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Our understanding of the dynamics of neuronal activity in the human brain remains limited, due in part to a
lack of adequate methods for reconstructing neuronal activity from noninvasive electrophysiological data.
Here, we present a novel adaptive time-varying approach to source reconstruction that can be applied to
magnetoencephalography (MEG) and electroencephalography (EEG) data. The method is underpinned by a
Hidden Markov Model (HMM), which infers the points in time when particular states re-occur in the sensor
space data. HMM inference finds short-lived states on the scale of 100 ms. Intriguingly, this is on the same
timescale as EEG microstates. The resulting state time courses can be used to intelligently pool data over
these distinct and short-lived periods in time. This is used to compute time-varying data covariance matrices
for use in beamforming, resulting in a source reconstruction approach that can tune its spatial filtering prop-
erties to those required at different points in time. Proof of principle is demonstrated with simulated data,
and we demonstrate improvements when the method is applied to MEG.

© 2013 Elsevier Inc. Open access under CC BY license. 
Introduction

Magnetoencephalography (MEG) and electroencephalography
(EEG) data have the ability to provide direct, non-invasive measure-
ments of neuronal activity. This is providing new insights into the
dynamics of brain activity at the systems level, most recently using
magnetoencephalography (MEG) to investigate networks of oscilla-
tory activity in the human brain (Brookes et al., 2011; de Pasquale et
al., 2010; Hipp et al., 2012; Luckhoo et al., 2012). However, while the
temporal information is excellent, in many circumstances the spatial
resolution is relatively poor.

Beamforming is a commonly used method for performing source
reconstruction of brain activity, particularly for oscillatory activity.
Existing implementations typically correspond to a temporally sta-
tionary, spatially adaptive spatial filter (Van Veen et al., 1997). The
beamformer spatial filter weights are determined from the forward
model, i.e. the lead field matrix, and an estimate of the sensor data co-
variance. The accuracy of this data covariance matrix estimation is
therefore crucial, and key to the beamformer's ability to spatially
adapt to the data (Brookes et al., 2008).
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The data covariancematrix is estimated typically by pooling all of the
available data over time, which implicitly assumes that the data is tem-
porally stationary. However, this assumption is at odds with what we
know about MEG and EEG data. Firstly, there are likely to be temporal
non-stationarities in artefacts, e.g. the variation over time in physiologi-
cal activity such as the cardiac cycle. Secondly, there is increasingly
strong evidence of temporal non-stationarity in neuronal activity, even
in the resting state, from both fMRI (Smith et al., 2012) and MEG (de
Pasquale et al., 2010) data. In EEG, there is evidence of scalp topographies
that remain quasi-stable for periods of about 100 ms, known as EEGmi-
crostates (Britz et al., 2010; Koenig et al., 2005; Van de Ville et al., 2010).

Techniques such as Independent Component Analysis (ICA) can be
used to remove temporally non-stationary artefacts, e.g. due to cardiac
and respiratory cycles, in sensor space prior to source reconstruction
(Mantini et al., 2011). However, this still potentially leaves time-
varying neuronal phenomenon unaccounted for. Motivated by the
need to adapt to general temporal non-stationarities inherent in elec-
trophysiological data, Dalal et al. (2008) proposed using data covariance
matrices tuned to specific time (and frequency) windows. However,
this introduces a trade-off between the need for large integration win-
dows to give good data covariance estimation (Brookes et al., 2008),
and the desire to focus on a specific time window. While there are ap-
proaches that can adaptively tune the regularisation of the data covari-
ance matrix estimation in these settings to ensure stable performance
(Wipf and Nagarajan, 2007; Woolrich et al., 2011; Zumer et al., 2007),
the trade-off still remains.
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In this paper we propose a novel adaptive time-varying ap-
proach to data covariance estimation, designed to handle temporal-
ly non-stationary electrophysiological data. This uses a Hidden Markov
Model (HMM) to infer when in time particular states re-occur in the
sensor space data. The resulting HMM state time courses can then be
used to intelligently pool data over distinct and potentially short-lived
periods in time, to compute time-varying data covariance matrices.
These can then be used to compute time-varying spatial filter
beamformer weights tuned to each point in time.

Methods

Hidden Markov Model

HMMsmodel data as being generated from any one of a number of
discrete states. The states are “hidden”, i.e. not directly observable.
However, associated with each state is an observation model that
consists of a probabilistic mapping of each state to the observed
data. In this work, the hidden states may correspond to periods of
time when a particular artefact, or a potentially different neuronal
brain state, is present.

We assume a HMM of length T, state space dimension K, hidden
state variables, s = {s1 … sT}, and M/EEG sensor data, y = {y1 … yT},
where yt is the N × 1 M/EEG sensor data at time t with N equal to the
number of M/EEG sensors. The full true posterior probability of the
model is then given by

P y; s; θ;πð Þ ¼ P s0jπ0ð Þ∏
t
P st st−1; πj ÞP yt st ; θj ÞP θð ÞP πð Þðð ð1Þ

where P(θ), and P(π) are chosen to be non-informative priors, and π0
is the initial state probability. We have assumed that the probability
to transition to another state depends only on the state that the sys-
tem is in, and not on the path it took to get to its current state, i.e. it is
Markovian:

P st s1…st−1j Þ ¼ P st st−1j Þ ¼ πðð ð2Þ

where π is the K × K transition probability matrix, in which the ele-
ment (k, j) describes the probability of transitioning from state k to
state j between time t − 1 and time t.

The term, P(yt|st, θ), is the observation model that describes the
distribution of the data for each of the states st. In this work we as-
sume that the observation model for state k is a multivariate Normal
distribution (MVN) with θk = {μk, Σk}, where μk is the (K × 1) mean
vector, and Σk is the (K × K) covariance matrix:

P yt st ¼ k; θj ÞeMVN μk;Σkð Þ� ð3Þ

where MVN is a multivariate Normal distribution. A Hidden Markov
Model can be considered a generalisation of a mixture model where
the state variables are related through a Markov process rather than
being independent of each other. Indeed, a Hidden Markov Model in
space rather than time, corresponds to a Markov Random Field as
used in spatial mixture modelling (Woolrich and Behrens, 2006;
Woolrich et al., 2005).

