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Across species and tissues and especially in the mammalian brain, production of

gene isoforms is widespread. While gene expression coordination has been previously

described as a scale-free coexpression network, the properties of transcriptome-wide

isoform production coordination have been less studied. Here we evaluate the

system-level properties of cosplicing in mouse, macaque, and human brain gene

expression data using a novel network inference procedure. Genes are represented

as vectors/lists of exon counts and distance measures sensitive to exon inclusion

rates quantifies differences across samples. For all gene pairs, distance matrices

are correlated across samples, resulting in cosplicing or cotranscriptional network

matrices. We show that networks including cosplicing information are scale-free and

distinct from coexpression. In the networks capturing cosplicing we find a set of novel

hubs with unique characteristics distinguishing them from coexpression hubs: heavy

representation in neurobiological functional pathways, strong overlap with markers of

neurons and neuroglia, long coding lengths, and high number of both exons and

annotated transcripts. Further, the cosplicing hubs are enriched in genes associated

with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show

dramatically increasing intronic lengths but stable coding region lengths. Shared

transcription factor binding sites increase coexpression but not cosplicing; the reverse

is true for splicing-factor binding sites. Genes with protein-protein interactions have

strong coexpression and cosplicing. Additional factors affecting the networks include

shared microRNA binding sites, spatial colocalization within the striatum, and sharing a

chromosomal folding domain. Cosplicing network patterns remain relatively stable across

species.

Keywords: gene cosplicing, scale-free gene networks, brain transcriptome, alternative splicing, gene

coexpression

Introduction

There are several different strategies that can be used to analyze gene expression data (Allen et al.,
2012; Jay et al., 2012). Systems biology approaches such as the Weighted Gene Coexpression
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Network Analysis (WGCNA) have shown that the coexpression
structure follows a power-law distribution, clusters the
expression data into modules of conserved function which
are preserved to varying degrees across cell types and species and
importantly allows one to detect patterns of gene connectivity
that can be aligned with behavioral and physiological phenotypes
(e.g., Zhou et al., 2011; Konopka et al., 2012). The emphasis
on gene connectivity frequently focuses on detecting highly
connected “hub” genes that are potential targets for therapeutic
manipulation. Although methods such as the WGCNA have
been widely used for the analysis of microarray data, they have
been only recently applied to RNA-Seq data, which not only
has improved clustering metrics but also provides exon-level
resolution (Iancu et al., 2012b; Giorgi et al., 2013). Recent studies
(Chen and Zheng, 2009; Dai et al., 2012) have shown that these
exon data can be used to generate cosplicing networks that
are distinct in structure and function from the coexpression
networks. These studies have demonstrated that individual
exons from different genes can have correlated expression levels
even when no correlation is detectable between the overall gene
expression levels.

The current study investigates the structure of the cosplicing
networks by implementing an analysis strategy that involves
the construction of distance (similarity/dissimilarity) matrices.
Previously we have used distance-based approaches to examine
high-dimensional genotype data for the purpose of illustrating
how selective breeding affects allele segregation (Iancu et al.,
2010, 2012a, 2013a,b). We note that a preliminary outline
of results presented here has been previously published in
Iancu et al. (2014). Other examples of using distance measures
to analyze genotype and gene expression data abound (e.g.,
Zapala and Schork, 2006, 2012). We now extend the distance
approach to exon level gene expression data. Gene transcripts are
represented as a list/vector of exon expression levels, which for
RNA-Seq datasets are proportional to the exon level read counts.
Many genes have the potential for alternative splicing, and
therefore gene-level expression reflects a collection of isoforms;
relative abundance of isoforms translates into relative exon
inclusion rates. It is often unclear whether changes in “expression
level” originate from one or more isoforms. Given this data
representation, an ecological analysis strategy (Mantel, 1967) was
used to correlate exon inclusion rates across samples. The major
benefit of this approach rested in avoiding the representation
of a gene (a complex mixture of isoforms, each consisting
of multiple exons) as a single scalar value; such a limited
approach, unavoidable in the case of gene microarray data, is
sub-optimal when exon data are available. To capture cosplicing
events, we utilized two distinct distance measures. The cosine
distance measure, which is not affected by changes in overall
gene expression level, has been previously utilized for alternative
splicing detection (Aschoff et al., 2013). We utilized this measure
for the construction of the cosplicing network. Additionally, we
also utilized the Canberra distance measure, which is sensitive
to changes in overall gene expression levels as well as exon
inclusion patterns; this distance measure generated a distinct
network which we denote as CoSplicEx. Gene networks were
then constructed using the WGCNA approach, using the Mantel

