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Abstract: MicroRNAs post-transcriptionally regulate the expression of approximately 60% of the mammalian genes, and 

have an important role in maintaining the differentiated state of somatic cells through the expression of unique tissue-

specific microRNA sets. Likewise, the stemness of pluripotent cells is also sustained by embryonic stem cell-enriched mi-

croRNAs, which regulate genes involved in cell cycle, cell signaling and epigenetics, among others. Thus, microRNAs 

work as modulator molecules that ensure the appropriate expression profile of each cell type. Manipulation of microRNA 

expression might determine the cell fate. Indeed, microRNA-mediated reprogramming can change the differentiated status 

of somatic cells towards stemness or, conversely, microRNAs can also transform stem- into differentiated-cells both in vi-

tro and in vivo. In this Review, we outline what is currently known in this field, focusing on the applications of microRNA 

in tissue engineering. 
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INTRODUCTION 

MicroRNAs (miRNAs) are small non-coding RNAs 
(ncRNAs) of approximately 22 nucleotides responsible for 
specific regulation of gene expression in a post-
transcriptional manner, and, thereby, have an important role 
in several biological processes, such as development, cell 
proliferation, and apoptosis, among others [1-3]. Their genes 
correspond to 1-3% of all genes of the genome [4], and may 
be responsible for the regulation of approximately 60% of 
the coding genes [5]. The specificity of miRNAs is given by 
the seed region (nucleotides 2 to 8) that requires full com-
plementarity to the mRNA-target [6-8]. The RNase III mem-
bers, Drosha and Dicer, together with their specific partners, 
Dgcr-8 and TRBP, are crucial for miRNAs biogenesis, since 
they slice, respectively, primary and precursor miRNAs to 
yield the mature ones [9-12].  

In vertebrates, approximately 70% of the miRNA genes 
are intragenic, usually being expressed in synergy with the 
host gene [13]. Forty percent of all miRNAs are organized in 
clusters and transcribed in a polycistronic fashion. Usually, 
these clustered miRNAs are members of a family, showing 
overlapping functions [13, 14]. Each cell type has a combi-
nation of either isolated or clustered expressing miRNAs, 
which regulate coding genes in a tissue-specific manner and, 
therefore, they are essential to the maintenance of cell  
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identity and functional phenotype [15]. In this article, we 
review miRNAs involved in pluripotency maintenance, cell 
fate decision, differentiation-state safeguarding, focusing on 
how this knowledge has been used in tissue engineering. 

MiRNAs IN STEM CELLS 

Embryonic stem cells (ESCs) are derived from pre-
implantation blastocysts, and have the ability of self-renewal 
and the latent capacity to differentiate in cells of all three 
embryonic germ layers, therefore being pluripotent [16, 
reviewed in 17]. Because of these remarkable characteristics, 
ESCs have been extensively used as model in developmental 
and therapeutic studies, including tissue regeneration, trans-
plantation, and drug screenings [18-21]. To sustain the undif-
ferentiated state, they have a unique gene expression profile 
[22-26] regulated by a highly expressed set of transcriptional 
factors, including Oct4, Nanog, and Sox2 that, in this sce-
nario, have overlapping functions [27-29]. In addition to 
OCT4 and NANOG, the most commonly used markers of 
ESCs are the cell surface antigens (SSEA-3, SSEA-4, TRA-
1-60, TRA-1-81) and tissue-nonspecific alkaline phosphatase 
[30]. Mouse pluripotent stem cells can also be derived from 
the epiblast of peri-implantation blastocysts, and are called 
EpiSC [31, 32]. These are epigenetically more similar to 
human ESCs (hESCs), being dependent on bFGF for self 
maintenance [33]. The human equivalent of mouse ESCs 
(mESCs), which is dependent on LIF, small molecule inhibi-
tors of ERK1/ERK2 and GSK3b signaling, and express 
SSEA-1, has only recently been derived from human blasto-
cysts and appear to be in an earlier epigenetic developmental 
state – therefore, they are called naïve hESCs, whereas the 
FGF-dependent hESCs are called primed hESCs [34, 35]. 
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Fig. (1). MiRNAs involved in cell fate during genesis and development of different tissues and organs in mammals. In blue, miRNAs 

that positively regulate differentiation; in red, miRNAs that negatively regulate differentiation. Images were obtained from 

www.shutterstock.com website. This figure graphically represents Supplementary Table S1. For further information about each miRNA, 

please see referred Table. 

