one clump (Supplementary Figure S29). Further-
more, UMAP, TSNE, and PHATE visualizations derived
from cell–cell similarity graphs fail to place cells from
K562 (light green) and TF1 (yellow) within the vicinity in
scatac 6cl; and they fail to place all effector CD8 T cells
(magenta) together in PBMC (Figures 5H and 5I). Likewise,
the cell clubs marked with red circles are unclearly segre-
gated in UMAP, TNSE, and PHATE plots.

DISCUSSION

Detecting and visualizing cellular functional diversity are
essential in single-cell analysis. Neglection of the underly-
ing cellular nested structures prevents the capture of full-
scale cellular functional diversity. To address the challenge,
we incorporate cell hierarchy to investigate the functional
diversity of cellular systems at the subpopulation, club, and
cell layers, hierarchically. The cell subpopulations and clubs
catalog the functional diversity of cells in broad and fine
resolution, respectively. In the cell layer, the order of cells
further records the slight dynamics among cells locally. Ac-
cordingly, we establish SEAT to construct cell hierarchies
utilizing structure entropy by diminishing the global uncer-
tainty of cell–cell graphs. In addition, SEAT offers an inter-
face to embed cells into low-dimensional space while pre-
serving the global-subpopulation-club hierarchical layout
in cell hierarchy.

Currently, state-of-the-art clustering tools for cell sub-
population or club investigation neglect the underlying
nested structures of cells. Flatten clustering tools, such as
spectral clustering (10) and K-means (11), do not support
the cell hierarchy. Although conventional hierarchical clus-
tering (12), Louvain (13), and Leiden (14) derive cell hierar-
chy layer by layer via optimizing merging or splitting met-
rics, computing these metrics merely uses single-layer infor-
mation. When constructing subsequent layers, they have not
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Figure 5. Applying SEAT on three scATAC datasets and one scRNA-scATAC multiome dataset. (A) The adjusted rand index (ARI) and adjusted mutual
information (AMI) of predefined-k and auto-k clustering tools. The best score is colored red for each dataset in predefined and auto clustering benchmark-
ing. Spectral: spectral clustering. HC(single), HC(average), HC(complete), and HC(ward): hierarchical clustering with single, average, complete, and ward
linkage. Louvain(k) and Leiden(k): Louvain and Leiden in predefined-k mode. Divisive(k) and Agglo(k): the cell subpopulations from divisive and agglom-
erative hierarchy in predefined-k mode. SEAT(k): the cell subpopulations from SEAT cell hierarchy in predefined-k mode. Divisive(club) and Agglo(club):
the cell clubs from the divisive and agglomerative hierarchy. Divisive(sub) and Agglo(sub): the cell subpopulations from divisive and agglomerative hierar-
chy in auto-k mode. SEAT(sub): the optimal subpopulations from SEAT cell hierarchy in auto-k mode. (B–D) The co-accessibility score among peak pairs
at chr22 for cells at SEAT club1 and club2 from scatac 6cl GM12878 cell line. (E) The number of cis-co-accessibility networks (CCANs) among pair of
peaks at chr22 for cells at SEAT club1 and club2 from scatac 6cl GM12878 cell line. (F) The co-accessibility connections among cis-regulatory elements in
chr22:20,827,398–21,441,482. The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel illustrates
cells in scatac 6cl GM12878-club1, and the bottom shows cells in scatac 6cl GM12878-club2. (G) The co-accessibility connections among cis-regulatory
elements in chr22:39,778,355–40,451,820. The height of links signifies the degree of the co-accessibility correlation between the pair of peaks. The top panel
illustrates cells in scatac 6cl GM12878-club1, and the bottom shows cells in scatac 6cl GM12878-club2. (H, I) SEAT(viz), UMAP, TSNE, and PHATE
plots of scatac 6cl and PBMC. The cells are colored with subpopulations, clubs, and ground truth. The gray and black circles in the SEAT(viz) plot in-
dicate the subpopulation and club boundaries, respectively. In UMAP, TSNE, and PHATE plots, the red circles mark the unclearly segregated cell clubs.
SEAT(viz): the hierarchical visualization from SEAT cell hierarchy.
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incorporated the built-in cell hierarchy in the previous lay-
ers. Structure entropy is a metric that encompasses the pre-
viously constructed internal cell hierarchy. Experiments val-
idate that SEAT delivers robust cell-type clustering results
and forms insightful hierarchical structures of cells.