correlations to derive network edge weights. We found that the
resulting cosplicing and CoSplicEx network structures are clearly
distinct from the structure of the gene coexpression networks
derived from the same data, both in terms of network topology
and in terms of the biological factors driving the network
structure.

Materials and Methods

RNA-Seq Data Collection and Pre-processing
The RNA-Seq data consisted of a total of 60 animals that
are the result of previous generations of selective breeding for
haloperidol response (Iancu et al., 2012a). Tissue collection and
preparation was performed as described previously (Iancu et al.,
2012a). The reads were aligned using the Bowtie short read
alignment program (Langmead et al., 2009) to the reference
mouse genome (NCBI m37 assembly) and summarized relative
to Ensembl 59 gene models using the “union exon” framework.
The gene and exon counts were corrected using edgeR (Robinson
et al., 2010) upper quartile normalization factors. Data is publicly
available as GEO series GSE62669.

We employed additional procedures to mitigate possible
deleterious effects of low/noisy exon counts. First, we removed
from the analysis genes with less than 500 average counts.
Next, we constructed a large pairwise adjacency matrix of all
exon pairwise Pearson correlations. Based on this matrix we
computed the network connectivity of all exons and removed
from network construction genes where all exons have low
(bottom quartile) network connectivity. After these selection
procedures we retained 9066 genes for network construction.

Network Construction Methodology
Construction and annotation of the transcriptional networks
was performed largely as described elsewhere (Langfelder and
Horvath, 2008; Iancu et al., 2010); for the cosplicing network we
used the Mantel correlation as detailed below. Gene coexpression
is often quantified using correlation of gene expression levels.
When a gene is represented as a vector of exon counts, we
compute the pairwise distances between the N samples, resulting
in an N by N matrix that contains N(N-1)/2 unique distances.
The choice of distance measure reflects the goals of the analysis.
For the CoSplicEx and cosplicing networks we used the Canberra
and cosine distance measures, respectively:
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where i, j are two samples and e iterates over all exon counts a. In
the Canberra metric each exon contributes a value between 0 and
1 to the total distance.

Comparison and Annotation of Network Hubs
The number of exons, annotated transcripts, protein domains,
coding sequence size, homology information and GC percentage
content were retrieved using the biomaRt R package (Durinck
et al., 2009). Gene markers for mouse neuronal cell types were

Frontiers in Genetics | www.frontiersin.org 2 May 2015 | Volume 6 | Article 174

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Iancu et al. Gene cosplicing networks

retrieved from Cahoy et al. (2008). The statistical comparisons
between hub characteristics were performed using Wilcoxon
rank-sum test available in R.

Quantification of Factors Affecting Network
Edges
Information about known protein-protein interactions (PPI) in
the mouse was gathered from the BioGRID database (Chatr-
Aryamontri et al., 2013). Predicted transcription factor binding
sites (TFBS) for each gene in the network were acquired using
the Promoter Analysis and Interaction Network Tool (PAINT)
(Vadigepalli et al., 2003), which uses the TRANSFAC database
(Matys et al., 2003). To compare the identity of TFBS between
any two genes, we used the Jaccard distance measure: two genes
were deemed to have high overlap of TFBS if the Jaccard measure
was >0.5, meaning that the number of TFBS in the intersection
was at least half of all the TFBS detected in the two genes.

