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ABSTRACT
Alzheimer’s disease (AD) has devastating consequences for patients during its slow, progressive course. 
It is important to understand the pathology of AD onset. Recently, circular RNAs (circRNAs) have been 
found to participate in many human diseases including cancers and neurodegenerative conditions. In 
this study, we mined the published dataset on the AMP-AD Knowledge Portal from the Mount Sinai 
Brain Bank (MSBB) to describe the circRNA profiles at different AD stages in brain samples from four 
brain regions: anterior prefrontal cortex, superior temporal lobe, parahippocampal gyrus and inferior 
frontal gyrus. In total, we found 147 circRNAs to be differentially expressed (DE) for different AD severity 
levels in the four regions. We also characterized the mRNA-circRNA co-expression network and anno-
tated the potential function of circRNAs based on the co-expressed modules. Based on our results, we 
found that the most circRNA-regulated region in AD patients with severe symptoms was the parahip-
pocampal gyrus. The strongest negatively AD severity-correlated module in the parahippocampal gyrus 
was enriched in cognitive disability and pathological-associated pathways such as synapse organization 
and regulation of membrane potential. Finally, a regression model based on the expression pattern of 
DE circRNAs in the module could help to distinguish the disease severity of patients, further supporting 
a role for circRNAs in AD pathology. In conclusion, our findings indicate that circRNAs in parahippo-
campal gyrus are possible biomarkers and regulators of AD as well as potential therapeutic targets.
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Introduction

The global increase in the occurrence of Alzheimer’s disease (AD) 
stresses the urgent need to develop effective medical strategies to 
help patients suffering from this menacing neurodegenerative 
disease. Alzheimer’s disease is the most common age-related 
dementia and it is well known for its slow-progressing and incur-
able deterioration. The disease manifests as impaired cognitive 
function caused by neuronal necrosis in specific brain regions [1] 
and eventually leads to death due to brain dysfunction [2]. 
Although the exact pathology of AD is still debated, it is hypothe-
sized that the continuous neuron loss and brain structure dystro-
phy is induced by the accumulation of Amyloid ß (Aß) protein 
and cell inflammation [3], which leads to memory loss and 
cognitive decline. Appropriate treatment during disease progres-
sion could help slow down the disease and it is therefore impor-
tant to understand the biological and physiological changes that 
occur during the disease.

Since the discovery of non-coding RNAs (ncRNAs), 
increasing evidence suggests that ncRNAs play an important 
role in disease pathology and therefore could serve as both 
biomarkers and targets for treatment in several human dis-
orders. Recently, ncRNA-related therapeutics targeting can-
cers, diabetes and hepatitis C [4] have entered clinical trials. 
As a new member of the ncRNAs, circular RNAs (circRNA) 

have caught attention given their abundance in humans [5] 
and possible pathological importance [6]. CircRNAs were 
long considered to be by-products of gene expression; how-
ever, in recent years, evidence of circRNA dysregulation in 
cancers [7], neurodegenerative diseases [8], diabetes [Yonghao 
9] and cardiovascular diseases [10] suggest that circRNAs play 
an important role in cell homoeostasis and pathogenesis [11].

CircRNAs have covalently linked termini created by 
a noncanonical back-splicing event and therefore naturally 
lack free 5ʹ and 3ʹ ends. This closed nature of circRNAs 
provides resistance to exonucleases, thereby increasing their 
half-life relative to linear transcripts [12], making circRNAs 
good potential targets for clinical use. Studies on circRNAs as 
biomarkers have so far mainly been focused on cancers and, 
to a lesser extent, neurodegenerative disorders. However, 
there is evidence suggesting the importance of circRNAs in 
the brain and neural system. The brain is the organ with the 
highest accumulation of circRNAs [13] and many brain- 
expressed circRNAs stem from genes with synaptic function 
in human [13]. Besides, circRNA expression changes during 
ageing in mammalian brains [14], a recent study reported 
a correlation between circRNA expression and the pathologi-
cal features of AD [15], however, the paper focused on the 
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parietal cortex and discussed the global changes but not the 
brain region-specific changes.