Priors
The prior distributions over the HMM parameters, Θ = {π0,

π, θ}, are chosen to be conjugate distributions. The approximate
posterior distributions will then be functionally identical to the
prior distributions (i.e. a Gaussian prior density is mapped to a
Gaussian posterior density), making the model tractable to cer-
tain kinds of inference. See Rezek and Roberts (2005) for
details.
Inference
In this work we use Variational Bayes (VB) inference on the HMM,

as described in Rezek and Roberts (2005). This is fully probabilistic
and furnishes us with the full posterior distributions of the model pa-
rameters, P(Θ, s|y). For the purpose of using the HMM inference to
perform temporally adaptive beamforming, we could make use of
the full probabilistic inference on st, by using P(st|y) as weighted aver-
ages in the temporally adaptive beamforming.

However, for computational efficiency we instead choose the most
probable a posterior state, ut, at each time point:

ut ¼ argmax
k

P st ¼ k yj Þð ð4Þ

where ut is obtained using Viterbi decoding (which corresponds to
the Maximum a posterior) (Rezek and Roberts, 2005). The state
time course, ut, is then used to determine the pooling of data for com-
puting the covariance matrices in the temporally adaptive HMM
beamforming, as described in the next section.

Summary statistics. In assessing the output of the HMM inference it is
useful to define some summary statistics. We have used the following
measures.

Fractional occupancy is defined as the fraction of time spent in each
state:

Fractional occupancy kð Þ ¼ 1
T
∑
t

ut ¼¼ kð Þ ð5Þ

where ut == k is one if ut = k, and is zero otherwise. The Mean
life-time is defined as the amount of time spent in each state before
transitioning out of that state:

Mean life time kð Þ ¼
∑
t

ut ¼¼ kð Þ
Number of Occurences

ð6Þ

where the Number of Occurrences is given by:

Number of Occurrences kð Þ
¼ ∑

t
ut ¼¼ kð Þ− ut−1 ¼¼ kð Þð Þ ¼¼ 1ð Þ: ð7Þ

To aid in our evaluation of the method, we also use the
Symmetrised Kullback–Leibler (KL) divergence to provide a measure
of dis-similarity between the covariance matrices for the different
states k, j:

SKL k; jð Þ ¼ 0:5 DKL f N 0;Σkð Þ‖f N 0;Σj

� �� �
þ DKL f N 0;Σj

� �
f N 0;Σkð Þ

� �� �
ð8Þ

where fN(0, Σk) is the pdf for a multivariate Normal distribution with
zero mean and covariance matrix Σk. This can be simplified to:

SKL k; jð Þ ¼ 0:5tr Σ−1
j Σk

� �
þ 0:5tr Σ−1

k Σj

� �
−2N ð9Þ

where larger values of SKL(k, j) indicate larger differences in the co-
variance matrices.

LCMV beamforming

We assume that the data points for which the N × T matrix of
MEG signals, y, recorded at the N MEG sensors over T time points is
modelled as

y ¼
XL
i

H rið Þm rið Þ þ e ð10Þ



Table 1
MNI coordinates used for the “confound” sources in the simu-
lated data.

State # MNI coordinate (mm)

1 50 −62 26
2 −50 −62 26
3 26 32 40
4 −26 32 40
5 56 −62 16
6 −56 −62 16
7 −4 50 14
8 30 −14 −16
9 −30 −14 −16
10 41 −25 49
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where H(ri) is the N × 1 lead field matrix andm(ri) is the 1 × T vector
time course for a dipole at location ri, i = 1 … L, and e ~ N(0, Ce) is
the noise with covariance which is assumed to be Ce = σe

2I. Given
this forward model we can use a beamformer to optimise the 1 × N
spatial filter, W(ri), that estimates the dipole time course at location
ri from the sensor data as

m̂ ri; tð Þ ¼ W rið Þy tð Þ: ð11Þ

A linearly constrained minimum variance (LCMV) beamformer
has unit response in the pass band and minimises the variance in
the stop band, resulting in the following solution for the weights ma-
trix (Van Veen et al., 1997)

W rið Þ ¼ H rið ÞTC−1
y H rið Þ

� �−1
H rið ÞTC−1

y ð12Þ

This equation can be used at multiple locations to produce a whole
brain image of the brain's activity. However, the sensitivity of the
beamformer will vary for different locations within the brain. For ex-
ample, deep sources will have much less sensitivity than superficial
sources. The standard deviation of the estimator in Eq. (11) is calcu-
lated as the expected value of m(ri, t) m(ri, t)T, giving:

std m̂ ri; tð Þð Þ ¼ m̂ rið Þm̂ rið ÞT
� �1=2

¼ W rið ÞCyW rið ÞT
� �1=2

ð13Þ

Note that (for simplicity) the equations in this subsection correspond
to a scalar beamformer with known dipole orientation. In practice, we
determine the dipole orientation at each location by finding the pro-
jection of the lead field that beamforms the maximum power, as in
Sekihara et al. (2004).

Temporally adaptive HMM beamforming

In this work we use an approach that augments the HMM infer-
ence with an LCMV beamformer, to produce a temporally adaptive
beamformer. This works by assuming that the data covariance matrix
varies over time. This means that the mean and standard deviations of
the source reconstructed time courses now depend on time varying
weights and covariance matrices, and are given by:

m̂ ri; tð Þ ¼ W ri; tð Þy tð Þ std m̂ ri; tð Þð Þ ¼ W ri; tð ÞCy tð ÞW ri; tð ÞT
� �1=2 ð14Þ

where

W ri; tð Þ ¼ H rið ÞTCy tð Þ−1H rið Þ
� �−1

H rið ÞTCy tð Þ−1 ð15Þ

where Cy(t) is the data covariance matrix at time t. We use the state
time course from the HMM inference on the same data, y, to deter-
mine Cy(t):

Cy tð Þ ¼ Σu tð Þ ð16Þ

where

Σu tð Þ ¼ Σ u tð Þ¼kð Þ ¼
1

Tk−1

XTk

j¼1

y tk jð Þð Þ−ykð Þ y tk jð Þð Þ−ykð ÞT ð17Þ

and where {tk(1) … tk(Tk)} is the set of Tk time points for which state
k is the most probable (as given by Eq. (4)), and y̅k is the mean over
those time points.
Deriving z-statistical time-courses