Computationally predicted splicing factor binding sites were
acquired from the SFMap database (Akerman et al., 2009;
Paz et al., 2010). First, we retrieved from biomaRt the
genomic coordinates of all genes in our networks. The genomic
coordinates were used as input to the SFMap algorithm,
using the default settings. The SFMap database returned
information about the following 21 splicing factors: SF2ASF, 9G8,
SC35, Tra2alpha, Tra2beta, SRp20, SRp40, SRp55, hnRNPA1,
hnRN-PA2B1, hnRNPF, hnRNPH1, hnRNPM, hnRNPU, MBNL,
NOVA1, PTB, CUG-BP, YB1, FOX1, QK1. Next, we devised a
procedure to compare the number and identity of the SFBS
for any pair of genes. To represent both the identity and
multiplicity of each SFBS for each gene, we constructed vectors
of length 21 with entries represented by the multiplicity of each
SFBS within the gene. For each pair of genes, we constructed
Canberra distances based on these SFBS vectors. The distances
varied between 0 and 21, the lower quartile (<7.6) was selected
to represent gene pairs with high overlap in terms of SFBS.
Predicted interactions between genes and microRNAs were
identified using the microRNA R package (Gentleman and
Falcon)1; we compared correlations between genes sharing at
least two microRNA binding sites against correlations between
random pairs of genes.

Chromosomal topological domain boundary from the mouse
cortex was retrieved fromDixon et al. (2012). Here, we compared
pairs of genes that were located within the chromosomal folding
domain against pairs of genes that were located within the same
range of base pair distances along the chromosome, but were
nevertheless located on different folding domains. Spatial gene
co-localization was retrieved from the Allen Brain Atlas using the
NeuroBlast algorithm (Ng et al., 2007); this algorithm returns, for
each gene, the top 250 genes most similar in spatial distribution
within a brain region (in our case the striatum). We compared
network correlations between spatially similar genes vs. random
groups of genes.

Functional significance of modules and other genes groups of
interest was evaluated using Gene Ontology (GO) enrichment

1Gentleman, R., and Falcon, S. microRNA: Data and Functions for Dealing with

microRNAs. R package version 1.26.0.

analysis (Ashburner et al., 2000) using the GO-stats R package
(Falcon and Gentleman, 2007). To correct for the nested
structure of the GO terms, we utilized a graph decorrelation
procedure that limits the GO annotations to the most specific
terms (Alexa et al., 2006). The background group for all GO
analyses was the 9066 genes included in network construction.

Results

Coexpression, Cosplicing, and CoSplicEx
Network Construction
The test dataset was new RNA-Seq (polyA+) data obtained from
the striatum of heterogeneous stock-collaborative cross (HS-CC)
mice; N = 60 and approximately 30 million reads were obtained
per sample, unique alignment to the reference genome was >

85% and the upper quartile was used for normalization as in
Bottomly et al. (2011). The HS-CC was formed from the eight
inbred strains used to generate the collaborative cross (Churchill
et al., 2004); the CC strains include three wild-derived strains and
appear to encompass approximately 90% of the genetic diversity
available inMus musculus (Roberts et al., 2007).