In this study, we set out to investigate how circRNAs 
correlate with AD severity in different human brain regions. 
We profiled circRNA expression in AD patients using a public 
RNA-sequencing dataset provided by the AMP-AD 
Knowledge Portal. The dataset was prepared with brain sam-
ples from AD patients from Mount Sinai/JJ Peters VA 
Medical Center Brain Bank (MSBB) [16] and containsRibo- 
Zero-treated RNAseq libraries of four brain regions: anterior 
prefrontal cortex (aPFC), responsible for memory retrieval 
[17] and prospective memory [18], superior temporal lobe 
(STL) and inferior frontal gyrus (IFG), both involved in 
language comprehension [19], and parahippocampal gyrus 
(PHG), essential for episodic memory formation and contex-
tual association [20], from post-mortem brain samples. The 
samples were classified according to different dementia stages, 
based on clinical and neuropathological scales: the clinical 
dementia rating (CDR) score [21] and the neuropathology 
category measured by CERAD [22]. The CDR score is 
a numeric scale to grade the severity of AD clinical symptoms, 
which is derived by combining information from interviews 
with subject and other information. The score usually ranges 
from zero (normal cognitive ability) to three (severe), but in 
the dataset used in this study, additional categories of four 
(profound dementia) and five (terminal dementia) are pre-
sent. The CERAD system, which is based on post-mortem 
semiquantification of neuritic plaques, provides aclinical 
assessment of four AD stages ranging from no AD, 
possible AD, probable AD to definite AD. The analysis of 
differential circRNA expression showed that the PHG was the 
most influenced region based on either the CDR or CERAD 
scale. The co-expression network and the functional enrich-
ment analysis revealed that the co-expressed modules in PHG 
highly associate with disease progression involved pathways 
including synapse and membrane potential regulation, imply-
ing that circRNAs may participate in these pathways. Finally, 
using a regression model, we show that expression levels of 
promising circRNA candidates in PHGcan distinguish 
between different levels of AD severity, providing further 
evidence for the importance of PHG circRNAs in AD.

Results

Brain region-specific circRNA profiling and changes in 
Alzheimer’s disease

The number of circRNAs identified in the four brain regions 
ranged from about 58,000 to 72,000, of which 3500 to 5200 
circRNAs remained after removing lowly expressed circRNAs 
in each region (Table 1).

About 19% of the identified circRNAswere found in all 
brain regions, and the percentage of shared circRNAs 
increased to nearly two-thirds among the highly expressed 
circRNAs (Fig. 1A). Also, a three-dimensional PCA showed 
region-specific clustering of the highly expressed circRNAs 
(Fig. 1B), indicating that both the identity and expression 
level of circRNAs differed between regions. Among the four 
regions, IFG showed the highest abundance of circRNAs and 
clustered separately from the other three regions, suggesting 
that IFG had a unique expression profile.

We then performed differential expression analysis to 
observe the relationship between circRNA expression 
and AD severity. We found that the majority of circRNAs 
decreased with increased CDR and CERAD stage in all four 
brain regions, irrespective of circRNA expression level and 
differential enrichment (Supplementary Table 1).

One hundred and forty-seven circRNAs were significantly 
differentially expressed across CDR stages at FDR ≤0.05 in all 
four brain regions (Fig. 2) and the distribution of the 147 
circRNAs was highly specific to the individual regions. Only 
four of the 147 differentially expressed circRNAs (2.7%) are 
shared across the four brain regions, and the number of 
region-specific differentially expressed circRNAs is 19, 9, 54 
and 35 in aPFC, STL, PHG and IFG, respectively. Although 
the profiling data showed that IFG had the highest level of 
circRNA expression, PHG was the region with the most 

Table 1. The identified and highly expressed circRNAs in each brain region.

aPFC STL PHG IFG

Identified circRNA 69,726 61,710 58,130 71,372
Highly expressed circRNA 4292 3602 3748 5205

Abbreviations: aPFC, anterior prefrontal cortex; STL, superior temporal lobe; PHG, 
parahippocampal gyrus; IFG, inferior frontal gyrus. 