 

Epigenetic modifications are also essential for pluripo-
tency maintenance. The early steps of embryonic develop-

ment are marked by global DNA demethylation, and this 
“permissive” epigenetic state at pre-implantational phase is 
pivotal for the expression of the above mentioned transcrip-
tion factors [36]. By the time of implantation, methylation of 

CpG dinucleotides is reestablished throughout the genome as 
result of the de novo activation of highly expressed DNA 
methyltransferases Dnmt3a and Dnmt3b, which triggers the 
differentiation process [37, 38]. When most of the DNA 

methylation marks have already been established, the ex-
pression of many genes belonging to the epigenetic machin-
ery is decreased, concomitantly with the differentiation proc-
ess [39, reviewed in 40]. 

More recently, the maintenance of pluripotency has also 
been associated to miRNA expression. Since the first discov-
eries of the regulatory effect of small ncRNAs lin-4 and let-7 
in Caenorhabditis elegans, it is well established that miR-
NAs are involved in development [1, 41]. Indeed, disruption 
of Dicer gene in mice compromises the entire miRNA bio-
genesis and is lethal early in development [42]. Although 
mouse Dicer-null ESCs are viable, they have a slow prolif-
eration rate and fail to differentiate [43, 44]. Mouse Dgcr8-

deficient ESCs also exhibit delayed proliferation rates with 
prolonged G0 and G1 phases [45], and when induced to dif-
ferentiation, show aberrant expression of specific differentia-
tion markers, such as a delayed expression of primitive ecto-
derm marker (FgF5), a weak or absent expression of endo-
derm (Hnf4a and Afp), mesoderm (Brachyury, Bmp4, Gata) 
and ectoderm (Sox1) markers, and incomplete repression of 
pluripotency [43, 46]. Additionally, mouse Dicer-null ESCs 
showed significant hypomethylation of the genome, includ-
ing the promoter of Oct4 gene (also known as Pou5f1 gene) 
[47, 48], which impairs differentiation.  

Three miRNAs clusters hsa-miR-371-373 (ortholog of 
the mouse cluster mmu-miR-290-295), hsa/mmu-miR-302-
367 and hsa/mmu-miR-17-92 are highly expressed in ESCs 
[49-54], therefore known as ESC-enriched miRNAs. They 
share similar seed sequences, suggesting an overlapping 
regulation of their targets [45, 55].  

The hsa-miR-371-373 cluster transcribes four miRNAs 
[50], whereas its murine counterpart, mmu-miR-290-295 
transcribes seven [49], and accounts for up to 70% of the 
total miRNAs expressed in mESCs [56]. At the stage of four 
to eight cells, mouse embryos already show miR-290-295 
expression, which decreases after embryonic day 6.5 [57], 
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and during in vitro differentiation of ESCs to embryoid bod-
ies [52]. These miRNAs are involved in (a) the regulation of 
transition from G1 to S phase of the cell cycle through tar-
geting of cell-cycle inhibitors [45]; (b) repression of meso-
derm and primordial germ cell differentiation pathways [58]; 
(c) repression of epithelial-mesenchymal transition [59]. 
Transfection of miRNAs belonging to the miR-290-295 clus-
ter restores many of the defects exhibited by mouse Dicer-
null ESCs. This phenomenon was seen by two independent 
studies showing that miR-290-295 members inhibit the ex-
pression of the retinoblastoma-like 2 protein (Rbl2), which is 
a transcriptional repressor of DNA methyltransferases – 
Dnmt3a and Dnmt3b [47, 48]. Thus, the authors of these two 
studies [47, 48] proposed that this is the major mechanism 
by which cells regulate DNA de novo methylation during 
early development. Accordingly, introduction of miR-290, 
miR-302 and miR-17-92 mimics was able to re-establish the 
proliferation rates of Dgcr8-deficient ESCs [45]. However, 
miR-290-295 function is still controversial, since recently it 
was shown that, although Rbl2 mRNA levels are increased 
in mouse Dicer-null ESCs, its protein remains at low levels 
[60].  