A gene coexpression network was constructed as described
elsewhere (Iancu et al., 2013a) using the Pearson correlation to
form the adjacency matrix, following the WGCNA framework
(Langfelder and Horvath, 2008). A total of 9066 genes were
entered into the analysis. The cosplicing and CoSplicEx network
construction procedure followed the same general approach
as for coexpression but using a different type of correlation
that incorporated information about differences in exon usage.
First, each gene was represented as a vector/list of exon vector
counts; pairwise differences between all available sample pairs
were computed using the cosine or Canberra distance measure,
respectively. Second, the distance matrices were correlated
using the Mantel procedure. An outline of the cosplicing and
CoSplicEx network construction procedure is illustrated in
Figure 1. Subsequent steps in the construction of the cosplicing
and coexpression networks were identical. Network edge weight
in the adjacency matrix was computed by raising the correlation
to a power β. All three networks were scale free with connectivity
having an exponential distribution (Figure 2A). As the value of
β was increased, all networks converged to a scale-free structure
(Zhang and Horvath, 2005) with the CoSplicEx network
displaying faster convergence (Figure 2A); however, to facilitate
comparison of the network properties β = 6 was used uniformly
in all calculations. Network heterogeneity, centrality, and density
for all networks were calculated as defined in Langfelder and
Horvath (2008). Heterogeneity and centrality were significantly
higher for the CoSplicEx network but density was higher for the
coexpression network (Figures 2B–E). Biologically, these results
suggest that coexpression is more widespread (high density)
while the CoSplicEx network is characterized by fewer but
stronger interactions (higher centrality).

Comparison of Cosplicing, CoSplicEx, and
Coexpression Hubs
To evaluate whether the three networks provide distinct
information, the node connectivity distributions were compared.
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FIGURE 1 | Illustration of cosplicing network construction steps.

RNA-Seq data is summarized as read counts mapped to individual exons.

For each gene, pairwise distance between all samples is computed. This first

step results in N (one for each gene) square matrices of size equal to number

of samples. Second, Mantel correlations between all N gene matrices are

computed, resulting in the cosplicing network matrix.

In particular we focus on the coexpression and CoSplicEx
networks in order to identify network features that arise from
the fact that CoSplicEx is sensitive to cosplicing in addition to
coexpression. We selected from the coexpression and CoSplicEx
networks hub genes (top 10% connectivity) that were specific
to these networks and had low (bottom 80%) coexpression
connectivity. These hubs are outlined in green (Figure 3A)
or red (Figure 3B), respectively. Similarly, we selected a set
of coexpression hubs that had low CoSplicEx connectivity
(outlined in blue in Figure 3B). These unique coexpression
(N = 497), CoSplicEx (N = 425), and cosplicing (N =

495) could be distinguished by several characteristics. The
cosplicing and CoSplicEx hubs had a lower gene count coefficient
of variability (Figure 3D), due to the fact that they were
selected among the genes with low coexpression connectivity.
The CoSplicEx and cosplicing hubs had a higher average
number of exons and annotated transcripts (Figures 3E,F), more
protein domains, longer coding size and lower GC content
(Figures 3G–I).

The coexpression and cosplicing networks are designed
capture specific information about coordination in the
expression and splicing profile of gene pairs, respectively.
However, there is an additional mechanism by which genes
could be co-regulated: changes in the expression level of one
gene could be related to changes in the splicing profile of other
genes. The CoSplicEx network is designed to capture this type of
interaction. To illustrate the capacity of the CoSplicEx network
to capture expression-splicing interactions, we selected two sets
of highly exclusive coexpression and cosplicing hubs. The first
set of genes had coexpression connectivity in top 10%, while

cosplicing connectivity was in the bottom 10%. Conversely, a
second set of genes had high cosplicing but low coexpression
connectivity. Next, we examined the edge strengths between
these distinct hub genes in all three networks. The total set
of edges in each network was divided into quartiles and the
edges between hub types were mapped onto these quartiles. As
illustrated in Figure 3C, only the CoSplicEx network contains
strong edges between coexpression and cosplicing hubs.

The coexpression and CoSplicEx hubs were aligned with
known markers of neurons and neuroglia (Cahoy et al., 2008).
The CoSplicEx hubs were over-represented among neurons,
astrocytes and oligodendrocytes (Fisher’s exact test p < 2× 10−5,
0.03 and 4×10−8, respectively), while the coexpression hubs were
under-represented (p < 5× 10−11, 0.01 and 0.004, respectively).