Figure 1. The highly expressed circRNA in four brain regions. (A) Venn diagrams of highly expressed circRNAs in each brain region. The shared and distinct circRNAs 
are shown as the number and percentage. (B) The 3D PCA of highly expressed circRNAs that exists in at least 1 brain regions, the axes show the first, second and 
fourth principal components.
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significantly changed circRNAs with the increased severity 
based on the clinical symptoms of AD.

Compared to the changes in circRNA expression asso-
ciated with the CDR score, the correlation between circRNA 
expression and CERAD was much less pronounced. Although 
we found a modest correlation between the CDR and the 
CERAD (Supplementary Fig. 1A), and about 70% of the 
circRNAs changed with the increased CERAD and CDR, 
respectively (Supplementary Table 1), the numbers of signifi-
cant differentially expressed circRNAs associated with the 
CERAD score were lower than using CDR: 6, 3, 10 and 10, 
in each brain region, respectively. Only about half of the 
significant DE circRNAs associated with CERAD were also 
differentially expressed in correlation with the CDR score 
(Supplementary Fig. 1B & 1C).

Replication of the circRNA analysis in STL with an 
independent AD dataset

Currently, circRNA studies are constrained by the sequencing 
techniques. Poly-A enrichment is often preferred over ribo- 
depletion due to the lower cost and pure mRNA reads. 
However, the circularization of circRNAs removes the poly- 
A tail, and therefore they are not captured by poly-A enrich-
ment methods. Due to this limitation, we were unable to 
replicate the results of all four brain regions in MSBB dataset 
and selected the publically available independent AD dataset 
GSE104704 (lateral temporal lobe, NAD = 12, Nhealth = 10) 
from the GEO database to validate the DE results of the most 
related brain region STL in the discovery MSBB dataset. The 
circRNA profiles between the validation dataset and the dis-
covery dataset were quite similar, 86% of the highly expressed 

Figure 2. Heatmap of significantly DE circRNAs in brain regions based on CDR. The colour legends on top of the heatmap show the CDR stages and the brain region. 
The grey area in the plot means the circRNA is not significantly DE in that region.
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circRNAs in GSE104704 were also highly expressed in STL. 
Limited by the smaller sample size and low statistical power, 
only six circRNAs were found to be significantly differentially 
expressed (FDR ≤ 0.05) in the replication dataset in the lateral 
temporal lobe. However, 9 of the 21 CDR-associated and 1 of 
the 3 CERAD-associated DE circRNAs were nominally sig-
nificant in GSE104704 (P value ≤ 0.05). Additionally, we 
discovered 115 (out of 147) CDR-associated and 20 (out of 
25) CERAD-associated circRNAs in the MSBB dataset that are 
significantly DE in all four brain regions were also expressed 
in the GSE104704, and all these circRNAs were consistently 
up/down-regulated between the two datasets when comparing 
healthy to AD (Supplementary Fig. 2A–D). The same positive 
correlation also existed between the CDR-associated DE 
circRNAs in STL and the GSE104704 (Supplementary Fig. 
2E). Since only 2 out of 3 CERAD-associated DE circRNAs 
were identified in both STL and GSE104704, we were unable 
to perform a correlation test.

CircRNA-mRNA co-expression network analysis and 
functional annotation

Given the global deregulation in CDR-associated circRNA 
expression, we speculated that a correlated dysregulation of 
circRNAs and mRNAs during cognitive decline could imply 
a functional role in shared pathways. We therefore con-
structed a circRNA-mRNA co-expression network to capture 
the relationship between circRNAs and mRNAs. Moreover, 
the mRNAs and circRNAs in the same module could be 
involved in similar molecular mechanisms, such that includ-
ing mRNAs could aid in the functional enrichment test. Fig. 
3A, B shows the circRNA-mRNA co-expressed modules and 