The other highly expressed miRNA cluster in ESCs, miR-

302-367, transcribes eight and five miRNAs, in human and 

mice, respectively [49, 50]. This cluster confers stemness 
proprieties to hESCs by controlling LEFTY1 and LEFTY2 

expression, two inhibitors of TGF / Nodal pathway that 

have an essential role in signaling early cell fate determina-
tion [61]. This cluster is also important to control cell cycle, 

since its inhibition leads to arrest of hESCs in G1 phase by 

targeting CYCLIN D1 [62]. 

Finally, miR-17-92 cluster comprises six miRNAs in hu-

man and mice, is overexpressed in mESC and hESC [50, 51], 
and has an important role in cell cycle regulation [63, 64]. 

Despite being associated to maintenance of ESC pluripo-

tency, this cluster is also widely expressed in many cell types 
[65-67]. In humans, its overexpression may lead to several 

malignancies, since it is located at the genome region 13q31-

q32 that is frequently found amplified in lymphomas and 
other cancer types [68, 69].  

Interestingly, expression profiles for mESCs and EpiSCs 

reveal that they have differences in the expression of several 
miRNAs, including these important ESC-enriched miRNA 

clusters, miR-17-92, miR-290-295 and miR-302-267. The 

former two are more highly expressed in mESC, whereas the 
latter is in EpiSC [51]. Additionally, although barely ex-

pressed, members of Let-7 miRNA family, which are differ-

entiation markers, are enriched in EpiSC in comparison to 
mESC, and that may reflect a degree of commitment to dif-

ferentiation. Thus, miRNAs may have redundant and specific 

roles in regulation of pluripotency [51]. In humans, hsa-miR-
302b expression is indicative of pluripotency in naïve and 

primed hESC, while expression of hsa-miR-371-373, the 

human ortholog of mmu-miR-290-295, is increased in naïve 
when compared to primed hESCs [33, 55].  

Nevertheless, Oct4, Sox2 and Nanog regulate miR-290-
295 and miR-302-367 gene clusters in mice and humans, 

reinforcing miRNAs role in pluripotency control and in the 

early steps of differentiation [56, 62, 70].  

Adult stem cells, such as mesenchymal, bone marrow 

and hematopoietic stem cells are also capable of self-renewal 

and have the plasticity to differentiate into one or multiple 
cell types, functioning as a quiescent reservatory for tissue 

maintenance and repair throughout the life span [reviewed in 

71]. As its embryonic counterparts, they have miRNAs that 
may participate in the maintenance of cell identity [72, 73], 

such as miR-489 that is highly expressed in mouse muscle 

stem cells (satellite cells), but is downregulated during cell 
activation [74].  

MiRNAs IN INDUCED PLURIPOTENT STEM CELLS 

Since the reversion of differentiated fibroblasts into 
pluripontent cells by the introduction of the defined repro-

gramming factors OCT4, SOX2, KLF4, and c-MYC 

(OSKM) in 2006, induced pluripotent stem cells (iPSCs) 
have been the center of many studies in cell therapy [75, 76]. 