We assume that the neural activity at location ri and time t, m(ri, t),
can be approximated using a Normal distribution:

m ri; tð ÞeN m̂ ri; tð Þ; std m̂ ri; tð Þð Þ2
� �

ð18Þ

where m̂ ri; tð Þ and std m̂ ri; tð Þð Þ are given by Eqs. (11) and (13) for the
temporally stationary beamformer, and by Eq. (14) for the temporally
non-stationary HMM beamformer. A scaled source “z-statistical” time
course could then be calculated as:

z ri; tð Þ ¼ m̂ ri; tð Þ=std m̂ ri; tð Þð Þ ð19Þ

This represents a time course of z-statistical values, which corrects for
the variability of the sensitivity of the sources over space and HMM
states. The reader should be aware that this is not the same as the
pseudo-z-statistic (Vrba and Robinson, 2002) (also known as the neural
activity index (Van Veen et al., 1997)), in which the projected data are
scaled, not by the best estimate of the standard deviation, but by the es-

timated standard deviation of the noise (i.e. m̂ ri; tð Þ=σ e WWT
h i0:5

,

where σe corresponds to the estimated noise standard deviation at all
of the MEG sensors).

Deriving z-statistical power time-courses

In the datasets looked at in this paper, it will be power (envelope)
time courses that we use to compare between task conditions, or as
the basis for seed-based correlation. Hence we need to be able to es-
timate appropriate z-statistical power time courses, which appropri-
ately corrects for the variability of the sensitivity of the sources over
space and HMM states.

With the temporally stationary beamformer, the standard devi-
ation of the estimate of the neural activity, std m̂ ri; tð Þð Þ, is given in
Eq. (13). In this case we could simply compute the z-statistical
time courses using Eq. (19) and then perform the power calcula-
tion, i.e. the Hilbert transform, to get a z-statistical power time
course as:

zs ri; tð Þ ¼ H z ri; tð Þð Þ ð20Þ

where H(x) is the Hilbert envelope amplitude of x.
However, for the time-varying HMM beamformer, the standard

deviation, std m̂ ri; tð Þð Þ is given by Eq. (14). Crucially, this means that
the standard deviation now varies over time, since it is computed in-
dependently for each state of the HMM model. This means that a
more sophisticated approach is needed to calculate the z-statistical
power time courses. To do this we use Monte Carlo sampling to
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Fig. 1. Example of data simulated to contain time-varying “confound” sources using a 10 state HMM. The resulting HMM state time courses are shown in (a), and the resulting sim-
ulated signals (in brain space) are shown in (b). These “confound” sources are placed at the MNI coordinates listed in Table 1, along with a unit variance Gaussian random “signal”
source (not shown) placed in the left motor cortex (LMC) to create simulated MEG data. Comparisons of standard stationary beamformer (red) and HMM beamformer (blue) using
the simulated data. (c) Correlation over time (and over all states) between the beta-band power time courses of the beamformed data and the known signal in the LMC, as x is
varied while fixing y = −25 mm and z = 49 mm with different amounts of sensor measurement noise. Error bars show standard deviation over 10 realisations. (d) T-statistic
maps of the correlation with the known beta-band power time course for a single realisation of the simulated data at the highest measurement noise, thresholded at the 99th per-
centile; the cross hairs are at the true location of the signal.
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allow us to take the probabilistic description of the time courses,
given by Eq. (18), and convert them into a probabilistic description
(in the form of a Normal distribution) of the corresponding Hilbert
envelope time courses.

In practice, we sample a time course from the Normal distribution
in Eq. (18). This corresponds to constructing a time course by
sampling a value for each time point from the Normal distribution
with mean and variances given in Eq. (18). We can then compute
the Hilbert envelope for the sampled time course. We repeat this pro-
cess 100 times to get 100 sampled Hilbert envelope time courses. The
standard deviation over samples, S(ri, t), is then computed at each
time point from these Hilbert envelope time courses, to give an
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approximate Normal distribution on the power at location ri and time
t, μ(ri, t), as:

μ ri; tð ÞeN H m̂ ri; tð Þð Þ; S ri; tð Þ2
� �

ð21Þ

A scaled source z-statistical power time course could then be calculat-
ed as:

zns ri; tð Þ ¼ H m̂ ri; tð Þð Þ=S ri; tð Þ ð22Þ

Calculating 100 Monte Carlo simulations for each voxel is time-
consuming, and so we also consider using a much more computa-
tionally efficient approachwhere we approximate the standard devi-
ation, S(ri, t), of the estimate of the Hilbert envelope time course as
being proportional to the standard deviation of the raw time courses,
i.e.

S ri; tð Þ∝std m̂ ri; tð Þð Þ: ð23Þ

Simulated data

Methods: simulated data

Simulations were undertaken using MEG system geometry based
on the third order synthetic gradiometer configuration of a 275
channel whole head CTF MEG system. The location of the brain anat-
omy with respect to the sensors was taken from a real experimental
recording as described for the real MEG resting state data (described
later) with a sampling rate of 150 Hz and a length of 500 s. Additive
Gaussian noise at three (power) Signal-to-Noise Ratio (SNR) levels
(4.001 × 10−3, 1.440 × 10−3, 0.735 × 10−3) were added in sensor
space, with different random sampling for each realisation of the
simulated data.

A dipolar “signal” source was simulated, located in the left primary
motor cortex at the MNI coordinate [41, −25, 49] mm. This “signal”
source time-course comprised Gaussian random noise with unit stan-
dard deviation (arbitrary units (AU)), sampled differently for each
simulated dataset realisation.