SEAT is good at finding the optimal subpopulation num-
ber with high accuracy. We have collected scRNA, scDNA,
scATAC, and scRNA-scATAC profiles with the number of
cell types ranging from 2 to 14. SEAT consistently predicts
the optimal cluster number closest to the gold or silver stan-
dards, while Louvain and Leiden predict too many clusters.
Especially for scRNA set Kumar, SEAT boosts the accu-
racy from 0.34 to 1 compared to Louvain and Leiden (Fig-
ure 2A). Auto-k clustering mode of SEAT is comparable
to or better than the best clustering results of predefined-k
clustering methods for most datasets.

SEAT specializes in hierarchically deciphering cellular
functional diversity at subpopulation and club levels. We
observe visible marker gene patterns that match cell clubs
within one cell subpopulation. For the p3cl set, the basal, lu-
minal, and fibroblast cell subpopulations have their own cell
clubs, determined by differentially expressed cell cycle genes
(HIST1H4C, CDC20, CCNB1, and PTTG1) (Figure 2C).
Looking at the seven agglomerative clubs for the basal sub-
population, we find a distinct breast cancer cell club that
drives oncogenic AREG-EGFR signaling in all basal cells
(Figure 2D), suggesting a promoting role in tumorigene-
sis (67). Cell hierarchy obtained from copy number profiles
of 10x breast S0 demonstrates a mutually exclusive sub-
clones layout (Figure 4D), indicating an early branch evolu-
tion (68). Furthermore, we find that there is a club-specified
dense co-accessible network of cis-regulatory elements at
chr22:39,778,355–40,451,820 in GM12878-club2, harbor-
ing genes TAB1, MGAT3, MIEF1, CACNA1I, ENTHD1,
GRAP2, FAM83F, TNRC6B, etc. (Figure 5G).

Inferring the periodic pseudo-time for the cell cycle data
is crucial as it reveals the functional diversity of cells un-
dergoing the cell cycle process. Several tools are dedicated
to cell cycle pseudo-time inference. CYCLOPS (15) and
Cyclum (16) utilize deep autoencoders to project expres-
sion profiles into cell pseudo-time in the periodic process,
which act as black boxes and lack explainability. reCAT (17)
employs the Gaussian mixture model to group cells into
clusters, and constructs a cluster-cluster graph weighted by
the Euclidean distance between the mean expression pro-
file of each cluster, then takes the traveling salesman path
of the cluster-cluster graph as the order. Finding a travel-
ing salesman path is NP-hard, and no polynomial time al-
gorithms are available (17). CCPE (18) learns a discrimi-
native helix to represent the periodic process and infer the
pseudo-time. However, we fail to run CCPE according to
its GitHub instruction. Moreover, CYCLOPS, Cyclum, re-
CAT, and CCPE bypass the nested structure of cells when
inferring the pseudo-time. In this study, we propose that the
cell layer of a hierarchy encodes the pseudo-time of cells
for cycling data. We build the hierarchy by minimizing the
structure entropy of the kNN cell–cell graph. The built hi-
erarchy carries the nested structure between individual cells
and their ancestral cell partitions. Then, the order of indi-
vidual cells is acquired with an in-order traversal of the hier-
archy. scRNA data exemplify that SEAT cell orders outper-

form CYCLOPS, Cyclum, reCAT, and CCPE by accurately
predicting the periodic pseudo-time of cells in the cell cy-
cle process. In hESC and mESC cells, the expressions of M
phase marker genes UBE2C, TOP2A, CDK1, and CCNB1
rise progressively alongside the SEAT recovered order and
are peaked at the M phase with significant fold changes
(Figure 3C).