IPSCs raise great interest in regenerative medicine because 

of their potential to overcome the issue of histocompatibility 
between cells and patient. Different methods have been used 

to deliver the reprogramming factors, including (a) integra-

tive retrovirus vectors; (b) non-integrative vectors, such as 
adenovirus, Sendai virus, and plasmids; (c) DNA-free trans-

fections, such as mRNAs and fusion proteins; and (d) exci-

sion after integration, such as piggyBac transposon and Ret-
rovirus with loxP construction followed by Cre recombinase 

mRNA transfection [reviewed in 77]. Accordingly, new ap-

proaches to promote a better understanding of the mecha-
nisms involved in maintenance of pluripotency, to achieve 

higher reprogramming efficiency, and to guarantee the safe 

use of iPSCs to therapy are of great importance. In this con-
text, the introduction of ESC-enriched miRNAs has been 

used to improve cell reprogramming.  

Transient transfection of miRNAs miR-291-3p, miR-294, 
and miR-295 enhances the efficiency of the reprogramming 
of mouse embryonic fibroblasts achieved by retroviral de-
liver of Oct4, Sox2 and Klf4. Among them, miR-294 showed 
the best results, increasing tenfold the efficiency rates [78]. 
Similarly, the expression of miRNAs from the miR-302-367 
cluster also enhances retroviral reprogramming of human 
fibroblasts with OCT4, SOX2 and KLF4, either with or with-
out c-MYC [79]. Conversely, inhibition of Let-7 family 
members, which are known to be robust maintainers of the 
differentiated state in mouse embryonic fibroblasts, en-
hanced in over fourfold the efficiency of reprogramming 
carried out by Oct4, Sox2 and Klf4 [80]. Other examples of 
miRNAs expression manipulation to improve the efficiency 
of reprogramming are the transfection of miR-93 and miR-
106b [81], the knockout of miR-34 [82] and miR-199a-3p 
[83], among others [84-86].  

Strikingly, the reprogramming of human skin cancer cells 
[87] and human fibroblasts [88] into a pluripotent state by 
the introduction of miR-302-367 cluster per se was reported. 
However, few studies have used this methodology recently, 
and reprogramming of somatic cells through transfection of 
members of the cluster miR-302-367 alone [89] or combined 
with miR-200c or miR-369 [90] yield no clones or resulted 
in a low efficient rate. Nevertheless, the use of miRNAs as 
OSKM adjuvant to produce iPSC might be a good strategy to 
improve the efficiency of somatic cells reprogramming [89]. 
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As any other cell-therapy approach, miRNA use must be in 
consonance with the applications intended for iPSCs, since 
some differentiated cells retain more plasticity than others, 
and some cell types present a more robust epigenetic mem-
ory after reprogramming [reviewed in 91].  

MiRNAs IN CELL FATE DECISION 

Cell differentiation is a complex pathway that depends on 

both activation of lineage-specific genes and repression of 
pluripotency-related ones. However, a coordinated modula-

tion of Oct4, Sox2 and Nanog expression in early steps of 

differentiation process contributes to specific germ layer 
induction of mESCs, despite combined expression of Oct4 

and Sox2 suppresses germ layer differentiation [92]. There-

fore, high Oct4 or Sox2 levels promote mesendodermal or 
neural ectoderm differentiation, respectively, while Nanog 

downregulation is decisive for lineage commitment [92]. 

Similar phenomenon was seen in a study using hESCs, 
whereas each factor is per se involved in a specific cell fate 

[93]. Likewise, miR-302-367 cluster that, as seen before, has 

an important role in the maintenance of pluripotent cells, is 
also expressed in the human endodermal lineage [94], pro-

viding evidence that this cluster has a role in organogenesis. 

Indeed, hsa-miR-302-367 cluster promoter is targeted by 
GATA6 transcription factor in early stages of lung epithelial 

development, promoting the proliferation of lung endoderm 

progenitor cells, proper apical-basal polarity and preventing 
its complete differentiation. Therefore, this cluster seems to 

be essential for the correct development of a single-layered 

lung epithelium [95]. Additionally, miR-17-92 that is also 
enriched in hESC [50], has an important role in the early 

stages of lung morphogenesis, regulating the proliferation-

differentiation balance of lung epithelial progenitor cells 
[65]. As the cells commit to differentiation, Oct4, Sox2 and 