CDR in PHG, including sex and AOD as they are strong 
influence factors of AD. The co-expressed modules were 
assigned to different colours to visualize the topological over-
lap but these do not represent any functional information. 
The co-expressed network of the other three regions is shown 
in Supplementary Fig. 3 and the composition of modules in 
Supplementary Tables 2–5. All modules in aPFC and STL 
were weakly associated with CDR, consistent with a previous 
study showing that these two regions were the least important 
of the four brain regions in dementia [23]. Surprisingly, 
although IFG was shown to be an important region for AD 
in that study, and it was the region with the highest circRNA 
expression in our study, the association between the IFG 
transcriptome and the CDR score in our analysis was nearly 
as weak as for aPFC and STL. The maximum absolute corre-
lation coefficients of the three regions were 0.32, compared to 
0.51 for the PHG. This, however, agreed with the observation 
that PHG had more significantly DE circRNAs than all the 
other three regions, suggesting that circRNAs in PHG were 
most associated with the change of CDR. We therefore 
focused on the functional role of circRNAs in this specific 
region. In PHG, the module with the highest correlation 
coefficient was ‘violet’ (r = 0.49 and P value = 8^10−10) and 
the lowest was ‘brown’ (r = – 0.51 and P value = 2^10−10).

For each module, we performed gene and disease ontology 
enrichment analysis on the host genes of mRNAs and 
circRNAs that significantly changed with the CDR. The 
brown module was enriched in important AD pathological 
mechanisms such as membrane potential regulation and 
synaptic function, and advanced cognitive functions including 
behaviour, learning or memory and cognition (Supplementary 
Fig. 4A). The DO enrichment test also showed that the brown 

Figure 3. The circRNA-mRNA co-expressed modules in parahippocampal gyrus. (A) represents the correlation of circRNA-mRNA co-expressed modules clustered by 
WGCNA in the parahippocampal gyrus and three traits, CDR, AOD and SEX. The numbers in the heatmaps are the correlation coefficients and the P value in the 
parentheses. (B) shows the topological overlap of the co-expressed modules. Each column and row is a transcript and the colour bands on the top and left represent 
the modules. The deeper coloured regions in the network matrix correspond to more topological overlap (i.e. higher intra-module similarity of the members). The 
dendrograms on top and left show the clustering of the transcripts.
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module was significantly related to mental disorders such as 
attention deficit hyperactivity disorder, autism, depression 
and epilepsy (Supplementary Fig. 4B). Interestingly, weight 
change and, specifically, weight gain were enriched DO terms 
in our analysis. Although it is not a feature most commonly 
linked to Alzheimer’s disease, several studies have reported 
that before and during Alzheimer’s disease progression, some 
patients experience unusual and dramatic weight change[24]. 
The networks in Fig. 4A, B represented the strongest interac-
tion between circRNAs and mRNAs in the brown module, 
colour-coded by the ontology enrichment terms. Compared to 
the brown module, the violet module showed lower functional 
enrichment, the only significant biological pathway-enriched 
term was epithelial cell differentiation, and circRNA-mRNA 
correlation in the network was much weaker than in the 
brown module (data not shown).

Association between circRNAs and the clinical or 
neuropathological state of AD

Given that circRNAs in the PHG brown module are related to 
CDR, we selected 13 circRNAs in the PHG brown module (see 
methods for specific criteria) as promising candidates for AD 
clinical state assessment. We grouped individuals by the severity 
of CDR stages into healthy, mild cognitive impairment (MCI) 
and AD, and showed the expression differences for the 13 
circRNAs in Supplementary Fig. 5. A multinomial logistic 
regression model was used to quantify how well each of the 13 
circRNAs predicted any of the three AD clinical groups (model 
and analysis details are described in the methods section). Most 
circRNAs improved the prediction of AD clinical groups to 
a weak or moderate level (Supplementary Fig 6). Considering 
that the predictive ability of a single circRNA may be limited, we 
further combined the five circRNAs that had the largest area 
under the ROC curve (AUC) in Supplementary Fig 6 and found 
their joint model improved the predictive power of the AD state 
in any of the healthy/MCI, MCI/AD and healthy/AD compar-
isons; the overall AUC also increased from 0.69 in the reduced 
model to 0.79 in the full model (p = 0.035, Fig. 5A). However, the 
circRNAs did not show the same predictive power in predicting 
the AD neuropathological state. When constructing the model 
with the 10 significantly DE circRNAs in CERAD, the improve-
ment of every single circRNA was negligible and the combina-
tion of the top five circRNAs did not improve performance 
(Fig. 5B).