GO annotation of the CoSplicEx hubs revealed enrichment in
neurogenesis (p < 2 × 10−9), neuron projection (p < 10−11),
enzyme binding (p < 3 × 10−7) (Supplemental Table 1).
Annotation of the coexpression hubs revealed enrichment in
electron transport chain (p < 10−19), mitochondrial part
(p < 2 × 10−23) and hydrogen ion transmembrane transporter
activity (p < 3 × 10−12) (Supplemental Table 1). Completely
absent from the coexpression annotation, over a wide range
of enrichment scores, were terms related to neuronal function.
As also seen in Figure 3A, there was a group of genes
exhibiting a mixture of high coexpression and CoSplicEx
connectivity, here defined as the top 20% in both categories (but
excluding the hubs described above). Annotation of these hubs
revealed enrichment in chromatin modification (p< 2 × 10−7),
neurogenesis (p< 4 × 10−7) and brain development (p< 10−5)
(Supplemental Table 1).
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FIGURE 2 | Network properties of coexpression (blue), cosplicing (green) and CoSplicEx (red) networks. (A) Scale independence, (B) Mean connectivity,

(C) Mean density, (D) Centralization, (E) Heterogeneity.

Evolutionary History of Network Hubs
The characteristics of the gene homologs corresponding to
the network hubs were examined. Across all organisms, the
cosplicing, and CoSplicEx hubs had higher proportion of
homologs (Figure 4A). These homologs had higher number of
exons, longer un-spliced transcript length and longer coding
region length. Comparing cosplicing homolog characteristics
across organisms from yeast to human, large increases were
detected in the number of exons and lengths of un-spliced
transcripts; however, the length of the coding region was
preserved (Figures 4B–D).

Factors Affecting Edge Weights
The following factors were evaluated for association with the
network edge weights: known PPI, shared TFBS, shared splicing
factor binding sites (SFBS), shared microRNA binding sites,
shared chromosomal folding topological domains and spatial
co-localization within the striatum. In both networks, for genes
with known PPI the edge weights were significantly higher
(Mann-Whitney test average location shift mu = 0.03 for
coexpression, mu = 0.14 for cosplicing, and mu = 0.06 for
CoSplicEx, p < 10−15) than for random gene pairs (Figure 5A).
Gene pairs sharing TFBS had increased coexpression and
CoSplicEx edges (mu = 0.06, p < 3 × 10−5), but not cosplicing
(Figure 5B). The reverse was true for SFBS (Figure 5C): gene
pairs sharing SFBS had stronger cosplicing and CoSplicEx (mu=

0.028 and mu = 0.03 respectively, p < 10−15) but coexpression
was only modestly increased. Importantly, it was observed
that CoSplicEx and cosplicing connectivity had a modest but
statistically significant correlation with the number of SFBS
within a gene (r = 0.22 and r = 0.15 respectively, p < 10−15).

For genes sharing microRNA binding sites, coexpression
was modestly increased but cosplicing and CoSplicEx were
significantly decreased (p < 10−15) (Figure 5D). Genes
sharing topological chromosomal folding domains (Dixon et al.,
2012) displayed increased coexpression (p < 10−15) but not
increased cosplicing or CoSplicEx connectivity (Figure 5E). It
was previously observed (Iancu et al., 2010) that striatal gene
coexpression is strengthened for genes with spatially overlapping
patterns of gene expression (Ng et al., 2007). Colocalization
increased edge strengths in all networks (p < 10−15) (Figure 5F).

Characterization of Modules
The three networks were clustered into modules as described
in Langfelder et al. (2008); modules are denoted by arbitrary
colors independently assigned in each network. To evaluate the
performance of module detection, different types of module
quality measures were computed: overall quality, connectivity,
density, and separability. Detailed definitions of these concepts
are available in Langfelder et al. (2011). Briefly, density
preservation implies that network hubs remain highly connected
across the networks compared. Separability measures whether
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FIGURE 3 | Comparison of coexpression and cosplicing connectivity.

