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Divergent reflections 
around the photon sphere 
of a black hole
Albert Sneppen

From any location outside the event horizon of a black hole there are an infinite number of trajectories 
for light to an observer. Each of these paths differ in the number of orbits revolved around the black 
hole and in their proximity to the last photon orbit. With simple numerical and a perturbed analytical 
solution to the null-geodesic equation of the Schwarzschild black hole we will reaffirm how each 
additional orbit is a factor e2π closer to the black hole’s optical edge. Consequently, the surface of the 
black hole and any background light will be mirrored infinitely in exponentially thinner slices around 
the last photon orbit. Furthermore, the introduced formalism proves how the entire trajectories of 
light in the strong field limit is prescribed by a diverging and a converging exponential. Lastly, the 
existence of the exponential family is generalized to the equatorial plane of the Kerr black hole with 
the exponentials dependence on spin derived. Thereby, proving that the distance between subsequent 
images increases and decreases for respectively retrograde and prograde images. In the limit of an 
extremely rotating Kerr black hole no logarithmic divergence exists for prograde trajectories.

Black holes are famously objects where the spatial paths of light are drastically bent by the curvature of space-
time. While light itself cannot escape the central mass at the event horizon, at further distances light may orbit 
the black hole. In the generic case of a non-rotating and electrically neutral black hole [i.e. a Schwarzschild black 
hole1] the event horizon is located at radial coordinate Rs = 2GM

c2
 , while photons may follow unstable circular 

orbits at 3
2
Rs , which is the so-called photon-sphere or last photon orbit. Any photon orbiting below this distance 

will plunge into the black hole, while light that remains further away will spiral out towards infinity.
However, depending on the photon’s proximity to the last photon orbit it may complete several orbits before 

spiralling into the event horizon or out towards infinity2,3. As we approach the limit where the photons graze 
the exact critical orbital radius the photon will orbit an infinite number of times. Inversely, from the perspec-
tive of an observer at infinity this implies that light from any point (from the event horizon to the background) 
may orbit the black hole an arbitrary number of times. For each of these paths the light will reach the observer 
slightly closer to the edge of the black hole’s shadow4. Therefore, the observer will see the entire surface of the 
event horizon and the entire universe repeating infinitely near the edges of the black hole. This infinite mapping 
has been extensively studied with the deflection angle diverging logarithmically in the strong field limit2,4–8.

However, we present a methodology, which differs from previous research by reformulating the trajectory of 
light in terms of a second order differential equation and quantifying its linear stability. In “Simulated orbits” we 
investigate how small deviations away from the optical edge of a black hole behave with a ray-tracing algorithm. 
We supplement with an analytical derivation in “Linear stability”. In both the numerical and analytical case we 
will show that small perturbations grow exponentially. Inversely, each additional orbit will be mapped to an 
exponentially thinner ring, with each subsequent image a factor e2π thinner. Ultimately, this paper investigates 
a well known problem from a new analytical perspective suggesting not only the deflection angle but the entire 
trajectories of light near the photon-sphere are prescribed by two duelling exponential functions.

Crucially, this approach is generalizable to any spherically symmetric black hole or even the equatorial plane 
of a spinning black hole. In “Generalization to Kerr Metric”, the exponentials dependence on the spin is derived 
and illustrated. Here it is proved for the first time that the spatial frequency of prograde and retrograde images 
will respectively increase and decrease from the Schwarzschild case.

Analytical setup
The Schwarzschild metric has the form in units with the speed of light, c = 1:
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Without loss of generality we can set the orbital plane of the light θ = π
2

 . Introducing the two conserved 
quantities, angular momentum and energy, we can for a mass-less particle reduce the equation for the trajectory 
of light to3,9:

here b is the constant ratio of a photon’s angular momentum to energy. Rewriting the differential with φ is only 
applicable if there is an angular evolution, so Eq. (2) does not apply in the limiting and trivial case of light moving 
radially towards or away from a black hole. Using the substitution u = Rs/r and differentiating both sides with 
d
dφ yields the simple second order equation:

We can immediately reproduce the stationary orbit of the photon sphere for the Schwarzschild black hole by 
setting d

2ueq
dφ2 = 0 : req = Rs

ueq
= 3

2
Rs . Note, the trivial equilibrium solution for u = 0 (i.e. at infinite distances from 

the black hole) will not be discussed further.