Ten dipolar temporally non-stationary “confound” sources, lo-
cated at the MNI coordinates in Table 1, were also simulated using
a 10 state HMM with a transition probability of 0.0002 between all
states (corresponding to an average state life-time of 2 s). Example
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Fig. 2. Resting state MEG dataset. Plots showing the effect of varying the assumed number
ergy), and (b) on the occupancy (i.e. amount of time spent in a state) for the state that has th
that is considered acceptable to give a good estimate of the covariance matrix for use in be
where the standard deviations of the estimate of the power time course are estimated eithe
time course standard deviation (blue).
state time courses are shown in blue in Fig. 1a. When state k is ac-
tive, the source time course for dipole k is sampled from Gaussian
random noise with standard deviation equal to 10 (AU) (sampled
differently for each simulated dataset realisation), and otherwise
the source time course has zero standard deviation. An example of
the resulting simulated “confound” source signals are shown in
Fig. 1b.

All simulated dipoles are projected into brain space using realistic
MEG lead fields to create simulated MEG sensor space data. For either
“signal” or “confound” sources, the source orientations were taken as
being tangential to the radial orientation but randomised with re-
spect to the azimuthal direction.

These simulated data were then source reconstructed using either
a standard stationary beamformer, or the HMM beamformer using a
HMM with 10 states. In both cases the beamformer was applied to a
reduced subspace with a dimensionality of 100 (Hunt et al., 2012;
Woolrich et al., 2011).

Following beamformer projection, the z-statistical power time
courses were calculated using Eq. (20) for the standard stationary
beamformer, and Eq. (22) for the HMM beamformer, with S(ri, t)
estimated using Eq. (23). The z-statistical power time courses at
each voxel were then low pass filtered with a moving average fil-
ter with a width of 0.1 s. The metric of performance used was the
correlation (or t-statistic) over all time (and therefore over all
states) between the beta-band z-statistical power time courses
and the “ground-truth” beta-band power time-course from the
left primary motor cortex. The “ground truth” simulated beta
band time course was obtained by applying a beta band Hilbert
transform on the raw simulated time course placed in the left pri-
mary motor cortex.
Results: simulated data

Fig. 1c shows the comparison of the standard stationary
beamformer and HMM beamformer using the simulated data dem-
onstrated in Figs. 1a and b. The plots show the correlation of the
beamformed signal with the known signal in the left motor cortex
as the x-coordinate is varied, and as the amount of sensor space
measurement noise is varied. This is computed for 10 realisations
of the simulated data, with the error bars showing the standard de-
viation. At low sensor noise, both approaches perform well. How-
ever, as the noise increases the standard stationary beamformer's
erroneous assumption of stationary covariance starts to cause
problems and the performance degrades, whereas the performance
of the HMM beamformer is maintained. Fig. 1d shows this
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Fig. 3. Results of fitting the HMMmodel with 7 states to the resting state MEG dataset. (a) Inferred HMM state time courses, with the first 30 s also shown zoomed in. The 6th state
can be seen to be visited regularly about every 1 s, which is confirmed by the FFT of its state time course in (b), consistent with this state representing a cardiac related signal.
(c) Mean life time and fractional occupancy of the states are also shown.
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difference in the performance at the highest noise level for a single
realisation of the simulated data using a beamformer grid with
6 mm spacings.

Resting data

Methods

Data collection
The subject was asked to lie in the scanner and view a centrally

presented fixation cross while 300 s of MEG data was recorded. The
MEG data were acquired using a 275 channel CTF whole-head
system (MISL, Coquitlam, Canada) at a sampling frequency of
600 Hz, and synthetic 3rd order gradiometer correction was applied
to reduce external interference. Head localisation within the MEG
helmet was achieved using three electromagnetic head position
indicator (HPI) coils (placed at three fiducial points: nasion, left
and right pre-auricular points). By periodically energising these
coils the head position within the MEG sensor array was identified.
Prior to data acquisition, the HPI coil locations and the subject's
head shape were digitised using a Polhemus Isotrack system. Struc-
tural MR images for each subject were acquired using a Philips
Achieva 3 T MRI system (MPRAGE; 1 mm isotropic resolution,
256 × 256 × 160 matrix, TR = 8.1 ms, TE = 3.7 ms, TI = 960 ms,
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shot interval = 3 s, flip angle = 8° and SENSE factor 2). The loca-
tions of the MEG sensors were co-registered to the brain anatomy
by matching the digitised head surface to the head surface extracted
from the anatomical image.

Data analysis
Periods of data containing large artefacts were identified by vi-

sual inspection, and discarded. The registration of the subject's
head shape to their structural MRI was carried out using SPM8
(www.fil.ion.ucl.ac.uk/spm). MEG data were then frequency fil-
tered into the 13 to 30 Hz (β) band and projected into source
space using either the standard stationary or HMM beamformers.
In both cases the beamformer was applied to a PCA reduced sub-
space with a dimensionality of 100. Voxels were placed on a reg-
ular 5 mm grid spanning a grey matter mask across the entire
brain. Following beamformer projection, the z-statistical power
time courses were calculated using Eq. (20) for the standard sta-
tionary beamformer, and Eq. (22) for the HMM beamformer. The
z-statistical power time courses at each voxel were then low
pass filtered with a moving average filter with a width of 0.5 s,
and downsampled to 2 Hz, based on findings from a previous
study optimising the moving average filter width (Luckhoo et al.,
2012).

Seed-based correlation and spatial leakage reduction
A seed location was defined in the right motor cortex at the MNI

coordinate [42 −26 48] mm. Seed-based regression t-statistic maps
were produced by regressing the seed voxel's low pass filtered and
down-sampled z-statistical power time course onto all other test
voxel low pass filtered and down-sampled z-statistical power time
courses.

Note that prior to the Hilbert envelope calculations, we reduced
the effect of zero-time-lag spatial leakage between the seed and test
voxels using the approach described in Brookes et al. (2012) and
Hipp et al. (2012). This uses linear regression and subtraction of the
raw time series at the seed location from the raw time series at
each of the test voxels, and has been shown to significantly reduce
leakage and enhance connectivity estimates. This was carried out in-
dependently for each HMM state.
Results — resting data

Fig. 2 shows the effect of varying the assumed number of states in
the HMM for the resting state MEG dataset. The model evidence (es-
timated via the negative of the free energy) monotonically increases
up to a model order of 8, suggesting that the Bayes-optimal model
may require an even higher number of states. However, as shown
in Fig. 2b, the occupancy (i.e. amount of time spent in a state) for
the state that has the minimum occupancy drops below 30 s with
a model order of 8. This is a more meaningful metric with regard
to the intended use of the HMM, specifically the estimation of data
covariance matrices for use in the standard stationary beamformer.
As shown in Brookes et al. (2008) and Woolrich et al. (2011), the
amount of data required to give a good estimate of the covariance

http://www.fil.ion.ucl.ac.uk/spm
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matrix for data with bandwidth of the beta band (13 to 30 Hz) is of
the order of about 30 s. As a result of this we use an HMM with 7
states for the rest of the analyses in this paper.