Nanog are downregulated, and consequently the clusters 

regulated by them, miR-290-295 and miR-302-367 in mice 
and human, respectively, are also silenced [56, 62]. Prior to 

being silenced, Oct4, Sox2 and Nanog also upregulate the 

expression of some miRNAs specifically associated with 
differentiation in mESCs, such as miR-9, miR124a, miR-155 

and miR-708, which at least are in part responsible for 

proper cell fate determination [56]. Indeed, miRNAs are es-
sential for ESCs specific-differentiation and maintenance of 

the differentiated status. Accordingly, miRNAs expression is 

frequently globally downregulated in tumors, which are less 
differentiated cells [15, 96].  

Similarly, adult stem cells also have miRNAs involved in 
the commitment of their differentiation. For instance, expres-
sion of miR-590 and miR-199a in adult cardiomyocyte pro-
motes re-entrance in cell cycle, resulting in cardiac repair in 
an ex-vivo mouse model [97].  

One of the first miRNAs recognized by its role in differ-
entiated tissues was let-7 [41]. With its orthologs organized 
in large families along the vertebrate genomes, Let-7 is up-
regulated in differentiating and differentiated mouse cells 
[98-100]. Although mature Let-7 is poorly expressed in 
mESCs, its primary transcript is abundant [56]. The process-
ing from pri-Let-7 to Let-7 mature duplex is inhibited by the 
RNA binding protein Lin28, which prevents differentiation 
and stabilizes mESC status [101].  

Since then, many other miRNAs have been reported as 

having an important role in early steps of differentiation and 

maintenance of the differentiated status. Examples are miR-
21 and miR-22 which were also reported as overexpressed in 

differentiated cells [49]. Indeed, Nanog and Sox2 are direct 

targets of miR-21 [102], and this miRNA may have an im-
portant role promoting adipocyte differentiation [103] as 

well as in bone formation, since it is overexpressed during 

the initial steps of osteogenic differentiation [104]. MiR-22, 
by its turn, has been reported as a maintainer of progenitor 

cells in murine mammary epithelium [99], promoter of os-

teogenic differentiation and inhibitor of adypogenic differen-
tiation [105]. Moreover, a set of miRNAs was found to be 

up-regulated (miR-297, miR-96, miR-214, miR-125a, miR-

424, miR-21, miR-29c, miR-7) or down-regulated (miR-
376a) in mouse blastocysts when compared to the morula 

stage, indicating that they are involved in trophectoderm 

determination [106]. Furthermore, the different miRNA pro-
files characterizing the three germ layers in gastrulating em-

bryo implicate the involvement of miRNAs in the differen-

tiation of mesoderm, endoderm, and ectoderm [107-109]. In 
the Supplementary Table S1 we show a comprehensive list 

of miRNAs involved in tissue regulation, organogenesis and 

development. 

Once differentiation is established, each cell type will 

express its own set of miRNAs. Accordingly, tissues with 
the same ontogenetic origin have similar expression profiles, 

which are different from those of tissues originating from 

different embryonic layers [15]. Since miRNAs have been 
widely implicated in the control of stem cells fate, a better 

understanding of the relationships among miRNAs, tran-

scription factors, signaling pathways, chromatin remodeling 
factors, and extracellular clues have a pivotal importance in 

developing new strategies to tissue engineering.  

MiRNAs AS PROMISING TOOLS FOR TISSUE EN-
GINEERING 

Tissue engineering (TE) is an interdisciplinary field that 
combines cells, engineered materials, and biomedical tech-
nology towards the development of bio-artificial tissue-like 
structures to restore, replace, maintain or improve the func-
tion of tissues or organs [110]. 