Simulated orbits
Given the differential equation (Eq. 3) relating distance to the angular deflection we can numerically integrate 
Eq. (3) using quartic Runga-Kutta (see Fig. 1). In this approach we are propagating the light from an observer 
to the black hole or the background universe. This yields the same light-path as the opposite direction, because 
the solutions of Eq. (2) are independent of the direction of the light. Integrating Eq. (3) requires two initial 
conditions: in Cartesian coordinates we center the black hole at the origin, set the initial direction of light to be 
v̂0 = (−1, 0) and the initial position r0 = (d0, b0 + δ0) . Here b0 (the critical impact parameter) is the distance 
within which photons are captured and outside which photons are deflected. Here d0 can be arbitrarily large given 
b0 at that distance which in the limd0→∞ b0 =

√
27
2

Rs becomes the photon capture radius commonly found in 
literature10. δ0 is our initial perturbation which we use to avoid the ambiguity of defining the closest approach for 
light rays that spiral within the photon sphere. Importantly, δ0 is interpretable as how far the observer is looking 
away from rim of the optical black hole.

The path for light with varying δ0 can be seen in Fig. 1. Positive and negative perturbations will respectively 
spiral out to infinity or plunge into the event horizon as expected. As δ0 becomes smaller the deflection angle 
increases. Note, φ increases linearly when moving logarithmically closer to the photon capture radius.
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Figure 1.   Simulated rays of light satisfying Eq. (3) with δ0 < 0 (left) and δ0 > 0 (right) with coloring indicating 
magnitude of δ0 . The black hole is shaded in grey with the last photon orbit indicated with a dotted grey line. 
Each successive light-trajectory plotted is a factor of 2 closer to the photon capture radius with the resulting 
deflection angle increasing just below 40◦ . Thus, the logarithmic scaling towards the photon capture radius maps 
to a linear evolution in φ.
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In Fig. 2 the results can be seen for positive (where the angle φ is the unwrapped deflection angle) and nega-
tive perturbations (with the angle φ being defined as the angle orbited around the black hole at the time when 
photons cross the event horizon). For large perturbations ( |δ0| > 10−2 ) the relationship between angle and 
distance is not simply exponential. However in the small perturbation regime ( |δ0| < 10−2 ) a tight exponential 
relationship is visible. To determine the exponent in the exponential regime, we can fit, φ = s ln(δ0)+ c , and 
with slope: s = −1.0000± 0.0001 . Inverting this expression for δ0 implies that to achieve another orbit requires 
being a factor of f = e−2πs = 535.60± 0.45 closer to the optical edge of the black hole.

Linear stability
To interpret these numerical results we will utilise linear stability analysis by adding small perturbations, 
u → ueq + δ to the equilibrium solution of Eq. (3):

Linearlizing the equation around ueq = 2
3
 one gets:

which has the solution:

Evidently the first term grows in magnitude while the latter decreases, with the constants δ1 and δ−1 deter-
mining in which regime each term dominates. The constants are set by the initial conditions of the trajectory, 
which will be discussed further in “Linear stability”. Note the dual exponential form is to be expected as the 
equilibrium solution is a saddle point.

Intuition through manifolds.  An alternate perspective on these exponential solutions is in the phase-
space of Eq. (3). This is shown in Fig. 3 where for every initial condition ( u, dudφ ) a vector is plotted indicating the 
angular change in both variables (i.e. dudφ ,

d2u
dφ2 ). The trajectories terminating at u = 1 (i.e. r = Rs ) are the rays of 

light reaching the event horizon, while infinity is at u = 0 . Most trajectories will cross the photon-sphere with 
radial velocities, but if dudφ = 0 on the photon-sphere then the photon will stay in its circular orbit indefinitely. 
Thus, orbits on the photon-sphere represent a fixed point in the phase-space.

The set of initial conditions which converge towards the photon sphere (which is called the stable manifold) is 
indicated with a blue line. Photons on this trajectory will asymptotically approach the photon sphere. Conversely, 
the unstable manifold (i.e. the set of initial conditions which reach the fixed point for φ → −∞ ) is plotted in 
red. The symmetry between stable and unstable manifolds seen in the phase-space is due to the Schwarzschild 
metric and therefore Eq. (14) being independent of the direction of time.