Fig. 3 shows the result of fitting the HMM model with 7 states to
the resting state MEG dataset, including the inferred HMM state
time courses. In particular, state 6 is visited regularly about every
1 s, which is confirmed by the FFT of its state time course in Fig. 4b.
This is consistent with state 6 corresponding to a cardiac related
artefact.

The data covariance matrices are computed by pooling the
data during the points in time when the states are active (as
given by the state time courses in Fig. 4a), and are shown in
Fig. 4. The differences between the state covariance matrices are
quantified using the Kullback–Leibler (KL) divergence, as shown
in Fig. 4c.

Fig. 2c compares the z-statistical power time courses for the seed
voxel, where the standard deviation of the power time course is esti-
mated either using Monte Carlo simulations (Eq. (22)), or by assum-
ing that it is proportional to the raw time course standard deviation
(Eq. (23)). This demonstrates the similarity of the z-statistical
power time courses obtained using either approach. Hence, for com-
putational efficiency, we estimate the standard deviation of the
power time course by assuming that it is proportional to the raw
time course standard deviation (Eq. (23)), in the rest of the analyses
in this paper.

Fig. 5b shows spatial maps of t-statistics corresponding to the
correlation of beta band power with the seed voxel in the right
motor cortex (thresholded at the 98th percentile of each ap-
proach). At this threshold the standard stationary beamformer
only shows correlation around the seed. Whereas the HMM
beamformer shows bilateral correlation with the seed voxel; this
is consistent with left–right motor cortex power–power coupling
demonstrated in previous papers (Brookes et al., 2011; Brookes et
al., 2011; Hipp et al., 2012). Fig. 5a shows the same images, but
with a lower threshold at the 90th percentile of each approach.
The standard stationary beamformer now shows bilateral motor
areas; however, it is not as lateralised as the HMM beamformer
approach.
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(d) Mean life time and fractional occupancy of the state time courses within rest (blue) and finger tapping (red) epochs.
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Motor task

Methods

The motor task MEG data was acquired in the same manner as the
resting state data, as described in the section “Resting Data”. The sub-
ject was a right-handed female who undertook a motor task (see
Brookes et al., 2011 for details), which included 30 s blocks of rest,
left finger tapping, right finger tapping, or simultaneous left + right
finger tapping. Here we look for beta band power changes between
simultaneous left + right finger tapping and rest.

The data analysis is the same as for the resting data. As with the
resting state data the z-statistical power time courses were calculated
using Eq. (20) for the standard stationary beamformer, and Eq. (22)
for the HMM beamformer. The z-statistical power time courses at
each voxel were then low pass filtered with a moving average filter
with a width of 0.1 s, and downsampled to 10 Hz.
However, rather than then doing seed-based correlation, we fit
a multiple regression (or General Linear Model (GLM)) to the
z-statistical power time courses using a design matrix containing 4 re-
gressors to model the different conditions (rest, left finger tapping,
right finger tapping, simultaneous left + right finger tapping). We
then contrasted the simultaneous left + right finger tapping regression
parameter with respect to the rest regression parameter, and computed
uncorrected t-statistics using standard GLM statistics (Luckhoo et al.,
2012).

Results — motor task

Fig. 6c shows that the occupancy (i.e. amount of time spent in a
state) for the state that has the minimum occupancy, drops below
30 s with a model order of 14. As a result we use an HMM with 13
states for the rest of the analysis. This is considerably higher than
the number of states for the resting state analysis (7). However, this
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is primarily due to the motor task data being approximately twice as
long.

Fig. 6a shows the result of fitting the HMMmodel with 13 states to
the motor task MEG dataset, including the inferred HMM state time
courses. There are two different states that appear to correspond to
the cardiac cycle, i.e. states 2 and 10, as confirmed by the FFT of
their state time course in Fig. 6b. Fig. 6d shows the mean life-time
and fractional occupancy of the state time courses. As with the resting
dataset the states are short lived, with mean life times on the order of
100 ms. Fig. 6d also shows the mean life-time and fractional occupan-
cy broken down for the two conditions of rest and finger tapping.
State 5 shows a particularly strong difference between conditions,
appearing mostly in the rest condition, with a longer mean life-time
than the other states.

The data covariance matrices are computed by pooling the data
during the points in time when those states are active (as given by
the state time courses in Fig. 6a), and are shown in Fig. 7. Figs. 9
and 10 show a comparison of the t-statistic spatial maps from the
standard stationary beamformer and the 13 state HMM beamformer.
The t-statistics are calculated from the multiple regression (GLM)
and show decreases in beta-band power between simultaneous
left + right finger tapping and rest. Qualitatively, the activity has in-
creased spatial specificity in the HMM beamformer compared with
the standard stationary beamformer. For example, the standard
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Fig. 8. (a). Power spectral density of raw source reconstructed time course for the HMM
beamformer (green), stationary beamformer (red), and HMM beamformer followed by
beta band bandpass filtering (black). Representative 2 s time segment of the raw source
reconstructed time course (b), and the corresponding Hilbert envelope time course (c),
for the stationary beamformer (red) and the HMM beamformer (blue), where the black
dots indicate when there is a switch in HMM state. Note that there is no qualitative evi-
dence of strong discontinuities or oscillatory components due to the fast HMM state
switching. Results are shown for the left motor cortex (MNI coords: [36 −18 52] mm)
in the finger tapping MEG dataset.
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stationary beamformer tends to have just one extended cluster of ac-
tivation in each hemisphere centred on the primary somato-sensory
cortex. In contrast, at the same percentile threshold, the HMM
beamformer is able to find multiple, distinct clusters of activity cor-
responding to plausible areas of the motor network.