Currently, several tissues and organs are being engi-
neered [111-114]. The obstacles in TE are to attain specific 
cell types, to develop appropriated scaffolds, and to promote 
the release of growth factors and other molecules from scaf-
folds in order to resemble organogenesis [115, 116]. The 
success of implant engineered tissues is also challenged by 
the difficult formation of blood vessel network, tissue inner-
vation, and by inflammatory and immunological responses 
[reviewed in 117], making the transition from research stage 
to clinical trials limited to avascular or thin tissues, such as 
cartilage and skin [118, 119]. Given the role of miRNAs in 
many biological processes, including cell differentiation and 
maintenance of cell identity, modulation of these small 
molecules in combination with stem cells and/or bioartificial 
scaffolds has been providing encouraging results. Indeed, 
strategies for vascularization of bioartificial tissues, which 
are insofar mainly based on the delivery of angiogenic 
growth factors [120-122], have recently advanced with the 
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Table 1.  MicroRNAs employed for tissue engineering approaches. 

MicroRNA MicroRNA delivery Result of microRNA manipulation Ref. 

miR-1 and miR-206 
Myogenic progenitor cells were transfected with each mi-

croRNA separately and cultured in a 3-D culture system. 

Improvement of myogenic progenitor cells  

differentiation. 
[129] 

miR-21 
Chondrocytes were cultured on an atelocollagen gel com-

plexed with the miRNA. 

Improvement of proliferation and matrix synthesis of the 

chondrocytes. 
[127] 

miR-26a 

Bone marrow mesenchymal cells were cultured in an  

hydrogel system that releases a chemically modified  

miR-26a, which is a miRNA enhancer (agomiR-26a),  

and then this construction was implanted into  

calvarial bone defect in mice. 

Improvement of bone regeneration and modulation of 

angiogenesis- osteogenesis coupling. 
[125] 

miR-29a 

Human vascular smooth muscle cells were seeded with 

polyglycolic acid scaffolds in the presence of  

miRNA-29a inhibitor. 

Improvement of elastin levels in bioengineered  

human vessels. 
[126] 

miR-29b 
Fibroblasts were cultured in collagen-based scaffolds doped 

with miR-29b and these were applied to rat wound model. 

Improvement of the wound healing response through 

reduced wound contraction and reduction of collagen 

type I production after the injury. 

[116] 

miR-30c 
Treatment of osteoblastic cells with nano-bioglass ceramic 

particules (nBGC) was able to induce miR-30c expression. 

The indirect upregulation of this miRNA may lead to the 

osteoblastic differentiation. 
[131] 

miR-31 

Osteo-inductive bone marrow stromal stem cells transduced 

with anti-miR-31 lentiviral vectors were seeded on  

polyglycerol sebacate scaffolds and used to repair  

critical-sized calvarial defects in rats. 

Improvement of ostogenic differentiation,  

biocompatibility and regeneration rate in the repair of  

in vivo large bone defects. 

[132] 

miR-132 

The microRNA was encapsulated in a targeted  

biodegradable polymer nanoparticle and delivered to  

endothelial cells before transplantation. 

Improvement of endothelial cells transplantation through 

vascularization enhancing. 
[124] 

miR-133 
Myoblasts were transfected with anti-miR-133 and cultured 

in a collagen/matrigel construct. 

Improvement of myogenic differentiation and increased 

peak forces after electrical stimulation. 
[128] 

miR-221, miR-222, 

miR-140, miR-143, 

and miR-145 

In 3D agarose cultures, chondrocytes treated with TGF- 1 

showed downregulation of miR-221 and miR-222  

expression and inscreased expression of miR-140,  

miR-143 and miR-145. 

Alterations in microRNAs expression due to treatment 

of cells with TGF- 1, which is known to enhance  

chondrocytic differentiation, may represent a promising 

role in the tissue engineering of the articular  

cartilage superficial zone. 

[133] 

miR-148b 
Rat mesenchymal stem-cells were transfected with the 

microRNA lyophilized on a microporous titanium implant. 

Improvement of osteogenic differentiation of  

the stem cells. 
[135] 

miR-148b and  

miR-489 

Human mesenchymal stem-cells were transfected with 

miR-148b mimic and miR-489 inhibitor and cultured in a  

2-D surface or capsuled in a 3-D scaffold. 