As seen in Fig. 3 (left) for the stable and unstable manifolds ∂u
∂φ

 is in general not linear in u, but when we are 
close to the fixed point ( δ2 < |δ| , see Eq. (5)), the relationship becomes approximately linear. Importantly, there 
are two sets of eigenvectors around the photon sphere. The first with an eigenvalue of −1 (the exponentially 
approaching term) and the unstable manifold with an eigenvalue of +1 (the exponentially diverging term). Thus, 
the phase space clearly follows the intuition of Eq. (6).

(4)
d2(ueq + δ)

dφ2
= 3

2
(ueq + δ)2 − (ueq + δ)

(5)
d2δ

dφ2
= δ + 3

2
δ2 ≈ δ

(6)δ = δ1e
φ + δ−1e

−φ

Figure 2.   Angle of rotation for simulated light-rays as a function of deviations from the equilibrium (in 
dimensionless units with δ0 = l/Rs ) with φ = 0 representing unbent light-rays. For both small positive and 
negative perturbations a clear exponential relation to φ is visible.
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The different signs of the eigenvalues proves that the fixed point is a saddle-point. A saddle-point is inher-
ently unstable as a perturbation from the photon sphere will generically result in an exponential divergence. 
Evidently, the positive eigenvalue implies that a trajectory will diverge exponentially from the bound orbit with 
a factor eπn = eγ n for each half orbit n. Here the Lyapunov exponent, γ [following the definition by Johnson11] 
characterizes the instability of the bound orbit relative to a half-orbit n. Thus, for the Schwarschild case for the 
photon sphere, γ = π.

Lastly, notice the eigenvalues around the fixed point in u are also the eigenvalues for r as ∂u
∂φ

= u ⇒ ∂r
∂φ

= −r . 
Therefore, the ±1 eigenvalues in ( u, ∂u

∂φ
 ) corresponds to the eigenvalues ∓1 in ( r, ∂r

∂φ
).

A tail of two exponentials.  Given Eq. (6) we find the linearlized solutions:

When investigating the trajectory of light close to the black hole both exponential terms are needed to cross 
the equilibrium distance (see Eq. 7) or for dudφ to change sign (as seen in Eq. 8). The importance of both expo-
nential terms is also illustrated in Fig. 4, where the light approaches the photon sphere exponentially (with each 
rotation bringing it a factor e2π closer) until at a crossover-angle of φc ≈ 6π . After this the divergent eφ domi-
nates and the light is ejected towards infinity. If δ1 had the opposite sign then dudφ would remain negative so the 
crossover-angle would be on the last photon orbit, after which the light would diverge exponentially from the 
photon-sphere towards the black hole. Curiously, this implies the angle swept by the ray around the black hole 
prior to the photon sphere is similar to the angle swept by the ray from the photon-sphere to the event horizon.

Notably, the light-ray on the trajectory exactly on the rim of the black hole’s shadow (i.e. δ0 = 0 ) is the solution 
which is exponentially approaching the photon-sphere indefinitely as it neither diverges towards the black hole or 
the background universe. It follow that the convergent exponential and in extension δ−1 must be independent of 
δ0 . Instead δ−1 is set by the approximate distance where the linearised expression holds ( δ−1 ≈ 1 ). Any deviations 
from the critical impact parameter, δ0  = 0 , will grow exponentially, which implies δ1 (the divergent exponential) 
is set by δ0 . Thus, the order of magnitude estimates neatly follow the fitted lines in Fig. 4.

While the derivation is only applicable in the linearized regime the implications reach beyond the immediate 
surroundings of the photon-sphere, as the total deflection of light may be dominated by the angular rotation, 
while the photons are in the linearized regime. When investigating the total deflection angle or angle of rotation 
for light (as seen “Simulated orbits”) we are solving the trajectories for light moving away from ueq , where the 
divergent exponential must dominate. Each additional orbit of light will be mapped a factor f = e2π nearer the 
rim of the black hole’s shadow, because decreasing δ0 by a factor e2π delays the exponentially growing term exactly 

(7)u = ueq + δ1e
φ + δ−1e

−φ

(8)
du

dφ
= δ1e

φ − δ−1e
−φ

Figure 3.   Entire (left) and zoomed-in (right) phase-space portrait for light trajectories obeying Eq. (3) with the 
arrows’ coloring indicating the magnitude of change (brighter hues implies longer vectors). u = 1 is the event-
horizon, u = 0 represents infinity and u = 2

3
 is at the photon sphere. If u = 2

3
 and dudφ = 0 the photons are on 

circular orbit, so this represents a fixed point. Notable, this is not a stable fixed point as deviations will in general 
grow. The stable and unstable manifolds are drawn which in the enlarged version are approximately linear. The 
stable manifold evidently represents a separatrix between the initial conditions of trajectories which will cross 
the event horizon or be ejected to infinity. Thus, the stable manifold is equivalent to the optical rim of the black 
hole.
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one orbit. Furthermore, it should be noted that the predicted analytical value, f = e2π ≈ 535.49 , is remarkably 
close to the numerically fitted relationship seen in “Simulated orbits”.