Comparison with ICA denoising
In Fig. 6 we saw that two states in particular are likely associated

with the cardiac cycle. It is possible that the qualitative improve-
ments attributed to the HMM beamforming could be solely due to
its ability to identify (and downweight) artefacts such as this. In
this case, the approach might be expected to perform similar to
using ICA denoising in sensor space, followed by standard stationary
beamforming. To investigate this possibility we carried out standard
stationary and HMM beamformer analyses, with and without ICA
denoising. ICA was carried out using fastICA via the symmetric ap-
proach and with a dimensionality of 60 (Hyvärinen, 1999). Two
components were manually identified as corresponding to cardiac
artefact, and two components as eye/eye-blink movement related
artefact. These components were then subtracted from the data
(Mantini et al., 2011), with the same operation applied to the lead
fields.

Fig. 11a shows the first 20 s of the sensor time course for the sen-
sor showing the highest correlation with one of the IC time courses
identified as being ECG related, before [correlation = −0.82] and
after [correlation = −0.03] removal of the IC component corre-
sponding to the ECG artefact for the finger tapping data. Standard
stationary and HMM beamforming was then applied. Fig. 11b
shows the first 20 s of HMM state time courses for the HMM state
with the highest correlation with the main ECG IC time course
when running the HMM inference on data, before [correlation = 0.23]
and after [correlation = 0.02] removal of the IC component corre-
sponding to the ECG artefact. Fig. 11c shows a comparison of the
standard stationary beamformer and the 13 state HMM beamformer
for finger-tapping versus rest with and without ICA denoising hav-
ing been applied in sensor space. This suggests that the HMM
beamformer is doing more than ECG/eye movement denoising
alone.

Comparison with a sliding window approach
It would be expected that a sliding window approach (similar

to that used in Dalal et al., 2008) with time windows of several
seconds would be blind to the short-lived states being found by
the HMM inference (~100 ms). To confirm this we carried out a
sliding window analysis on the finger tapping data. The results
are shown in Fig. 12. This used fixed time windows with widths
of 50 s (matched to have the same average occupancy as the
HMM state time courses). Note that this is equivalent to the
HMM approach but where the HMM state time courses are
fixed as shown in Fig. 12a. Fig. 12b shows the distribution of
the KL divergences between the full stationary data covariance
matrix and the data covariance matrices estimated using the
HMM state time courses or the fixed sliding window time
courses. This indicates a much lower KL divergence (with respect
to the global stationary covariance) for the sliding window co-
variances than for the HMM-derived covariances. Fig. 12c shows
the result of using the fixed sliding time window beamformer ap-
proach. This looks very similar to the stationary beamformer spa-
tial maps in Fig. 10.

State discontinuities
In the HMM beamformer the raw time courses are obtained from

beamformer weights computed for different HMM states, where con-
secutive time points may be derived from different states. This has the
potential to introduce discontinuities on average every 100 ms in the
source time courses; and could introduce a ~10 Hz artefact that could
have an adverse effect on the computed shape of the Hilbert envelopes.
Fig. 8a shows the power spectral density of raw source reconstructed
time course for the HMM beamformer compared with the standard
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Fig. 9. Comparison of standard stationary beamformer [left] and a 13 state HMM beamformer [right], for the finger-tapping MEG dataset. Images show three slices of the
uncorrected t-statistic spatial maps, indicating beta band power decreases for simultaneous left + right finger tapping versus rest, thresholded at the 98th percentile. [PMC — pri-
mary motor cortex, PSC — primary somato-sensory cortex, preMC — premotor cortex (supplementary motor area), SSC — secondary somato-sensory cortex.]
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stationary beamformer, before and after beta band bandpass fil-
tering, in the left motor cortex (MNI coords: [36 −18 52] mm)
in the finger tapping MEG dataset. There is no qualitative evi-
dence of a ~10 Hz component. Figs. 8b and c shows a representa-
tive 2 s time segment of the raw source reconstructed time
course, and the corresponding Hilbert envelope time course,
alongside when there is a switch in HMM state. There is no qual-
itative evidence of strong discontinuities due to the fast HMM
state switching.
Within-state analysis
The HMM beamformer approach presented so far reconstructs

beta power time courses, upon which a single GLM has been run to
compare beta power in simultaneous left + right finger tapping ver-
sus rest (e.g. Fig. 10). However, an alternative strategy is to run sep-
arate GLMs on each HMM state. Fig. 13 shows the results of doing this
within-state GLM analysis. This has the advantage in that it can alle-
viate the potential impact of any discontinuities on the GLM due to
fast HMM state transitions, and also allows us to see the underlying
effects within each state. Fig. 13 shows that each individual state
produces quite different spatial maps, with different subsets of the
motor network being recruited. Fig. 13 shows the net result of
these constituent parts via a fixed-effects averaging (Woolrich et
al., 2004) over the 13 states. This spatial map looks very similar to
the spatial map obtained from the original single GLM analysis
shown in Fig. 10.
Discussion

We have presented a new adaptive time-varying approach to
source reconstruction, underpinned by a Hidden Markov Model
(HMM). The HMM infers when in time particular states occur,
allowing intelligent pooling of data over distinct and potentially
short-lived periods in time. This is used to compute time-
varying data covariance matrices for use in beamforming,
resulting in a source reconstruction approach that can tune its
spatial filtering properties to that which is required at different
points in time.

While we do not have any absolute ground truth, the results indi-
cate a qualitative improvement in the spatial maps on the resting and
motor MEG datasets when using the HMM beamformer compared
with the standard stationary beamformer. In the resting data the
t-statistics are comparable in the left and the right motor cortex
(see Fig. 5). However, in medial cortex the values are reduced in the



Fig. 10. As in Fig. 9 but with images showing the y = −28 mm slice of the uncorrected t-statistic spatial maps, indicating beta band power decreases for simultaneous left + right
finger tapping versus rest, [top] thresholded at the 98th percentile, and [bottom] unthresholded.
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HMM beamformer, suggesting a slight reduction in the spatial leak-
age. Investigating the broader effects of non-stationary methods on
functional connectivity, including the important issue of controlling
for false-positive connections, is an important area for further work.