Improvement of osteogenesis through the sensibilization 

of the cells to osteogenic signals. 
[130] 

 
use of miR-132 that indirectly induces Ras overexpression, 
enhancing neovascularization rate [123]. When this miRNA 
is encapsulated in biodegradable polymer nanoparticles, it 
improves vessel formation in human endothelial cells trans-
planted in immunodefficient mice. This approach allows the 
release of these small RNAs for weeks, longer than conven-
tional lipid-based transfection [124]. Similarly, localized and 
sustained expression of miR-26a in vivo positively regulates 
osteogenesis-angiogenesis coupling, therefore, providing an 
enhanced efficiency in bone regeneration [125]. Zhang and 
colleagues have also reported that the inhibition of miR-29 in 
bioengineered vessels may increase the expression of its tar-
get gene, ELN, which has a major function in maintaining 
the integrity of the extracellular matrix of arteries [126]. 

Other studies also showed that TE could be potentially 

improved by the transfection of cells with miR-21, since it 

promoted high proliferation rates and high matrix synthesis 
of rat chondrocytes cultured in atelocollagen gel [127], and 

by implanting scaffold embedded with miR-29b in cutaneous 

injury, which was able to improve extracellular matrix re-
modeling of treated excisional wounds [116]. 

However, the most studied miRNAs in TE are related to 
directing cell fate. Examples of this are (a) the inhibition of 
miR-133, which enhances skeletal murine myoblast differen-
tiation and the response to electrical stimulation in three-
dimensional (3D) bioartificial muscle [128]; (b) the transfec-
tion of miR-206 in satellite cells, which increases their dif-
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ferentiation in a bioartificial muscle construct [129]; (c) the 
introduction of miR-148b mimic and miR-489 inhibitor, 
which improves osteogenesis from human mesenchymal 
stem cells and the expression of osteogenic markers, also in a 
3D scaffold [130], (d) the usage of nano-bioglass ceramic 
particles (nBGC) that stimulates miR-30 expression in os-
teoblastic cells, inducing their differentiation [131], (e) the 
transfection of miR-31 inhibitor in bone marrow stromal 
cells, which increases osteogenic differentiation, bone min-
eral density, biocompatibility and regeneration rate [132]. 
Finally, miRNAs seem to have an important role in the de-
velopment of engineered tissues with a refined architecture. 
For instance, articular cartilage is subdivided in specific 
zones that seem to be frequently lost in monolayer expanding 
cultures of chondrocytes. Superficial zone-specific miRNAs 
expression is also lost in this process, and the TGF- -
directed differentiation of chondrocytes in a 3D agarose cul-
ture was able to reestablish their expression. Therefore, ma-
nipulation of miRNA expression might be useful to the cor-
rect assembly of a complex engineered tissue [133]. A com-
plete list containing all miRNAs used so far in TE is reported 
in Table 1. Thus, we expect that miRNAs will become an 
increasingly important tool for controlling cell fate for TE, 
and the prominent candidates to this purpose are listed in 
Supplementary Table S1. 

Finally, miRNAs might potentially be used to monitor 
the graft status, since in a mouse model of heart transplanta-
tion, allograft rejection seems to be associated with specific 
miRNA signatures. Moreover, miR-182 was found overex-
pressed in peripheral blood mononuclear cells and plasma in 
mice with allograft rejection [134]. 

CONCLUSION 

MicroRNAs have an essential role in maintenance of cell 
pluripotent and differentiated states, as well as in cell fate 
decisions, working as modulators of cell identity. Accord-
ingly, these small regulators might (a) assist the reprogram-
ming of iPSC, an important source of cells for TE; (b) direct 
and maintain tissue-specific differentiation; (c) guarantee 
proper vascularization of engineered tissue. A better under-
standing of miRNAs involvement in tissue formation, regen-
eration and function will provide more efficient engineered 
tissues. Thus, on the whole, despite few studies have been 
performed so far, the results are very promising and warrant 
remarkable advances in the next future.  
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