Additionally, for deflected light it is noteworthy that the closest approach to the photon-sphere will only 
decrease by a factor of eπ for each additional orbit, because the cross-over angle is set by the intersection of the 
two exponential terms. Similarly, for light crossing the photon-sphere the angle swept from the event horizon to 
the photon-sphere is similar to the angle swept from the photon-sphere to the observer, as the cross-over angle 
is still defined by the intersection.

Generalization to Kerr Metric
It should be emphasised, that the Schwarzschild metric is the limiting case of a non-spinning black hole. With-
out this requirement one gets the so-called Kerr metric (Here written in Boyer-Lindquist coordinates with 
� = r2 + a2cos(θ) and � = r2 − Rsr + a2):

here 0 ≤ a ≤ 1 is the angular momentum factor, so naturally the Kerr metric reduces to the Schwarzschild metric 
for a = 0 . For orbits in the equatorial plane (where a 2-dimensional analysis is still an exhaustive description) we 
set θ = π

2
 . Further deliberation on non-equatorial orbits may be found through elliptic integrals12. Introducing 

the two conserved quantities, angular momentum and energy, the trajectory of photons reduces to13:

With b once more being the constant ratio of a photon’s angular momentum to energy. Differentiating both 
sides with ddφ yields a second order differential equation.

The phase portrait for Eq. (11) for a = 0.5 is illustrated in Fig. 5. As before, the fixed point is set by the roots 
of dr

2

dφ2 , which will depend on a. In contrast to the Schwarzschild parameterization, Eq. (11) depends on b, so the 
critical impact parameter of prograde and retrograde orbits must be evaluated at any a13.
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Figure 4.   The radial distance between a light-ray (with δ0 = 10
−15 ) and the last photon orbit as a function 

of deflection angle [in blue]. The predicted analytical combination of an exponentially declining ( e−φ ) and 
exponentially growing ( eφ ) term is indicated with a yellow dashed line. Evidently, each term dominates at 
different angles of φ , with fitted lines suggesting δ1 ≈ 10

−16 and δ−1 ≈ 1 . For u− ueq ≈ 1 , the linearised 
solution no longer holds.
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Retrograde and prograde orbits are obtained by evaluating the critical impact parameter with Eq. (12) and 
(13). For any given spin we may then determine the fixed points, req such that ∂r

2

∂φ2 = 0 . One root, � = 0 , repre-
senting the event horizon with the remaining real root describing the photon circle (see Fig. 6). Linearizing 
generically yields:

Importantly, we once more we get a family of two exponentials and for the first time derive the exponential 
unwinding for the strong field limit of light:

For any spin, a, the exponential coefficient, s is shown in Fig. 6. Evidently the fixed point is still a sad-
dle point and therefore unstable. Here, the exponential divergent term corresponds to Lyapunov exponent of 
γ = π

√
s as trajectories will diverge from the photon sphere with a factor of eπ

√
s over a half orbit. Notable, the 

exponential coefficient s results in a even faster divergence of the logarithmic angle for retrograde orbits. For 
lima→1(sretrograde) = 27

16
 , so another orbit would require being a factor of f = e2π

√
27/16 ≈ 3500 closer to the 

(13)bprograde = 3Rs cos

(

arccos(a)

3

)

− a

dr2

dφ2
= s · (r − req)+ O((r − req)

2)

(14)r = req + δ1e
√
sφ + δ−1e

−√
sφ

Figure 5.   Phase-space portrait for light trajectories obeying Eq. (11) with a = 0.5 (left: prograde and right: 
retrograde) with the arrows’ coloring indicating the magnitude of change (brighter hues imply longer vectors). 
The stable and unstable manifolds are drawn which behave approximately linear with a flatter and steeper slope 
than Fig. 3 for respectively the prograde and retrograde orbits. Note the substitution u = 1

r does not remove the 
critical impact parameter unlike the Schwarzschild case. Therefore the figure remains in r not u like Fig. 3.