(A) Connectivity comparison, cosplicing vs. coexpression. Green rectangle:

nodes in top 10% cosplicing connectivity, bottom 80% coexpression

connectivity. (B) Connectivity comparison, coexpression vs. CoSplicEx

networks. Blue rectangle: nodes in top 10% coexpression connectivity,

bottom 80% CoSplicEx connectivity. Red rectangle: nodes in top 10%

CoSplicEx connectivity, bottom 80% coexpression connectivity. (C)

Distribution of edges between exclusive coexpression and cosplicing hubs.

Only the CoSplicEx network detects strong edges between these hubs. (D)

Coefficient of variation for total gene counts. (E) Number of exons per gene.

(F) Number of annotated transcripts per gene. (G) Number of protein

domains. (H) Coding sequence size. (I) GC percentage content.

genes assigned to modules/clusters are indeed more connected
to each other than to genes outside the module. All network
measurements were expressed as Z scores; Z scores < 2 were
taken to imply poor module quality. It was observed that all
modules in the coexpression network had overall high quality
(Z > 10); while in the cosplicing network density quality
measures were relatively low, with CoSplicEx quality good except
for four of the density module quality numbers (Figures 6A–C).

Module Preservation across Species
Coexpression and cosplicing module preservation was
investigated using RNA-Seq data obtained from the rhesus

macaque ventral-medial prefrontal cortex (32 samples) and from
human prefrontal cortex (30 samples). Network measurements
were expressed as Z scores; Z scores< 2 were taken to imply poor
module preservation, while higher values were taken to signify
moderate (>2) or high (>10) module preservation. In addition
to measures of module density and separability described above,
we evaluated connectivity preservation which evaluates whether
the patterns of connections between groups of genes remains
unaltered. These measures were computed for all modules
and are presented in Figures 6D–I. Generally, connectivity,
and separability were more preserved than density measures.
Cosplicing and CoSplicEx modules were more preserved across
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FIGURE 4 | Evolutionary properties of coexpression (blue) and cosplicing (red) network hubs. (A) Percentage of hub genes with homologs across species

from yeast to human. (B) Length (base pairs) of longest unspliced transcript. (C) Number of exons in longest transcript. (D) Coding region length of longest transcript.
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FIGURE 5 | Factors affecting edge weights. Data represented as 95%

confidence intervals; intervals above/bellow the zero (dashed) line indicate

significant strengthening/weakening of edges. Blue, green, and red

confidence intervals correspond to coexpression, cosplicing, and CoSplicEx

edges, respectively. (A) genes with known protein-protein interactions. (B)

genes sharing transcription factor binding sites. (C) genes sharing splicing

factor binding sites. (D) genes sharing microRNA binding sites. (E) genes in

the same topological chromosomal domain. (F) genes colocalized.

species than coexpression modules, even though the latter
had better quality measures in the mouse network. A larger
percentage of homologs for the cosplicing and CoSplicEx hubs
probably contributes to better module preservation values.

Discussion

The advantages and disadvantages of RNA-Seq compared to
microarrays to analyze the brain transcriptome have been
discussed elsewhere (e.g., Hitzemann et al., 2013); one of
the important advantages is that RNA-Seq provides detailed
information on alternative exon usage which is unusually high
in the brain, especially during brain development (Johnson et al.,
2009). The precise number of transcripts expressed in brain is
unknown but may well-number in the hundreds of thousands,
the transcripts are likely to differ markedly among brain regions
and cell types and minor transcripts in terms of abundance may
have significant biological importance. Further, although a fair
amount is known about how splicing factors can coordinate
exon inclusion/exclusion for relatively small gene clusters (e.g.,

Ule et al., 2005), the regulation of splicing on a genome-wide
basis may well-involve additional mechanisms/interactions.
Kelemen et al. (2013) have summarized the data which points
to the global regulation of alternative splicing. In addition
to development, coordinated changes in splicing have been
observed during myogeneic differentiation (Bland et al., 2010),
differentiation of human erythrocyte (Yamamoto et al., 2009),
during epithelial mesenchymal transition (Warzecha et al., 2010),
during chemically induced cell death (Moore et al., 2010), during
cancer metastasis (Lu et al., 2015) and after insulin stimulation
(Hartmann et al., 2009). In addition, alternative splicing shows
distinct differences between human and chimpanzees brains
(Calarco et al., 2007).