In the motor dataset the t-statistics in the primary somato-sensory
cortex appear reduced, but there appears to be greater spatial specificity
with distinct clusters of activation apparent in plausible areas of the
motor network including primary motor cortex, primary somato-
sensory cortex, premotor cortex, and secondary somato-sensory cortex
(see Figs. 9 and 10). This potential improvement cannot be attributed
solely to artefact denoising (Fig. 11). A within-HMM state analysis
(Fig. 13) suggests that this is being driven by each state exhibiting differ-
ent subsets of themotor network that have beta power changes between
finger tapping and rest.

Most M/EEG source localisation algorithms are based on the as-
sumption of temporal stationarity. The unsupervised classification
of the data into stationary blocks using the HMM, will have benefits
for any temporally stationary source localisation approach, simply
because the within-state sensor data will be more temporally sta-
tionary than the sensor data as a whole. Similar advantages to
those demonstrated in this paper are likely to be achieved by
pre-calculating the HMM state time courses for use in other source
localisation approaches, such as multiple sparse priors (Friston et
al., 2008).

State interpretation

In this work, the focus is on finding states of temporally station-
ary covariance structure, and seeing how we can use this to improve
source reconstruction methods such as beamforming. For this objec-
tive, there is no need to be able to identify the underlying physical
processes that are causing the different HMM states, i.e. we do not
need to be able to interpret them as being due to specific artefacts,
or due to specific neuronal processes. That said, the HMM inference
finds states that live for time periods on the scale of about 100 ms.
Intriguingly, this is on the same timescale as EEG microstates. EEG
microstates are defined as short periods (~100 ms) during which
the sensor space topography remains approximately stable. These
microstates are thought to correspond to transient coherent activa-
tion within resting state networks (Britz et al., 2010; Koenig et al.,
2005; Van de Ville et al., 2010). In future work, we will look to see
how HMM states found in MEG may relate to EEG microstates, and
in turn to resting state networks found using techniques like ICA
in resting (Brookes et al., 2011) or task (Luckhoo et al., 2012) MEG
data.

Sliding window approaches

Previous work has looked to estimate covariance matrices at
each point in time using sliding time windows (Dalal et al., 2008).
However, a sliding window approach is limited to finding transient
activity with life times long enough to allow the covariance to be
estimated reliably (i.e. using time windows on the order of several
seconds). In contrast, the Hidden Markov Model simultaneously in-
fers the covariance matrices for each state and the probability of
being in a particular state at each point in time. This allows the co-
variance matrix for a state to be estimated by pooling over all
points in time when that state is active, even when each visit to
that state may be short-lived. Indeed, we found that the HMM
states had average life times on the order of hundreds of millisec-
onds; and as demonstrated in Fig. 12, a sliding window approach
with time windows of several seconds is effectively blind to these
short timescales.

Model order

HMM inference needs an a-priori specification of the number of
states. Previous work has explored the performance of the HMM in-
ference with regard to this choice of model order (Rezek and
Roberts, 2005). However, in the specific context of using HMMs in
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Fig. 11. Effects of ICA denoising. (a) First 20 s of sensor time course for the sensor showing the highest correlation with the main ECG IC time course, before (red)
[correlation = −0.82] and after (blue) [correlation = −0.03] removal of the IC component corresponding to the ECG artefact. (b) First 20 s of HMM state time
courses for the HMM state with the highest correlation with the main ECG IC time course when running the HMM inference on data, before (red) [correlation =
0.23] and after (blue) [correlation = 0.02] removal of the IC component corresponding to the ECG artefact. The IC time course identified as the ECG artefact is
shown for comparison (black). (c) Comparison of standard stationary beamformer [left] and a 13 state HMM beamformer [right], for the finger-tapping MEG dataset,
shown with [bottom] and without [top] ICA denoising having been applied in sensor space. Images show the z = −28 mm slice of the uncorrected t-statistic spatial
maps.
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beamforming, we intentionally choose a model order that is less than
the “correct”model order (see Fig. 2). This is due to the overriding re-
quirement that we want HMM states with enough occupancy to give
good estimates of the covariance matrices for the purposes of
beamforming.

State transitions

In this paper we have used a hard transition between states. That
is, the time series from the estimated sources have discontinuities at
the state boundaries when the weights change. We found no evi-
dence of discontinuities in the reconstructed time courses caused by
the rapid switching of the HMM states (see Fig. 8). Nevertheless, an
alternative scheme that would alleviate this potential issue would
be to make use of the full probabilistic inference on st, by using P(st|
y) to perform weighted averaging to construct a distinct covariance
matrix at every time point. However, this would require computation
of unique beamformer weights at every time point (rather than for
every state as is possible with the hard transition approach); this
would be computationally intensive. A computationally efficient but
approximate alternative may be to perform the weighted averaging
on the state specific weights instead.

The ability to have different representations of the data at differ-
ent time points has the potential to increase the spatial information
that can be extracted from MEG data. With a temporally stationary
approach, the CTF data used in this paper can have at most 275 (the
number sensors) independent pieces of information about the spatial
activity in brain space. In reality the independent information is likely
to be a lot less than this (note that the Elekta Neuromag Signal Source
Separation (SSS) Maxfilter approach produces data with a dimension-
ality of only about 64 (Woolrich et al., 2011)). While the dimension-
ality cannot be higher than the number of independent sensors at any
one time point, a temporally non-stationary approach allows us to
span a different subspace at different points in time. This effectively
increases the amount of spatial information that can be extracted.
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Fig. 12. Fixed sliding time window approach (with window width 51 s). This is equivalent to the HMM approach but where the HMM state time courses are fixed as shown in (a)
(rather than inferred from the data). (b) Shown is the distribution of the KL divergences between the full stationary data covariance matrix and the data covariance matrices es-
timated using (left) the HMM state time courses for the K = 13 HMM approach, and (right) the fixed sliding time courses shown in (a). (c) Shown is the result of using the fixed
sliding time window beamformer approach for comparison with the maps in Fig. 10.

Fig. 13. Result of running the GLM separately within each HMM state. T-statistic maps show comparison of beta power in simultaneous left + right finger tapping versus rest sep-
arately for all 13 HMM states in the finger-tapping MEG dataset, and [bottom-right] the result of doing a fixed-effects averaging over all of these 13 analyses. Images are thresholded
at the 98th percentile.