Figure 6.   Radii of photon circle, req (left), and linear coefficient of Taylor-expansion, s (right). Retrograde orbits 
(in dotted blue) and prograde orbits (in dashed red). The location of the photon circle is in agreement with14, 
while the generic result s > 0 for 0 ≤ a < 1 , implies that the fixed point will always be a saddle point with 
eigenvalues ±√

s and therefore unstable. Notable at a = 1 the two real fixed points of prograde motion bifurcate.
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optical edge of the black hole. Conversely, for prograde orbits the exponential function unwinds evermore slowly 
for larger spins. For a black hole spinning with a = 0.99 (as potentially observed15), where s = 0.012 , only a fac-
tor f = e2π

√
0.012 ≈ 2 is required. Here, each repeated image would merely be a factor of 2 closer to the optical 

edge of the black hole. In the limit of an extreme Kerr field, lima→1(sprograde) = 0 , the eigenvectors collapse 
and the fixed point becomes a degenerate node. Thus, an extremely rotating Kerr black hole has no exponential 
trajectories for the prograde motion.

Thus, when viewing the equatorial plane of a spinning black hole both prograde and retrograde reflections 
display the exponential repetition, but prograde copies of a source will repeat rapidly compared to the retrograde 
copies. This asymmetry has potentially far-reaching applications to observables as any observational signature 
is limited by the brightness of subsequent images decreasing sharply11. Therefore, the rapid spatial repetition of 
prograde images will provide the first observational signatures of the exponential repetition within detection 
capabilities.

Lastly, the mathematical generality of two real eigenvalues existing for all a should not go unstated. Regardless 
of the spin of the black hole, there will always exist a family of a convergent and divergent exponential. These 
exponentials prescribe the entire trajectories of light near the photon orbits. Their prescription implies that any 
source object in the plane be repeated in an exponentially thinner series of copies, with the scale of repetitions 
set by the spin of the black hole.

Conclusion
This work introduces a family of two distinct exponential solutions which together provide a succinct description 
of the entire orbital trajectories of light near a Schwarzschild black hole. Thereby we provide analytical insight 
into the solutions previously developed2,4–8. Our formalism provides a few important interpretations. Firstly, it 
states that the deflection angle of background light will diverge logarithmically when the trajectory approaches 
the last photon orbit. Equivalently, from the perspective of a distant observer looking at the optical edge of the 
black hole (the photon capture radius) the entire background will be mapped to exponentially thinner rings. 
Secondly, the event horizon of the black hole itself will be mapped repeatedly in exponentially thinner rings just 
inside the photon capture radius. Therefore, any object accretting onto the black hole may be observed repeat-
edly nearer and nearer the optical edge. Thirdly, this edge of the black hole is the location of both the stable and 
unstable manifold.

The proof presented here is immediately generalizable to any spherically symmetric space-time (such as a 
Reissner–Nordstrøm black hole). Such metrics can similarly be written as a second order differential equation in r 
with steady state and perturbed solutions. Further work may investigate these exponentials, which will in general 
be characterised by a constant, s  = 1 , to be multiplied on φ in the exponents of Eq. (14). Importantly, as seen 
in “Generalization to Kerr Metric”, our methodology may even be applied to non-spherically symmetric black 
holes, such as the spinning black holes of the Kerr Metric. With increasing spin, the exponential coefficient, s, of 
prograde trajectories decreases while retrograde conversely increase. Thus, proving that the side of the black hole 
which rotates towards the observer repeatedly mirrors the universe in wide bands. In the limit of an extremely 
rotating Kerr Hole, the sretrograde = 27

16
 and sprograde = 0 . Thus, there is no logarithmic divergence for prograde 

reflections when a = 1 , but given any spin a < 1 , there exists an exponential family prescribing the trajectories.
Philosophically, there is a mathematical beauty within the dual exponentials of Eqs. (7) and (14). The expo-

nentials prescribes, that an observer at infinity will see the entire black hole’s event horizon and anything accret-
ing onto the black hole mapped infinitely when looking closer towards the photon capture radius of the black 
hole. Just beyond the photon capture radius, the exponentials dictate, that the observer will also see the entire 
universe mirrored in exponentially smaller slivers until the quantum limit. A divergence which certainly merits 
further reflection.
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