There are two general approaches for quantifying gene
expression using RNA-Seq data. The first approach attempts
to probabilistically quantify the expression of each different
gene isoform, with subsequent analysis steps applied to the
estimated isoform expression levels—for a review see for example
(Garber et al., 2011). An alternative approach, which is not
dependent on a priori knowledge of the identity of the isoforms
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FIGURE 6 | Module quality values in the coexpression (A), cosplicing

(B), and CoSplicEx (C) networks. Module preservation values between

mouse striatum and macaque cortex for coexpression (D), cosplicing (E),

and CoSplicEx (F) networks. Module preservation values between mouse

striatum and human cortex for coexpression (G), cosplicing (H), and

CoSplicEx (I) networks.

and the potentially unreliable estimation of their expression
levels, evaluates all exon expression values for a given gene
simultaneously, using a distance measure approach (Aschoff
et al., 2013). We employ here the same general distance-measure
based strategy, but instead of focusing on differential splicing we
use the computation of the distance measures as an intermediate
step toward constructing a cosplicing network. The use of
distance measures offers a set of desirable characteristics. First,
using distances allows a transcriptome level evaluation of
correlation patterns between hundreds of thousands of exons
with only moderate computational load. Second, even though
exon level data is used to infer the network, this information

is integrated at the gene level. This facilitates integration and
summarization, since the unit of biological activity is more
often the gene and not the individual exon, with annotation
databases reflecting this reality. Finally, because genes remain
the nodes of the cosplicing network, a direct transcriptome
wide comparison between gene coexpression and gene cosplicing
network properties is feasible.

Approximately 5% of the genes entered into our analyses
were identified as highly connected coexpression or cosplicing
hubs unique to each network (Figure 3A); we also identified
a population of genes that were both highly coexpressed
and cospliced and appeared functionally distinct from the
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unique coexpression and cosplicing hubs. Characterization of
the coexpression, cosplicing, and CoSplicEx hubs revealed
some striking differences. Not unexpectedly, the cosplicing
and CoSplicEx hubs were longer, more complex genes with
more exons, with more annotated transcripts and with greater
variability in exon inclusion rates. The coexpression hubs were
mainly involved in ubiquitous cell processes such as metabolism
and energy production; in contrast the CoSplicEx and cosplicing
hubs were highly annotated with terms related to neuronal
function e.g., the synapse. To some extent, this apparent
biological specialization of the hub types is reflected in the fact
that there is no correlation between coexpression and CoSplicEx
or cosplicing connectivity (Figures 3A,B). The coexpression
hubs appeared different between the cosplicing hubs in terms
of GC content as well, with CoSplicEx and cosplicing hubs
exhibiting significantly lower GC content. This relationship held
for all hub homologs (data not shown). Lower GC content in
these hubs is caused by the long intronic sequences with low
GC content, which has been shown to be an important factor
in splice site recognition (Amit et al., 2012). Taken together,
these biological and computational observations suggest that
coexpression and cosplicing serve distinct roles within the
transcriptional system, consistent with findings across a variety of
systems (Calarco et al., 2007; Stilling et al., 2014; Lu et al., 2015).