Visualizing the hierarchical functional diversity of cells in
biological systems is crucial for obtaining insightful biolog-
ical hypotheses. UMAP (26) intends to maintain the global
cell structures by minimizing the binary cross entropy.
TSNE (27) preserves the local cell structures. PHATE (28)
tackles the general shape and local transition of cells. How-
ever, none of them impart the nested structures of cells into
the visualization. We propose a nonlinear dimension reduc-
tion refinement based on UMAP by incorporating cell hi-
erarchy as supervised knowledge. We acquire three cell–cell
graphs that only store the intra-connections of cells within
each global, subpopulation, and club partition. Then, we
minimize the weighted binary cross-entropy of the three
cell–cell graphs. This approach guarantees the global struc-
ture of the cells. Moreover, it ensures that cells within one
cell club and cell clubs within one subpopulation are closely
placed in the visualization. In contrast, cells from different
clubs and subpopulations are kept at a considerable dis-
tance. One can adjust the cross-entropy weights of global-
subpopulation-cell layers so that the patterns in visualiza-
tion retain a desired degree of hierarchy. Experiments with
scRNA and scATAC data demonstrate that SEAT hierar-
chical visualization consistently produces a clear layout of
cell clumps corresponding to the cell hierarchy.

Cellular abnormalities may distort the entire cell hier-
archy. When there are cell outliers presented, the original
SEAT will assign each cell outlier to its nearest cell sub-
population. Thus, the downstream biological interpretation
may be skewed. To tackle the issue, we provide an optional
average kNN outlier detection step before constructing the
cell hierarchy. In Supplementary Results and Supplemen-
tary Figures S31–S35, we demonstrate the distance cutoff is
more stable than the distance percentile cutoff because the
latter heavily depends on the ratio of outliers in the whole
population. Thus, we set distance cutoff as the default out-
lier detection strategy.

The structure entropy evaluates the global uncertainty
of random walks through a network with a nested struc-
ture (19). The minimum structure entropy interprets a sta-
ble nested structure in the network. Li et al. has used struc-
ture entropy to define tumor subtypes from bulk gene ex-
pression data (21) and to detect the hierarchical topologi-
cally associating domains from Hi-C data (22). These works
utilize greedy merging and combining operations to build
a local optimal multi-nary hierarchy and cutting hierarchy
roughly by keeping the top layers. As we have proven that
a binary hierarchy of minimum structure entropy exists for
a graph (23), Li et al.’s strategy to search for a multi-nary
hierarchy is not optimized. Adopted by Louvain and Lei-
den, modularity is a popular optimization metric to capture
community structure in a single-cell network. Agglo(club)
is analogous to Louvain’s if we switch the merging met-
ric to modularity. Agglo(club) achieves better or compara-
ble clustering performance against Louvain in most bench-
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mark sets (Figures 2A and 5A), suggesting the superior-
ity of structure entropy over modularity in measuring the
strength of hierarchically partitioning a network into sub-
groups. We have discussed the differences and advantages of
SEAT against the existing structure entropy and modular-
ity approaches at the algorithmic level in the Supplementary
Method.

SEAT detects the cell hierarchy, assuming that the struc-
ture entropy codes nested structures of cells. There is no
assurance that the resultant cell hierarchy will resemble
accurate nested structures of cells. SEAT finds a pseudo
cell hierarchy of cells. Nevertheless, the pseudo cell hier-
archy showcases profound efficacy and biological insights
in subpopulation detection, cell club investigation, and
periodic pseudo-time inference for single-cell multiomics
benchmarking datasets. In future work, we aim to refine the
algorithm to find a more accurate and insightful pseudo cell
hierarchy.

Recall that the cell hierarchy has multiple layers to
present cellular heterogeneity. In this study, we merely uti-
lize four main layers (global, subpopulation, club, and cell)
to interpret and visualize the cellular functional diversity.
In the future, we intend to investigate possible biological in-
sights and visualization layouts derived from more cell hi-
erarchy layers.

Moreover, the order of the cell clubs can be flipped in
the cell hierarchy. There is only a partial order among cells
bounded by the cell hierarchy. We plan to refine the algo-
rithm to provide a proper non-partial one-dimensional or-
der, which might infer the nuance of pseudo-time or devel-
opment trajectory among cells outside the periodic cell cy-
cle.
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