Discussion

In this study, we identified a global dysregulation of circRNAs 
in four brain regions associated with the worsening of AD 
neuropathological phenotype (CERAD score) and clinical 
symptoms such as memory, orientation and judgement ability 
(CDR score). The general decrease in circRNA expression in 
diseased brains contrasts the general increase of circRNAs 
reported during normal ageing [14], suggesting that 
circRNAs may be beneficial for healthy ageing.

Comparing all four regions studied, we found that 
although IFG was the region with the most enriched 
circRNA expression, PHG was the region in which 

circRNAs were most related to the severity of AD. 
Considering that PHG is mainly responsible for advanced 
cognitive abilities (e.g. associative learning), and that many 
reports have indicated that PHG atrophy could be an early 
symptom of AD patients [25,26], the abnormal change of 
circRNAs implies a functional association of circRNAs in 
PHG and AD pathology. We also built a regression model 
to test the association between circRNAs and AD (both CDR 
and CERAD). Due to the limited number of available inde-
pendent datasets, we used 70% of the samples in our dataset 
for model training and 30% for the performance test, while all 
samples were used for DE and co-expression network analy-
sis. The test data for the regression model were therefore not 
fully independent, and further validation is necessary to con-
firm the results. Nevertheless, the regression model suggested 
that the selected circRNAs in PHG could improve the predic-
tion of AD severity based on the CDR scale.

Interestingly, we found that the correlation of circRNA 
expression changes with the neuropathological phenotype was 
in general much less pronounced than with the clinical symp-
toms. Although the majority of circRNAs changed in the same 
direction when the CDR and the CERAD increased, not only the 
number of significantly DE circRNAs but also the log2 fold- 
changes of the circRNAs associated with CERAD were much 
smaller than with CDR. The regression model built on the 
significantly DE circRNAs in CERAD did not improve the pre-
diction either. Since the CDR scale is based on the integrative 
assessment of cognitive-related ability and the CERAD scale 
estimates the accumulation of neuritic plaque in AD, it seems 
likely that the circRNAs are involved in molecular mechanisms 
not directly or closely related to the formation of neuritic pla-
ques. The observation that the strongest CDR-associated module 
was also enriched in cognitive ability like behaviour, memory 
and learning also implied that circRNAs could be involved in 
these high-level cognitive abilities. Our understanding of how 
high-level cognitive ability works in human is still limited and, 
although there is no direct evidence showing circRNAs to play 
a key role in these functional mechanisms, future research in the 
role of circRNAs in these mechanisms may shed new light on 
decline and recovery of cognitive ability during brain ageing.

Other benefits of circRNA as biomarkers are the high 
stability and that circRNAs encapsulated in exosomes have 
been found to circulate in the bloodstream [27], providing the 
possibility of using circRNA profiles in blood samples as 
diagnostic biomarkers for AD. Although it is necessary to 
further confirm the robustness of the circRNA candidates 
described here and determine if they can be detected in 
exosomes or biofluids, our research describes the association 
between circRNA expression and CDR score and points out 
the potential importance of PHG circRNAs in the AD disease.