91M.W. Woolrich et al. / NeuroImage 77 (2013) 77–92



92 M.W. Woolrich et al. / NeuroImage 77 (2013) 77–92
References

Britz, J., Ville, D.V.D., Michel, C.M., 2010. BOLD correlates of EEG topography reveal
rapid resting-state network dynamics. Neuroimage 1162–1170.

Brookes, M.J., Vrba, J., Robinson, S.E., Stevenson, C.M., Peters, A.M., Barnes, G.R., Hillebrand,
A., Morris, P.G., 2008. Optimising experimental design for MEG beamformer imaging.
Neuroimage 1788–1802.

Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson, M.C., Barnes, G.R.,
Smith, S.M., Morris, P.G., 2011. Investigating the electrophysiological basis of resting
state networks using magnetoencephalography. Proc. Natl. Acad. Sci. U. S. A.
16783–16788.

Brookes, M.J., Woolrich, M.W., Barnes, G.R., 2012. Measuring functional connectivity
in MEG: a multi-variate approach insensitive to linear source leakage. NeuroImage
63 (2), 910–920.

Dalal, S.S., Guggisberg, A.G., Edwards, E., Sekihara, K., Findlay, A.M., Canolty, R.T., Berger,
M.S., Knight, R.T., Barbaro, N.M., Kirsch, H.E., Nagarajan, S.S., 2008. Five-dimensional
neuroimaging: localization of the time-frequency dynamics of cortical activity.
Neuroimage 1686–1700.

de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti, L., Belardinelli, P.,
Ciancetta, L., Pizzella, V., Romani, G.L., Corbetta, M., 2010. Temporal dynamics of sponta-
neousMEG activity in brain networks. Proc. Natl. Acad. Sci. U. S. A. 107 (13), 6040–6045.

Friston, K., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson,
R., Flandin, G., Mattout, J., 2008. Multiple sparse priors for the M/EEG inverse prob-
lem. Neuroimage 1104–1120.

Hipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., Engel, A.K., 2012. Large-scale cortical cor-
relation structure of spontaneous oscillatory activity. Nat. Neurosci. 15 (6), 884–890.

Hunt, L.T., Kolling, N., Soltani, A., Woolrich, M.W., Rushworth, M.F.S., Behrens, T.E.J.,
2012. Mechanisms underlying cortical activity during value-guided choice. Nat.
Neurosci. 470–476.

Hyvärinen, A., 1999. Fast and robust fixed-point algorithms for independent compo-
nent analysis. IEEE Trans. Neural Netw. 626–634.

Koenig, T., Studer, D., Hubl, D., Melie, L., Strik, W.K., 2005. Brain connectivity at different
time-scales measured with EEG. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1015–1023.

Luckhoo, H., Hale, J.R., Stokes, M.G., Nobre, A.C., Morris, P.G., Brookes, M.J., Woolrich,
M.W., 2012. Inferring task-related networks using independent component analy-
sis in magnetoencephalography. Neuroimage 530–541.
Mantini, D., Della Penna, S., Marzetti, L., de Pasquale, F., Pizzella, V., Corbetta, M.,
Romani, G.L., 2011. A signal-processing pipeline for magnetoencephalography
resting-state networks. Brain Connectivity 49–59.

Rezek, I., Roberts, S., 2005. Ensemble Hidden Markov Models with extended observa-
tion densities for biosignal analysis. Probabilistic Modeling in Biomedicine and
Medical Bioinformatics.

Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., 2004. Asymptotic SNR of scalar and
vector minimum-variance beamformers for neuromagnetic source reconstruction.
IEEE Trans. Biomed. Eng. 1726–1734.

Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann,
C.F., Jenkinson, M., Andersson, J., Glasser, M.F., Van Essen, D.C., Feinberg, D.A.,
Yacoub, E.S., Ugurbil, K., 2012. Temporally-independent functional modes of spon-
taneous brain activity. Proc. Natl. Acad. Sci. U. S. A. 3131–3136.

Van de Ville, D., Britz, J., Michel, C.M., 2010. EEG microstate sequences in healthy
humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. U. S. A.
18179–18184.

Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain
electrical activity via linearly constrained minimum variance spatial filtering.
Biomed. Eng. IEEE Trans. 867–880.

Vrba, J., Robinson, S., 2002. Signal Processing in Magnetoencephalography. 23.
Wipf, D., Nagarajan, S., 2007. Beamforming using the relevance vector machine. Inter-

national Conference on Machine Learning.
Woolrich, M.W., Behrens, T.E., 2006. Variational Bayes inference of spatial mixture

models for segmentation. IEEE Trans. Med. Imaging 1380–1391.
Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Jenkinson, M., Smith, S.M., 2004.

Multilevel linear modelling for FMRI group analysis using Bayesian inference.
Neuroimage 1732–1747.

Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Smith, S.M., 2005. Mixture models with
adaptive spatial regularization for segmentation with an application to FMRI data.
IEEE Trans. Med. Imaging 1–11.

Woolrich, M., Hunt, L., Groves, A., Barnes, G., 2011. MEG beamforming using
Bayesian PCA for adaptive data covariance matrix regularization. Neuroimage
1466–1479.

Zumer, J.M., Attias, H.T., Sekihara, K., Nagarajan, S.S., 2007. A probabilistic algorithm inte-
grating source localization and noise suppression forMEG and EEG data. Neuroimage
102–115.


	Dynamic state allocation for MEG source reconstruction
	Introduction
	Methods
	Hidden Markov Model
	Priors
	Inference
	Summary statistics


	LCMV beamforming
	Temporally adaptive HMM beamforming
	Deriving z-statistical time-courses
	Deriving z-statistical power time-courses

	Simulated data
	Methods: simulated data
	Results: simulated data

	Resting data
	Methods
	Data collection
	Data analysis
	Seed-based correlation and spatial leakage reduction

	Results — resting data

	Motor task
	Methods
	Results — motor task
	Comparison with ICA denoising
	Comparison with a sliding window approach
	State discontinuities
	Within-state analysis


	Discussion
	State interpretation
	Sliding window approaches
	Model order
	State transitions

	References