King et al. (2013) have observed that a topoisomerase one
inhibitor (topotecan), dose-dependently reduced the expression
of very long genes in mouse and human neurons. Further,
these authors noted that a significant percentage of the
reduced expression genes were autism spectrum disorder (ASD)
candidate genes. As part of this analysis (Zhou et al., 2011)
tabulated from several sources a list of 974 ASD candidates.
Of these 974 candidates, 660 were entered into our network
analysis. 65 of these ASD genes are also among the 425 unique
CoSplicEx hubs; this represents a significant enrichment (p <

2 × 10−8). These data illustrate that the CoSplicEx hubs may
have a significant role in neurodevelopmental disorders. In
contrast, only 20 of the unique 497 coexpression hubs were ASD
candidates; this represented a modestly significant enrichment
(p < 0.01).

Previously, we and others have characterized the biological
factors associated with gene coexpression (see Iancu et al.,
2010, 2012b); the strongest influences arise from shared TFBS,
the existence of PPI between gene products, and the degree
of spatial overlap between gene expression patterns. These
factors were quantified for the edges in all networks. Genes
with known PPI, the edge weights were significantly higher
than for randomly selected gene pairs (Figure 5A). Gene pairs
sharing TFBS had increased coexpression and CoSplicEx but not
cosplicing (Figure 5B). The reverse was true for splicing factor
binding sites SFBS. Cosplicing and CoSplicEx connectivity had a
modest but statistically significant correlation with the number
of SFBS within a gene. By following the evolutionary history of
the network hubs, we found that cosplicing hubs show dramatic
increases in number and length of introns, to a much bigger
extent than other genes. While intron gain has been extensively
studied (Babenko et al., 2004), considerable controversy persists
as to the exact functional role of intronic sequences. If we accept
the premise that network connectivity is related to functionality,

our results suggest one possible explanation for the presence
of highly conserved intronic sequences across many organisms.
Based on the fact that large introns proportionally increase the
number of SFBS, which in turn increase cosplicing connectivity,
we hypothesize that long intronic sequences have been retained
because of their role in splicing coordination, both by increasing
the number of SFBS and lowering the GC content.

For genes sharing microRNA binding sites, coexpression
was modestly increased but cosplicing and CoSplicEx was
significantly decreased (p < 10−15) (Figure 5D). This result is
consistent with one of the mechanisms by which microRNAs
are thought to modulate transcription (Guo et al., 2010): a
reduction in mRNA production the effects on cosplicing, which
are manifested by reduced edge weights, are more difficult to
interpret. While purely computational approaches cannot offer
a definite explanation, we hypothesize that reduced cosplicing
is consistent with another mechanism by which microRNAs
are thought to affect transcription: a reduction of the stability
of mRNA (Valencia-Sanchez et al., 2006). When two gene
transcripts are simultaneously affected by microRNAs in this
manner, their reduced stability might increase the uncorrelated
variability in the exon counts, thus rendering the Canberra
distances more variable and reducing the Mantel correlation.

Our distance measure approach has the advantage of utilizing
most of the data generated in the RNA-Seq experiment but the
disadvantage that the granularity associated with an exon-level
analysis is not readily accessible. The data extracted allow one
to conclude that isoform variability is coordinated between two
genes but does not detect which isoform or isoforms contribute
the most to this coordination. To some extent this problem is
mitigated by the fact that for most genes there are relatively few
and in a majority of cases only two highly expressed isoforms.
Splicing is estimated to occur for 95% of all multiexon genes (Pan
et al., 2008), 86% of which have a minor isoform that accounts
for> 15% of total gene expression (Wang et al., 2008; Barrie et al.,
2012).

In conclusion, our results demonstrate that gene splicing is
a highly coordinated process that can be efficiently described
using network and graph theory concepts. Coexpression and
cosplicing appear to be generated by distinct biological factors
and have complementary roles within the transcriptional system.
Depending on the goals of the analysis, exon level data facilitates
either a focused approach on coexpression/cosplicing, or a
more comprehensive view that combines both types of gene
interactions within the CoSplicEx network.
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