Methods

Dataset information

The clinical information, RNA and QC tables were down-
loaded from the AMPAD Knowledge Portal (https://www. 
synapse.org/#!Synapse:syn3159438) in June 2018. As part of 
the MSBB study, there were 364 individuals at different AD 
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stages in the cohort. Ribo-Zero-treated 100 bp single-end 
RNA-sequencing libraries were available for one to four of 

the below brain regions for each patient: aPFC, STL, PHG and 
IFG. The detailed tissue processing and data preparation 

Figure 4. The circRNA-mRNA co-expressed network of the brown module in Parahippocampal gyrus. The same network colour coded by either (A) biological 
pathway, and (B) disease ontology enrichment term. The circle represents the circRNAs and the triangle represents the genes. In order to provide a brief overview, 
only those circRNAs and mRNAs with log2 fold-change ≥0.2 & FDR ≤0.05 are included, only edges with weights ≥0.2 are shown, and mRNA–mRNA interactions are 
excluded.
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procedures have been described [16]. Not all subjects had 
RNA-Seq libraries available for all four brain regions, and 
not all the libraries passed the quality control performed by 
the original group. To avoid low-quality samples, individuals 
who were not annotated as ‘Okay’ in the QC table provided by 
the original group, samples where the RNA sequencing had 
a RIN score lower than 4, or samples where the rRNA rate 
was higher than 5% were removed. Samples from non- 
European individuals were also removed. Finally, of 223 indi-
viduals, there were 187,166,138 and 158 RNA-sequencing 
datasets available in four regions, respectively. The demo-
graphic summary of the dataset is provided in 
Supplementary Table 6. The replicate dataset GSE104704 
[28], which is publically available in the GEO database, 
contains AD patients, young and old healthy individuals. To 
avoid bias from age, we only used the AD and old, healthy 
individuals for replication.

CircRNA quantification

To quantify circRNA expression in the AD brain regions, the 
BAM files and the unmatched FastQ files (containing reads 
that failed to map to the reference genome) of the same 
individual were downloaded, converted and merged back to 
the FastQ file containing all sequenced reads with Picard 
(v2.7.1)[29] and then re-mapped to the human reference 

genome hg19 with the Burrows-Wheeler Aligner (BWA- 
MEM, v0.7.15)[30]. The CircRNA detection tool CIRI2 
(v2.0.6) [31] was used to identify and quantify the circRNAs. 
In order to construct co-expression networks, we also down-
loaded the mRNA expression tables from the AMPAD 
Knowledge Portal. Further data cleaning and analyses were 
done using R.

The R package org.Hs.eg.db [32], TxDb.Hsapiens.UCSC. 
hg19.knownGene [33], Ensembl genomic information from the 
BioMart portal (www.biomart.org) [34] and information of 
known circRNAs from circBase(http://circbase.org/) [35] were 
used for circRNA and mRNA annotation. After annotation, 
transcripts that passed both of the following criteria: (1) tran-
scripts with zero reads in less than 25% of individuals, (2) 
average circRNA expression higher than two reads (mRNA 
higher than ten reads) in any CDR group were considered as 
highly expressed. The full list of circRNAs that passed the criteria 
is provided as Supplementary Material 
Supplementary_Table_S7.xlsx. The highly expressed circRNAs 
of all samples were then used for principal component analysis 
(PCA) to find potential clustering. All the following analyses also 
used only highly expressed transcripts unless otherwise noted. 
The replicate dataset went through the same quantification pipe-
line and the differential expression analysis described below. The 
only difference was that, due to limited information, the replicate 
dataset only used AOD as the covariate in the DESeq2 model.

Figure 5. The multivariate regression model with circRNA candidates in predicting (A) CDR and (B) CERAD state. The reduced model included covariates sex, age of 
death, batch and the first three principal components calculated from the circRNA expression level. The full model further included the five significantly DE circRNAs 
with the highest average AUC in the univariate regression models (the five circRNAs used in predicting CDR state were shown in Supplementary Fig 6, the five used 
in predicting CERAD were not shown).
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Differential expression analysis and the correlation 
between the log2 fold-changes

DE analysis of circRNA was performed with the R package 
DESeq2 (v1.18.1) [36]. The model used CDR or CERAD 
(ordered from normal to definite AD) as the dependent vari-
able and included the post-mortem interval (PMI), age of 
death (AOD), sex and batch information as covariates. 
P values were adjusted for multiple testing using the 
Benjamini-Hochberg (BH) method. Only results with an 
adjusted P value ≤0.05 were considered significant. The DE 
result of all circRNAs is provided as Supplementary Material 
Supplementary_Table_S8.xlsx. For the correlation estimation, 
the log2 fold-change of the DE circRNAs in the STL (or the 
averaged log2 fold-change of four brain regions) was corre-
lated with the log2 fold-change of the same circRNAs in 
GSE104704 with the R lm() function.

Co-expression network construction

The R package WGCNA (v1.66) [37] was used to construct 
circRNA-mRNA co-expression networks. Before running 
WGCNA, PCA analysis was performed to check for potential 
confounder effects in circRNA and mRNA in each brain region, 
and clustering based on the batch in circRNA and sex in mRNA 
was detected. Since the sex effect was not the focus in this study, 
the batch effect in circRNAs and sex effect in mRNAs were 
removed with the Limma package (v3.38.3) [38] 
(Supplementary Fig 7); the network construction then followed 
the tutorial provided by the WGCNA package. Briefly, using 
default parameters, WGCNA calculated and picked a soft thresh-
old for each brain region and removed outliers. WGCNA then 
constructed a signed network based on the expression change of 
all highly expressed circRNAs and mRNAs and calculated the 
Pearson correlation between the clustered models and the CDR. 
To avoid too many small modules, the clustered dendrogram was 
trimmed to keep modules containing at least 100 transcripts. 
Network visualization was done by Cytoscape (v3.7.1) [39]. 
Only those circRNAs and mRNAs with a log2 fold-change ≥0.2 
& FDR ≤0.05, and the edge weight ≥0.2 were used for network 
visualization; mRNA–mRNA interactions were excluded to pro-
vide a simplified overview.

Functional enrichment analysis

Gene ontology (GO) and disease ontology (DO) enrichment 
analyses were performed by the R packages clusterProfiler 
(v3.10.1) [40] and DOSE (v3.8.2) [41]. Given the sparsity of 
functional information for circRNAs, the mRNAs that were 
significantly changed during cognitive decline (FDR ≤0.05) 
and in the most positively or negatively CDR-correlated co- 
expression modules were also included in the functional 
enrichment test, while all highly expressed mRNAs and 
circRNAs were used as the background for the test. The 
redundant enriched ontology terms were trimmed by the 
clusterProfiler, and the remaining terms with P value <0.05 
were selected.

Regression model construction and the receiver operating 
characteristics curve (ROC)

We found 13 circRNAs that passed both the following cri-
teria: (1) significantly DE with CDR (FDR ≤0.05 and log2 
fold-change ≥0.2), (2) member of the most trait-related 
WGCNA co-expression modules. The 10 circRNAs associated 
with CERAD were also significantly DE (FDR ≤ 0.05) and 
member of the co-expression modules. All individuals were 
categorized as three disease stages: healthy (CDR < 1 or 
CERAD = 1), mild cognitive impairment (MCI, 
CDR = 1 ~ 3 or CERAD = 2 ~ 3) and AD (CDR> 3 or 
CERAD = 4), which was then used as the predictive target 
in the model. We included the following covariates in the 
base model: age of death (AOD), sex, batch and the first three 
principal components of circRNA expression. We calculated 
the relative area under the receiver operating characteristic 
curve (AUC) for each single circRNA candidate, i.e. the 
increase in AUC obtained by including the circRNA expres-
sion as a covariate in the base model. We employed R package 
caret (v6.0–84) [42] and glmnet (v2.0–18) [43] for the analy-
sis. For model training, 10-fold cross-validation performed on 
70% of individuals selected by stratified random sampling by 
the disease stage. The remaining 30% of individuals were used 
as test data for model performance estimation. The number of 
samples in each group in training and testing datasets for the 
regression model is listed in Supplementary Table 9. The five 
most strongly associated circRNAs among the 13 and 10 
examined individually in the regression were subsequently 
selected for further analysis. Using the same base model, we 
included the five circRNAs as covariates and examined the 
relative AUC.
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